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Abstract 

This paper is concerned with introducing a series of new concepts under the name of Economic 

Cross-Efficiency, which is rendered operational through Data Envelopment Analysis (DEA) 

techniques. To achieve this goal, from a theoretical perspective, we connect two key topics in the 

efficiency literature that have been unrelated until now: economic efficiency and cross-efficiency. 

In particular, it is shown that, under input (output) homotheticity, the traditional bilateral notion 

of input (output) cross-efficiency for unit l, when the weights of an alternative counterpart k are 

used in the evaluation, coincides with the well-known Farrell notion of cost (revenue) efficiency 

for evaluated unit l when the weights of k are used as market prices. This motivates the 

introduction of the concept of Farrell Cross-Efficiency (FCE) based upon Farrell’s notion of cost 

efficiency. One advantage of the FCE is that it is well defined under Variable Returns to Scale 

(VRS), yielding scores between zero and one in a natural way, and thereby improving upon its 

standard cross-efficiency counterpart. To complete the analysis we extend the FCE to the notion 

of Nerlovian cross-inefficiency (NCI), based on the dual relationship between profit inefficiency 

and the directional distance function. Finally, we illustrate the new models with a recently 

compiled dataset of European warehouses. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a data-driven approach for estimating a piece-wise 

linear frontier enveloping from above a cloud of points in a space with dimensions associated 

with variables categorized as inputs and outputs. DEA is classified as a non-parametric and 

multidimensional technique, which is based on a few postulates (mainly convexity, free 

disposability and minimum extrapolation), and is usually used for assessing relative efficiencies 

of a homogeneous set of Decision Making Units (DMUs). Due to its flexibility and other 

advantages, in recent times, DEA has become one of the most used methodologies by researchers, 

practitioners and scholars in Operations Research, Economics and Engineering to estimate a best 

practice frontier in many different contexts. In particular, this technique allows determining an 

efficiency score for each evaluated unit, calculated as the distance from each DMU to the 

estimated frontier (see, for example, Petersen, 2018).  

Regarding the determination of the distance to the frontier, it is worth mentioning that there 

exist in the DEA literature many different ways of implementing this idea of proximity; being the 

seminal and most used that associated with the radial models of Charnes et al. (1978) and Banker 

et al. (1984). In these models, defined as fractional linear programming formulations in its basic 

ratio-form, the technique allows DMUs to choose their own weights on inputs and outputs in 

order to maximize the ratio of a weighted sum of outputs to a weighted sum of inputs. In this 

manner, the assessed DMU is evaluated in the most favorable way and DEA provides a self-

evaluation of the DMUs by using input and output weights that are unit-specific. Unfortunately, 

this flexibility that represents one of the distinctive landmarks of DEA makes it difficult to derive 

a suitable ordering of the units based on their efficiency score, as the best performing DMUs rank 

at the top with an efficiency score of one, all obtained with weights that are DMU-specific. 

However, it is very common in real life that practitioners need to rank the set of assessed units 

with respect to their performance. One example is the famous Academic Ranking of World 

Universities (ARWU)better known as the Shanghai Ranking, where over 1,200 universities are 

ranked according to six objective indicators every year. Other recent examples are the ranking of 

a list of journals using data from the Thomson Reuters Journal Citation Reports (JCR) (see 

Rosenthal and Weiss, 2017) or the ranking of countries participating in a sporting event as the 

Summer Olympic Games 2016 (see Jablonsky, 2018). This need has motivated the introduction 

into the DEA literature of different approaches for ranking the set of DMUs (Aldamak and 

Zolfaghari, 2017). 

One of the most popular approaches for ranking units in DEA is that known as Cross-

Efficiency (CE) (Cook and Zhu, 2015; Ruiz and Sirvent, 2016). Cross-efficiency evaluation was 

originally introduced in Sexton et al. (1986) and popularized by Doyle and Green (1994). While 
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DEA provides a self-evaluation for each DMU, using unit-specific optimal input and output 

weights, the cross-efficiency evaluation provides a peer-appraisal of the DMUs in which each 

unit is also assessed using the optimal DEA weights of the remaining observations. To be specific, 

this methodology relies on the weights of all the DMUs in the calculation of the so-called cross-

efficiencies, which again define as the usual ratio of a weighted sum of outputs to a weighted sum 

of inputs, but using the set of individual weights obtained for each one of the observed units. The 

final (multilateral) cross-efficiency scores of the different units are the average of their (bilateral) 

cross-efficiencies, and such scores can be used to rank the DMUs. 

Whereas the ranking that we are determining through cross-efficiency is related to the notion 

of ‘technical’ efficiency, i.e., we are interested in evaluating the performance of a set of 

observations operating in a similar technological environment by comparing their activity with 

respect to the boundary enveloping the data; there exists another type of efficiency, with a more 

general meaning. We are referring to the concept of economic or overall efficiency, which is 

normally associated with the performance of ‘for-profit’ organizations when information on 

market prices are considered (e.g. firms operating within an industry). In market environments 

the measurement of, for example, cost efficiency is key to understand the competiveness of firms, 

Aparicio et al. (2015). These units are usually interested in changing the relative amounts of inputs 

(input mix) if this adjustment leads to real economic gains (i.e., given revenue, more profit 

through less cost). In particular, cost efficiency may be defined as how close the firm is to the 

optimal (minimum) feasible cost of producing a given amount of output. In a similar manner, we 

can find in the literature analogous definitions of revenue efficiency and profit efficiency. 

Farrell (1957) was the first author in showing how to measure cost efficiency from the 

estimation of a best practice frontier, as the ratio between minimum cost and actual cost of a firm 

given input market prices. Additionally, he introduced a way of decomposing this overall measure 

into technical efficiency and allocative efficiency, as a means to understand what needs to be done 

to enhance the performance of the assessed unit. Technical efficiency measures how close the 

firm is to the frontier of the technology, whereas allocative efficiency measures the additional 

economic loss due to a sub-optimal input mix given market prices, once the firm is at the frontier. 

Moreover, under the Farrell approach, when the best practice frontier is estimated by DEA, the 

technical efficiency component coincides with the efficiency score linked to the (input-oriented) 

radial model by Charnes et al. (1978), in the case of assuming a constant returns to scale (CRS) 

technology, and by Banker et al. (1984), in the case of adopting variable returns to scale (VRS). 

It is worth mentioning that a revenue efficiency measure à la Farrell can be defined in an 

analogous way. 
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In recent times, the interest of extending the ideas of Farrell to profit efficiency, instead of 

only cost or revenue efficiency, has resulted in the introduction in the literature of the so-called 

Nerlovian efficiency measure (Chambers et al., 1998). This approach defines profit inefficiency 

in an additive way and decomposes it into technical inefficiency and allocative inefficiency. 

Technical inefficiency is determined through the directional distance function, which is a graph 

measure in the sense that firms adjust both input and output quantities. As in the case of Farrell, 

the Nerlovian efficiency measure also uses the information of market prices to determine profit 

efficiency of each evaluated observation. 

In spite of input and output weights determined by radial models in DEA being interpreted as 

prices―as shadow prices specifically (Lovell et al., 1994), cross-efficiency and economic 

efficiency are two independent topics in the literature that have evolved in parallel, without ever 

making a connection. Following this thread, this paper explores the existence of a common 

ground, making the connection between these two research fields by introducing the concept of 

Economic Cross-Efficiency and its application through DEA. In particular, we show that under 

the customary assumption of input (output) homotheticity, the traditional bilateral notion of input 

(output) cross-efficiency for unit l, when the weights of unit k are used in the evaluation, coincides 

with the Farrell notion of cost (revenue) efficiency for unit l when the weights of unit k are used 

as market prices. This implies that, under homotheticity, the multilateral traditional cross-

efficiency notion matches the arithmetic mean of n Farrell’s cost efficiencies, where n denotes 

the sample size. Additionally, we will show how to decompose in that case the standard cross-

efficiency into technical efficiency and (shadow) allocative efficiency. 

The above result motivates the definition in a first instance of the concept of Farrell Economic 

Cross-Efficiency (FCE), based upon the notion of Farrell’s cost efficiency. We prove that FCE 

coincides with standard cross-efficiency (CE) in the context of production functions, i.e., when 

only an output is produced, under restrictive assumptions. One additional advantage of the FCE 

is that it easily allows the extension of the concept of cross-efficiency to technologies 

characterized by variable returns to scale (VRS), obtaining scores always between zero and one in 

a natural way, something that contrasts with the current cross-efficiency framework. This point is 

important in the context of cross-efficiency because the standard cross-efficiency measure under 

VRS presents the problem of negative values for some DMUs, unamenable to sensitive 

interpretation. However, many empirical situations require the assumption of VRS, for example 

when DMUs are of very different size (bank branches, universities, restaurants, etc.). This is the 

reason why some authors have tried to adapt the standard cross-efficiency to accommodate the 

need of using a VRS DEA model in order to avoid meaningless values (e.g., Wu et al., 2009, Lim 

and Zhu, 2015). 
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To complete the analytical framework, once the Farrell approach (FCE) has been introduced, 

we extend it to the wider case of profit inefficiency, by way of the notion of ‘Nerlovian’ cross-

inefficiency (NCI). This allows us to deal with the general situation of simultaneous output and 

input adjustments through the directional distance function. Finally, we illustrate the new 

concepts and their associated models by calculating and decomposing the Farrell and Nerlovian 

economic cross-(in)efficiencies for a recently compiled dataset of European warehouses. 

The paper is organized as follows. Section 2 is devoted to introduce the relationship between 

cross-efficiency and economic efficiency under homotheticity and to define the notion of Farrell 

(cost) cross efficiency under any returns to scale. In Section 3, we extend the Farrell cross-

efficiency to the context of graph measures by introducing the Nerlovian economic (profit) cross-

inefficiency measure. In Section 4 illustrates the applied feasibility of the models by reporting 

several numerical results using the warehouse dataset. Section 5 concludes. 

2. The Farrell economic (cost) cross-efficiency 

Let there be m inputs, the (non-negative) quantities of which are measured by a vector 

 1,..., mX x x , and s outputs, the (non-negative) quantities of which are measured by a vector 

 1,..., sY y y . Given n observed observations or DMUs, we have the set of data denoted as 

  , , 1,...,k kX Y k n . The technology or production possibility set is defined, in general, as 

  , :  can produce Ym sT X Y R X
  .  

Using Data Envelopment Analysis, T  is estimated as 

 
1 1

, : , , , , 0,
n n

m s
c j ij i j rj r j

j j

T X Y R x x i y y r j  


 

          
  

   under constants returns to scale 

(CRS) and as  
1 1 1

, : , , , , 1, 0,
n n n

m s
v j ij i j rj r j j

j j j

T X Y R x x i y y r j   


  

           
  

    under 

variable returns to scale (VRS) (Banker et al., 1984). 

In DEA, for each DMU 1,...,k n  the radial input technical efficiency assuming CRS is 

calculated through the following linear fractional programing problem (Charnes et al., 1978): 
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 (1) 

 ,c k kITE X Y  always takes values between zero and one and its inverse coincides with the 

well-known Shephard input distance function in Economics (Shephard, 1953). Additionally, for 

computational purposes, model (1) can be easily linearized as: 

 
,

1

1

1 1

,

. . 1, (2.1)

0, 1,..., (2.2)

0, 1,..., (2.3)

0, 1,..., (2.4)

s

c k k r rk
U V

r

m

i ik
i

s m

r rj i ij
r i

r

i

ITE X Y Max u y

s t v x

u y v x j n

u r s

v i m





 





  

 
 





 
 

 (2) 

Any optimal solution of model (2) is an optimal solution of model (1). Moreover, the optimal 

value of model (2) coincides with the optimal value of model (1). 

As we aforementioned, one drawback of radial input technical efficiencies is that they must 

not be used for ranking observations (Balk et al., 2017). To judge this, let  * *,k kV U  be one of the 

possible optimal solutions of problem (2) and, therefore, of model (1). In this way, the comparison 

of the scores ITEc associated with two DMUs k and l involves not only their input and output 

quantities (as in standard bilateral productivity comparisons), but also two different profiles of 

shadow prices:  * *,k kV U  and  * *,l lV U .  

   
* *

1 1

* *

1 1

, , .

s s

rk rk rl rl
r r

c k k c l l m m

ik ik il il
i i

u y u y
ITE X Y ITE X Y

v x v x

 

 

  
 

 
 

 

(3) 

 

Since usually    * * * *, ,k k l lV U V U , it is discouraged to compare the performance of the two 

units by direct comparison of their scores. Instead, a cross-evaluation strategy is suggested in the 
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literature (Sexton et al., 1986, and Doyle and Green, 1994). In particular, the (bilateral) cross 

input technical efficiency of unit l with respect to unit k is defined by 

 
*

1

*

1

, .

s

rk rl
r

c l l m

ik il
i

u y
CITE X Y k

v x









 (4)

 ,c l lCITE X Y k  takes values between zero and one and satisfies    , ,c l l c l lCITE X Y l ITE X Y  

[P1]. 

Given the observed n units in the data sample, the traditional literature on cross-efficiency 

recommends to aggregate bilateral cross input technical efficiencies of unit l with respect to all 

units k, k = 1,…,n, through the arithmetic mean to obtain the multilateral notion of cross input 

technical efficiency of unit l: 

   
*

1

*1 1

1

1 1
, , .

s

rk rln n
r

c l l c l l m
k k

ik il
i

u y
CITE X Y CITE X Y k

n n
v x



 



 


 


 (5)

This measure satisfies several properties: 

[P2] The greater  ,c l lCITE X Y , the better (meaning of efficiency); 

[P3]  0 , 1c l lCITE X Y  ; 

[P4] If    * * * *, , , 1,...,k k l lv u v u k n   , then    , ,c l l c l lCITE X Y ITE X Y ; 

[P5]  ,c l lCITE X Y  is units invariant. 

 

Before bridging the gap between the above cross-efficiency literature and the economic 

efficiency literatures, we need to briefly recall the latter through the classical Farrell approach 

(Farrell, 1957). We start considering the Farrell radial paradigm for measuring and decomposing 

cost efficiency. For the sake of brevity, we state our discussion in the input space, defining the 

input requirement set L(Y) as the set of non-negative inputs mX R  that can produce non-negative 

output sY R , formally  L Y  =   : X,Y ,NX R T   and the isoquant of   :L Y  Isoq L Y  =  

    : 1 .X L Y x L Y      

Let us also denote by  ,LC Y W  the minimum cost of producing the output level Y given the 

input market price vector mW R :    
1

, min :
m

L i i
i

C Y W w x X L Y


 
  

 
 . 
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The standard (multiplicative) Farrell approach views cost efficiency as originating from 

technical efficiency and allocative efficiency. Specifically, Farrell quantified, and therefore 

defined, each of these terms as follows: 

   
   

Allocative Efficiency
Technical Efficiency1

Cost Efficiency

, 1
, , ;

,
L F

L l l Lm
L

i i
i

C Y W
CE X Y AE X Y W

D X Y
w x



  







, (6) 

 

where     , sup 0 :LD X Y X L Y     is the Shephard input distance function (Shephard, 

1953) and allocative efficiency is defined residually as the ratio between cost efficiency and 

technical efficiency or, explicitly, as    

 1

,
, ;

,

LF
L

m
i

i
i L

C Y W
AE X Y W

x
w

D X Y


 
  
 


. We will use the subscript 

L  to denote that we do not assume a specific type of returns to scale. Nevertheless, we will utilize 

 ,cC Y W  and  ,cD X Y  for CRS and   ,vC Y W  and  ,vD X Y  for VRS when needed. 

Additionally, it is well-known in Data Envelopment Analysis that the inverse of  ,cD X Y  

coincides with  ,c k kITE X Y ―program (1):  ,c k kITE X Y =   1
,cD X Y


. Considering actual 

common market prices for all firms within an industry, then the natural way of comparing the 

performance of each one would be using the left-hand side in (6). We then could assess the 

obtained values for each firm since we were using the same reference weights (prices) for all the 

observations, creating a market based ranking. 

Next, we are going to show that, under input homotheticity, the traditional bilateral notion of 

the cross input technical efficiency of unit l with respect to unit k,  ,c l lCITE X Y k , coincides with 

the Farrell notion of cost efficiency for unit l, i.e., the left-hand side in (6), when the input weights 

of unit k,  * * *
1 ,...,k k mkV v v , are considered as input market prices. Nevertheless, we first recall the 

definition of input homotheticity (Jacobsen, 1970). 

Definition 1. The technology T is input homothetic if and only if      1sL Y H Y L  , where 

  : sH Y R R  and  1 1,...,1 s
s R  . 

Input homotheticity is customarily assumed in empirical applications measuring overall 

economic efficiency because it ensures that radial reductions of inputs can be rightly interpreted 

as technical improvements resulting in cost savings. This is because, whatever the allocative 

efficiency magnitude resulting from the first order conditions for cost minimization―i.e., 

summarized in the (in)equality of marginal rates of substitution to input price ratios, it does not 

change along the radial contraction path represented by the input distance function. This result 
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stems from one remarkable technological property normally taken for granted in the literature by 

customarily assuming homotheticity, that the marginal rates of substitution among inputs are 

independent of the output level, and therefore the radial contractions of input quantities leave 

allocative efficiency unchanged―see Proposition 2 in Aparicio and Zofío (2017:137). The 

geometric idea behind the notion of input homotheticity is that the input requirement sets for 

different output vectors along factor beams are “parallel” blown-ups (in contrast to Figure 1 where 

the map of isoquants corresponds to a non-homothetic technology). Given the advantages of 

assuming homotheticity among the most common technological properties, it comes as no 

surprise that it is routinely assumed by researchers, Chambers and Mitchell (2001). 

The satisfaction of this property has relevant implications for this study in terms of the input 

requirement set and the cost function, which can be rewritten as follows (see Färe and Primont, 

1995): 

     1sL Y H Y L , 

     , 1 ,L L sC Y W H Y C W . 

(7) 
 

(8)

 

In order to prove the result that relates traditional cross-efficiency to Farrell’s cost efficiency, 

we need to prove some previous results. We start showing the Linear Programming model that is 

used in DEA under CRS to determine the minimum cost, given the output level Yl and prices * :kV  

 * *

,
1

1

1

,

. .

0, 1,..., (9.1)

, 1,..., (9.2)

0, 1,..., (9.3)

0, 1,..., (9.4)

m

c l k ik i
X

i

n

j ij i
j

n

j rj rl
j

j

i

C Y V Min v x

s t

x x i m

y y r s

j n

x i m

















   

 

 
 






 

 

(9) 

In particular, under input homotheticity, expression (8) holds, and the optimal cost may be 

also determined through model (10) or by its dual, model (11): 
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j

i
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















   

 

 
 






 

 

(10)

   *

,
1

1 1

*

,

. .

0, 1,..., (11.1)

, 1,..., (11.2)

0 , 0 (11.3)

s

c l k l r
E F

r

s m

r rj i ij
r i

i ik

s m

C Y V H Y Max e

s t

e y f x j n

f v i m

E F



 



  

 
 



 
 

 

(11) 

Lemma 1. Let  * *,F E  be an optimal solution of (11). Then,  * *,kV E  is also an optimal solution 

of (11). 

Proof. We first prove that  * *,kV E  is a feasible solution of (11). Constraints (11.2) and (11.3) 

trivially hold. Regarding (11.1), * * * *

1 1 1 1

0
s m s m

r rj ik ij r rj i ij
r i r i

e y v x e y f x
   

        since  * *,F E  satisfies 

(11.2) and (11.1). This implies that  * *,kV E  is a feasible solution of (11). As for the value of the 

objective function of (11), evaluated at  * *,kV E , *

1

s

r
r

e

 , it coincides with the optimal value of (11)

. Therefore,  * *,kV E  is an optimal solution of (11). ■ 

Corollary 1. There always exists an optimal solution of model (11),  * *,F E , with * *.kF V  

Proof. This result is a direct consequence of Lemma 1. ■ 

Corollary 1, and given that  lH Y  does not depend on the decision variables E and F, implies 

that  *,c l kC Y V  can be computed as: 
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(12)

Now, we are ready to prove a key result in this paper: if  * *,k kV U  is an optimal solution of 

model (2) then, under input-homotheticity, we have that the traditional (bilateral) cross input 

technical efficiency of unit l with respect to unit k coincides with Farrell notion of cost efficiency 

for unit l when *
kV  is used as input price, i.e.,    

*
*

1

* *

1 1

,
, .

s

rk rl
c l kr

c l l m m

ik il ik il
i i

u y C Y V
CITE X Y k

v x v x



 

 


 
 

Theorem 1. Let  * *,k kV U  be an optimal solution of model (2). If T is input homothetic, then 

   *

*

1

,
,

c l k

c l l m

ik il
i

C Y V
CITE X Y k

v x





. 

Proof. In particular, we need to prove that  * *

1

,
s

rk rl c l k
r

u y C Y V


 . By (7), we have that 

     1sL Y H Y L . Additionally, under Constant Returns to Scale, Färe and Primont (1995) show 

that    L Y L Y  , for all 0.   Therefore, under both hypothesis,     1 .sL Y L H Y  In this 

way, we have that   1
,c kITE X Y


   ,c kD X Y    sup 0 : kX L Y     

       1
sup 0 : 1 , 1k s c k sX L H Y ITE X H Y 


    for any sY R . This result also implies that 

when we evaluate the input vector kX  by means of the Shephard input distance function with 

respect to L(Y), we get the same shadow prices than when we assess the input vector kX  by means 

of the Shephard input distance function with respect to   1sL H Y . Then, since we know that 

 * *,k kV U  are shadow prices for unit k, i.e, it is an optimal solution of model (2), we have that 

 * *,k kV U  is also an optimal solution of the following program: 
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   
,

1

1

1 1

,

. . 1,

0, 1,...,

0, 1,...,

0, 1,...,

s

c k k k r
U V

r

m

i ik
i

s m

r rj i ij
r i

r

i

ITE X Y Max H Y u

s t v x

u y v x j n

u r s

v i m





 





  

 
 





 
 

 

(13) 

By the same reasoning, the following two programs are equivalent with respect to optimal 

solutions and the optimal value: 

    
,

1

1

1 1

, 1

. . 1,

0, 1,...,

0, 1,...,

0, 1,...,

s

c k l s l r
U V

r

m

i ik
i

s m

r rj i ij
r i

r

i

ITE X H Y Max H Y u

s t v x

u y v x j n

u r s

v i m





 





  

 
 





 
 

 

(14) 

 
,

1

1

1 1

,

. . 1,

0, 1,...,

0, 1,...,

0, 1,...,

s

c k l r rl
U V

r

m

i ik
i

s m

r rj i ij
r i

r

i

ITE X Y Max u y

s t v x

u y v x j n

u r s

v i m





 





  

 
 





 
 

 

(15)

Note that (13) and (14) are very similar. The difference is that  kH Y  has been substituted by 

 lH Y . Then, since the function  H   does not depend on the decision variables U, V, we have 

that  * *,k kV U  is an optimal solution of (14) and, consequently, optimal solution of (15). This 

implies that      *

1

, 1 , .
s

c k l s c k l rk rl
r

ITE X H Y ITE X Y u y


    

Finally, since  * *,k kV U  is an optimal solution of (14) and *

1

1
m

ik ik
i

v x


  by (2.1), we may compute 

(14) through (16). 
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 
1

*

1 1

. .

0, 1,...,

0, 1,...,

s

l r
U

r

s m

r rj ik ij
r i

r

Max H Y u

s t

u y v x j n

u r s



 

  

 



 
 

 

(16)

Program (16) coincides with (12). Hence,  * *

1

,
s

c l k rk rl
r

C Y V u y


  . ■ 

Theorem 1 implies that, under input-homotheticity, the ‘traditional’ multilateral notion of 

cross input technical efficiency of unit l coincides with the arithmetic mean of n Farrell’s cost 

efficiencies, i.e., 

     *

*1 1

1

,1 1
, , .

n n
c l k

c l l c l l m
k k

ik il
i

C Y V
CITE X Y CITE X Y k

n n
v x 



  


 (17)

In this way, under input-homotheticity traditional cross-efficiency can be reinterpreted in 

terms of Farrell’s overall economic efficiency. This also implies that cross-efficiency could be 

easily decomposed into two components by applying (6): 

 
 

   

       

*

*

*1 1

1

* *

1 1

,1 1 1
, , ;

,

1 1 1
, ; , , ; .

,

n n
c l k F

c l l c l l km
k k c l l

ik il
i

n n
F F
c l l k c l l c l l k

k kc l l

C Y V
CITE X Y AE X Y V

n n D X Y
v x

AE X Y V ITE X Y AE X Y V
D X Y n n

 



 

 
    

  

   

 


 

 

 

(18) 

 

Hence, under input homotheticity, cross-efficiency of unit l can be seen as  technical 

efficiency of unit l times a ‘correction’ factor, associated with the arithmetic mean of n (shadow) 

allocative efficiencies of unit l, each one calculated from the input shadow prices of unit k, 

1,...,k n . 

Theorem 1 has also some interesting by-products. For example, in a DEA context where only 

an output is produced, i.e., when a production function is estimated, it can be proved that the 

‘traditional’ multilateral notion of cross input technical efficiency always coincides with Farrell’s 

notion of cost efficiency. It is worth mentioning that we do not need to adopt input homotheticity 

explicitly in the statement of the next corollary. 

Corollary 2. Let s = 1. Then,  
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 
 *

*1

1

,1
, .

n
c l k

c l l m
k

ik il
i

C y V
CITE X y

n
v x



 


 (19)

Proof. Aparicio et al. (2015) proved in their Proposition 3 that if s = 1 and constant returns to 

scale are assumed, as happens in the computation of traditional cross-efficiency, then input-

homotheticity is satisfied. Finally, by Theorem 1, we have (19). ■ 

The above discussion, which relates traditional cross efficiency to a traditional measurement 

of overall efficiency, suggests that we could define cross-efficiency in DEA based on the notion 

of Farrell’s cost efficiency, regardless of assuming or not input homotheticity. In this way, for a 

given set of reference prices (e.g., shadow prices, market prices or, even, other imputed prices), 

we define the Farrell cross-efficiency of unit l with respect to unit k as 

   *

*

1

,
, ,

L l k

L l l m

ik il
i

C Y V
FCE X Y k

v x





 (20)

where L{c,v} denote constant and variable returns to scale. 

As in (6),      *1
, , ;

,
F

L l l L l l k
L l l

FCE X Y k AE X Y V
D X Y

  . Therefore, Farrell cross-efficiency of 

unit l with respect to unit k corrects the usual technical efficiency, the inverse of Shephard distance 

function, through a term with meaning of allocative efficiency. 

In order to illustrate graphically the meaning of (20) and its decomposition, we resort to 

Figure 1. Let us assume that unit l and unit k are represented by points D and A, respectively. 

Additionally, let us suppose that point D belongs to L(1), while A belongs to L(2). Then, first of 

all we need to solve the input-oriented radial model for point A in order to obtain its corresponding 

shadow prices. In this case, the projection point on the isoquant of L(2) corresponds to point B. 

The radial model also yields the rate of input substitution  2 1
A Av v . Using the same rate of 

substitution, point C on the isoquant of L(1) is determined. This is the point where the minimum 

cost is achieved on L(1) according to  2 1
A Av v . In this way, (20) corresponds to the ratio of the 

cost of C to the cost of D. In Figure 1, this ratio is 0F 0D . The score provided by (20) for unit D 

regarding unit A coincides with the traditional radial input technical efficiency, 0E 0D , whose 

calculation does not involve the (shadow) prices of unit A, modified by a correction term, which 

is 0F 0E , i.e., the corresponding (shadow) allocative efficiency. 
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Figure 1. Illustrating expression (20) and its decomposition.

 

Given we have observed n units in the data sample, the traditional literature on cross-

efficiency suggests to aggregate bilateral cross-efficiencies through the arithmetic mean to obtain 

the multilateral notion of cross efficiency. In the case of the Farrell cross-efficiency we have: 

     *

*1 1

1

,1 1
, , .

n n
L l k

L l l L l l m
k k

ik il
i

C Y V
FCE X Y FCE X Y k

n n
v x 



  


 

 

(21) 

 

Additionally,  ,L l lFCE X Y  can be always decomposed (under any returns to scale) into 

(radial) technical efficiency and a correction factor defined as the arithmetic mean of n shadow 

allocative efficiency terms, as in expression (18). I.e., 

     
   

       

*

*

*1 1 1

1

* *

1 1

,1 1 1 1
, , , ;

,

1 1 1
, ; , , ; ,

,

n n n
L l k F

L l l L l l L l l km
k k k L l l

ik il
i

n n
F F
L l l k L l l L l l k

k kL l l

C Y V
FCE X Y FCE X Y k AE X Y V

n n n D X Y
v x

AE X Y V ITE X Y AE X Y V
D X Y n n

  



 

 
     

  

   

  


 

 

 

 

(22) 

with  ,L l lITE X Y  and  *, ;F
L l l kAE X Y V , L{c,v}, denoting constant and variable returns to scale 

technical and allocative efficiencies, respectively. 

Regarding the properties that this new notion of cross-efficiency satisfies, we next list the 

most important: 
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[P1]    
1

,
,L l l

L l l

FCE X Y l
D X Y

 ; 

[P2] The more  ,L l lFCE X Y , the better (meaning of efficiency); 

[P3]  0 , 1L l lFCE X Y  ; 

[P4] If    * * * *, , , 1,...,k k l lV U V U k n   , then    
1

,
,L l l

L l l

FCE X Y
D X Y

 ; 

[P5]  ,L l lFCE X Y  is units invariant; 

[P6] If    * *, , , 1,...,k kV U W P k n   , then    , ,L l l L l lFCE X Y CE X Y , 1,...,l n  . 

Probably, the most remarkable property is P3 since it means that cross-efficiency is well-

defined regardless of the assumed returns to scale. As was noted in the Introduction, this issue is 

critical in the context of cross-efficiency in DEA because the standard cross-efficiency measure 

under VRS presents the problem of negative values for some DMUs, representing a meaningless 

result. Almost the totality of the empirical applications involve a VRS characterization of the 

technology; for example when the units to be evaluated are universities with very different sizes 

(number of students, number of professors, budget, etc.). This is the reason why some authors 

have adapted the standard cross-efficiency to accommodate the need of using a VRS DEA model 

in order to avoid odd values (Wu et al., 2009, Lim and Zhu, 2015). In our case, we do not need to 

adapt/modify the FCE to fit well to different types of returns to scale. It accommodates variable 

returns to scale in a natural way by its definition. 

Other important property is P6 since it means that, assuming for example perfect competition, 

the new approach collapses to the well-known Farrell measure of cost efficiency, which should 

be the standard reference to be used for evaluating performance and ranking units when 

information on a common set of prices, in this case market prices, is available. This property is 

not satisfied by the traditional notion of cross input technical efficiency in the literature, as 

  1 1

1

1 1

1
,

s s

r rl r rln
r r

c l l m m
k

i il i il
i i

p y p y
CITE X Y

n
w x w x

 



 

 
 


 

, which is, in general, different from 

   

1

,
, c l

c l l m

i il
i

C Y W
CE X Y

w x





.  

Next, we are going to prove another property, one that relates FCE and the traditional CITE 

under CRS, without assuming input homotheticity. The result states that  ,c l lFCE X Y  is always 

an upper bound of  ,c l lCITE X Y . To prove that, we first need to introduce some additional 

notions. 
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Given a vector of input and output prices  , m sW P R 
 , and a production possibility set T, 

the profit function   is defined as    
,

1 1

, max : , .
s m

T r r i i
x y

r i

W P p y w x X Y T
 

 
    

 
   In particular, 

let  ,c W P  be the way of denoting the optimal profit given  , m sW P R 
  and the technology 

cT . 

Now, we prove that if    * *, ,k kW P V U , where  * *,k kV U  is an optimal solution of model (2), 

then  , 0c W P  . 

Lemma 2. Let  * *,k kV U  be an optimal solution of (2), then  * *, 0c k kV U  . 

Proof. Under constant returns to scale,  0 ,0m s cT . Therefore,  * *,c k kV U  must be greater or 

equal than zero by its definition. Let us assume that  * *, 0c k kV U  . Then, there exists  ˆ ˆ, cX Y T  

such that  * * * *

1 1

ˆ ˆ , 0
s m

rk r ik i c k k
r i

u y v x V U
 

     . Regarding  ˆ ˆ,X Y , by the definition of 

 
1 1

, : , , , , 0,
n n

m s
c j ij i j rj r j

j j

T X Y R x x i y y r j  


 

          
  

  , we know that there are 1̂
ˆ,..., 0n    

such that 
1

ˆ ˆ
n

j ij i
j

x x


 , 1,...,i m , and 
1

ˆ ˆ
n

j rj r
j

y y


 , 1,...,r s . This implies that 

* * * *

1 1 1 1 1 1

ˆ ˆˆ ˆ
s m s n m n

rk r ik i rk j rj ik j ij
r i r j i j

u y v x u y v x 
     

   
      

   
       * *

1 1 1

0 by (2.2)

ˆ 0
n s m

j rk rj ik ij
j r i

u y v x
  



 
  

 
  


, which is a 

contradiction. Hence,  * *, 0c k kV U  . ■ 

Lemma 3.    , ,c l l c l lCITE X Y k FCE X Y k . 

Proof. By the definitions of  ,c l lCITE X Y k  and  ,c l lFCE X Y k ,    , ,c l l c l lCITE X Y k FCE X Y k  

is equivalent to  * *

1

,
s

c l k rk rl
r

C Y V u y


  . So, we are going to prove that this second inequality holds. 

In this respect, Färe and Primont (1995, p. 136) showed that    
1

, ,
s

T L r r
r

W P C Y W p y


    , for 

all  , m sW P R 
  and sY R . Let us assume CRS,    * *, ,k kW P V U , where  * *,k kV U  is an optimal 

solution of model (2), and lY Y . Then, we have that    * * * *

1

, ,
s

c k k c l k rk rl
r

V U C Y V u y


    . Finally, 

by Lemma 2,  * *

1

,
s

c l k rk rl
r

C Y V u y


  . ■ 
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Now, applying Lemma 3, we get the desired result. 

Proposition 1.    , ,c l l c l lCITE X Y FCE X Y . 

Finally, it is worth mentioning that analogous results can be derived for the cross output 

technical efficiency and revenue efficiency when output-homotheticity is assumed. 

3. The Nerlovian economic (profit) cross-inefficiency 

In this section, we extend the newly proposed notion of economic cross-efficiency, presented 

through the concept of Farrell cross-efficiency in the previous section, to the case of graph 

measures that accommodate both input and output variations. In particular, we introduce the 

notion of Nerlovian cross-inefficiency based upon the dual relationship between the Nerlovian 

profit inefficiency and the directional distance function, as presented by Chambers et al. (1998). 

Luenberger (1992) introduced the concept of benefit function as a representation of the amount 

that an individual is willing to trade, in terms of a specific reference commodity bundle g, for the 

opportunity to move from a consumption bundle to a utility threshold. Luenberger also defined a 

so-called shortage function (Luenberger, 1992, p. 242, Definition 4.1), which basically measures 

the distance in the direction of a vector g of a production plan to the boundary of the production 

possibility set. In other words, the shortage function measures the amount by which a specific 

plan is short of reaching the frontier of the technology. In recent times, Chambers et al. (1998) 

redefined the benefit function and the shortage function as efficiency measures, introducing to 

this end the so-called directional distance function. 

We will first need to introduce some notation.  

Profit inefficiency à la Nerlove for a DMU k is defined as optimal profit (i.e., the value of the 

profit function at the market prices) minus observed profit normalized by the value of a reference 

vector  ,x y m s
k kG G R 

 : 
 

1 1

1 1

,
s m

T r rk i ik
r i

s m
y x

r rk i ik
r i

W P p y w x

p g w g

 

 

 
   

 



 

 
. Additionally, Chamber et al. (1998) 

showed that profit inefficiency may be decomposed into technical inefficiency and allocative 

inefficiency, where technical inefficiency is in particular the directional distance function 

   , ; , max : ( , )x y x y
T k k k k k k k kD X Y G G X G Y G T     


: 

 
   1 1

1 1

,

, ; , , ; , ; , .

s m

T r rk i ik
r i x y N x y

T k k k k T k k k ks m
y x

r rk i ik
r i

W P p y w x

D X Y G G AI X Y W P G G
p g w g

 

 

 
   

   


 

 


 (23)
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use the subscript T in  , ,T W P   , ; ,x y
T k k k kD X Y G G


 and  , ; , ; ,N x y
T k k k kAI X Y W P G G  to denote 

that we do not assume a specific type of returns to scale. Nevertheless, we will utilize  ,c W P , 

 , ; ,x y
c k k k kD X Y G G


 and  , ; , ; ,N x y
c k k k kAI X Y W P G G  for CRS and  ,v W P ,  , ; ,x y

v k k k kD X Y G G


 and 

 , ; , ; ,N x y
v k k k kAI X Y W P G G  for VRS. 

In the case of DEA, when CRS is assumed, the directional distance function for DMU k is 

calculated through the following linear programming model: 
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     (24)

     

Additionally, when VRS is assumed, then the directional distance function is determined 

through (24) for evaluating unit k. 
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In the particular case of the directional distance function under VRS, we are interested in 

showing its corresponding (linear) dual program (26). 
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(26) 

 

Let also denote one of the possible optimal solutions of problem (26) as  * * *, , .k k kV U 
  
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Once we have introduced the desired notation, we define the Nerlovian cross-inefficiency of 

unit l with respect to unit k. We consider initially the case of variable returns to scale DEA 

technologies and, subsequently, constant returns to scale production possibility sets. In this way, 

and inspired in the Farrell cross-efficiency notion introduced in the previous section when dealing 

with input-oriented models, we now suggest to consider the shadow prices for inputs and outputs 

of each unit k ,  * *,k kV U
 

, as reference prices for evaluating the performance of unit l  through the 

left hand side of expression (23). So, we define the Nerlovian cross-inefficiency of unit l  with 

respect to unit k as: 

 
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  (27)

 

On the one hand, it is worth mentioning that  , ; , , ,x y x y
T l l l l k kNCI X Y G G G G k  always takes 

values greater than zero since, by the definition of the profit function, 

 * * * *

1 1

,
s m

T k k rk rl ik il
r i

V U u y v x
 

 
   

 
 

    . On the other hand, the next proposition allow us to understand 

(27) in more detail under variable returns to scale. 

Proposition 2. Let  * * *, ,k k kV U 
  

 be an optimal solution of model (26). Then  * * *,k v k kV U  
 

. 

Proof. (i) Let us first assume that  * * *, .k v k kV U  
 

 Then, 
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       for all 1,...,j n  , since 

 ,j jX Y T . Therefore,   * * * *, , ,k k v k kV U V U
   

 is a feasible solution for (26). Regarding the 

objective function in (26), we have that  * * * * * * *
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, 

which is a contradiction with the fact that  * * *, ,k k kV U 
  

 is an optimal solution of (26). (ii) Let us 

now assume that  * * *, .k v k kV U  
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constraints in (26) . By the definition of the technology VT , for all  , VX Y T  there exists a vector 
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Consequently, the maximum profit at prices 
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 * *, ,k kV U
 

  * *,v k kV U
 

, is not achieved by any point in VT , which is a contradiction with polyhedral 

DEA technologies as is the case. ■ 

The above result implies that *
k


 can be interpreted as shadow profit and, consequently, the 

Nerlovian cross-inefficiency for unit l with respect to unit k under VRS may be rewritten as 
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(28) 

 

The arithmetic mean of (27) over all observed units yields the final score for firm l: 
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(29) 

 

Invoking (23), we get that the Nerlovian cross-inefficiency of firm l is a ‘correction’ of the 

original directional distance function value for this unit, where the modification factor can be 

interpreted as (shadow) allocative inefficiency: 
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 (30)

Regarding the properties that the Nerlovian cross-inefficiency satisfies, we next list the most 

important ones. 

[P1]    , ; , , , , ; ,x y x y x y
T l l l l l l T l l l lNCI X Y G G G G l D X Y G G


; 
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, ; ,
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

, the better (meaning of inefficiency); 
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[P4] If    * * * *, , , 1,...,k k l lV U V U k n  
   

, then   1
, ; ,

nx y
T l l k k k

NCI X Y G G


   , ; , ;x y
T l l l lD X Y G G


 

[P5] If  ,x y
k kG G , 1,...,k n , depends on data, then   1

, ; ,
nx y

T l l k k k
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 is units invariant; 

[P6] If  ,x y
k kG G , 1,...,k n , depends on data, then   1

, ; ,
nx y

T l l k k k
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
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As we are aware, there is only an attempt to extend the notion of the traditional cross-

efficiency  ,c l lCITE X Y  to the world of non-oriented measures, i.e., which account for the 

inefficiency both in inputs and in outputs simultaneously. In particular, Ruiz (2013) extended the 

cross-efficiency evaluation theory for use with the directional distance function. Specifically, this 

author considered the directional vector equal to the assessed observation, i.e.,    , ,x y
k k k kG G X Y  

for all 1,...,k n  in (24), and, as usual in cross-efficiency evaluation, he also assumed constant 

returns to scale,. 

Ruiz (2013), assuming CRS and    , , ,x y
k kG G X Y defined the cross DDF inefficiency of 

firm l with respect to firm k as (Ruiz, 2013, Definition 1, p. 183): 

 
* *

1 1

* *

1 1

,

m s

ik il rk rl
i r

c l l m s

ik il rk rl
i r

v x u y
CDDF X Y k

v x u y

 

 






 

 

 

 
. 

(31)

 

As in the radial case, Ruiz (2013) suggested averaging the n values of the  ,c l lCDDF X Y k , 

1,...,k n , in order to define the DDF cross-efficiency of firm l: 
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Next, we show that the cross-efficiency based on the DDF under CRS, is a particular case of 

a more general approach based upon the Nerlovian inefficiency measure; notion related, by 

duality, to the DDF. 

It is possible to define a Nerlovian cross-inefficiency measure under constant returns to scale 

resorting to expression (28). To do that, it is enough to substitute *
k


 by zero in (28) since this is 

the value of the shadow profit under CRS (see Lemma 2). If, additionally, we fix 

   , ,x y
k k k kG G X Y  for all 1,...,k n , then we get: 
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(33) 

And, finally, taking the mean over all the units in the sample, we obtain that the Nerlovian 

approach coincides with the cross-inefficiency defined by Ruiz (2013) based on the directional 
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distance function under CRS. Moreover, it can be decomposed likewise into the (directional) 

technical inefficiency and a correction factor defined as the arithmetic mean of n shadow 

allocative efficiency terms, as in expression (30). I.e., 

       * *
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4. Empirical application to warehousing data 

To illustrate the new concept of economic cross-(in)efficiency and its empirical 

implementation, we rely on a database on 102 warehouses operating in the Benelux area recently 

compiled by Balk et al. (2017) for 2017―see their section 4 for specific details on survey 

methods, sample size, and final dataset. Following these authors, as well as previous studies by 

De Koster and Balk (2008) and Johnson and McGinnis (2011), we characterize the production 

technology in terms of the following three inputs and four outputs. Inputs are: I.1) Warehouse 

size in m2 (Floor space); I.2) Number of full time equivalent employees (FTEs); and I.3) Number 

of stock keeping units (SKUs). On the output side the following variables are considered: O.1) 

Number of order lines (Order lines shipped per day); O.2) Error-free order line percentage (Error 

free %); O.3) Order flexibility (per day); and O.4) Number of special processes (handled per day). 

Table 1 shows the descriptive statistics for all selected variables. 

Table 1. Descriptive statistics for inputs and outputs, warehouse data, 2017. 

 Inputs Outputs 

 Floor 
space 

FTEs SKUs 
Order 
lines 

Error 
free 

Order 
flexibility 

Special 
processes 

Minimum 500 50 100 54 1 12 2 

Median 9,250 30 4,600 1,200 7 22 6 

Average 18,244 59 21,088 4,931 6 21 6 

Maximum 275,000 350 400,000 55,000 9 30 10 

Stand. Dev. 32,414 74 57,393 9,815 2 4 2 

Source: Balk et al. (2017). 

 

4.1 Farrell economic (cost) cross-efficiency 

Table 2 reports the results for the original Farrell input oriented model that radially measures 

technical efficiency for warehouse l as in (1),  ,c l lITE X Y , its standard technical cross-efficiency 

measure (5),  ,c l lCITE X Y , and the new Farrell cost cross-efficiency measure (21),  , .c l lFCE X Y  

Also, following the proposed decomposition, we also report the allocative efficiency associated 
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to the new cross-efficiency measure, calculated as the ratio between  ,c l lCITE X Y  and 

 ,c l lITE X Y ; i.e., expression (22). The first set of results corresponds to the existing setting in the 

literature corresponding to constant returns to scale (CRS). These are grouped under that heading 

on the left hand side of Table 2.1  

The results for the five best and worst performing warehouses are ranked using the values of 

the new Farrell economic cross-efficiency measure,  ,c l lFCE X Y . First we focus on the 

comparison between this latter measure and the standard cross-efficiency measure  ,c l lCITE X Y

. The individual values show that both cross-efficiency measures have the capability of 

discriminating between radially efficient observations with  ,c l lITE X Y = 1. However, the 

ranking exhibits some variability. For example, warehouse #33, ranking first according to the cost 

cross-efficiency measure:  ,c l lFCE X Y = 0.960, ranks below the fifth position according to 

 ,c l lCITE X Y  = 0.667. On the lower tail of the distribution there seems to be larger compatibility 

as the worst five performing warehouses exhibit the same ordering.  

Throughout this empirical section we discuss the (dis)similarity between alternative cross-

efficiency measures by studying their ranking compatibility by means of the Spearman correlation 

and, relying on kernel density estimations, by determining whether their distributions are equal 

or not according to the Li tests. When plotting the kernel density functions we follow the 

procedure proposed by Simar and Zelenyuk (2006), which in short: (i) uses Gaussian kernels, (ii) 

employs the reflection method to overcome the issue of (radial) unitary or (directional) zero 

bounded supports for the cross-(in)efficiency scores (Silverman, 1986), and (iii) determines the 

bandwidths using Sheather and Jones (1991) method. Subsequently, once the kernel density 

functions are calculated we apply the nonparametric test developed by Li (1996) to determine if 

they are statistically different. Here we again follow Simar and Zelenyuk (2006) and use algorithm 

II with 1,000 replications, which computes the Li statistic on the bootstrapped estimates of the 

DEA scores, and where the unitary or null values of the efficient observations are smoothed by 

adding a small noise. These different dimensions will allow us to establish statistically to what 

extend the alternative cross-efficiency measures lead to equal or different results regarding 

warehouse performance. 

                                                 
1 For input-oriented radial measures, the greater the score the higher the efficiency. 
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Table 2. Farrell cost cross-efficiency decomposition, FCEL. Expression (21), L{c,v}, CRS and VRS, respectively. 

 Constant Returns to Scale, CRS (CCR model, input orientation) Variable Returns to Scale, VRS (BCC model, input orientation) 

Ranking 
 

Warehouse 
 # 

Standard  ITE 

 ,c l lITE X Y  

(1) 

Standard 
Cross-Effic. 

 ,c l lCITE X Y  

(5) 

New Farrell 
Cross- Effic. 

 ,c l lFCE X Y  

(21)

New Farrell 
Alloc. Efficiency 

   , / ,c l l c l lFCE X Y ITE X Y
 

(22)

 
Warehouse 

# 

Standard  ITE 

 ,v l lITE X Y  

New Farrell 
Cross Effic. 

 ,v l lFCE X Y  

(21)

New Farrell 
Alloc. Effic. 

   , / ,v l l v l lFCE X Y ITE X Y

(22)

1 33 1.000 0.667 0.960 0.960 19 1.000 1.000 1.000 

2 19 1.000 0.812 0.908 0.908 33 1.000 1.000 1.000 

3 50 1.000 0.819 0.898 0.898 36 1.000 1.000 1.000 

4 54 1.000 0.682 0.890 0.890 42 1.000 1.000 1.000 

5 49 1.000 0.757 0.818 0.818 45 1.000 1.000 1.000 

98 11 0.118 0.059 0.069 0.585 9 0.213 0.072 0.338 

99 12 0.153 0.056 0.064 0.418 69 0.107 0.070 0.654 

100 69 0.106 0.042 0.063 0.594 12 0.155 0.066 0.426 

101 65 0.101 0.029 0.039 0.386 65 0.117 0.041 0.350 

102 77 0.051 0.023 0.034 0.667 77 0.053 0.037 0.698 

 Minimum 0.051 0.023 0.034 0.229 Minimum 0.053 0.037 0.223 

 Median 0.411 0.180 0.224 0.605 Median 0.622 0.371 0.606

 Average 0.484 0.233 0.283 0.582 Average 0.662 0.443 0.631 

 Maximum  1.000 0.819 0.960 0.960 Maximum  1.000 1.000 1.000 

 Stand. Dev. 0.294 0.176 0.210 0.144 Stand. Dev. 0.314 0.306 0.202 
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We may now establish the similarity between the new Farrell cost cross-efficiency measure 

and its standard counterpart starting with their ranking compatibility. Their Spearman correlation 

is     , , ,c l l c l lCITE X Y FCE X Y  = 0.988, which is significant at the 1% level. This result implies 

that beyond individual disparities, both series yield a very similar picture of the warehouse 

industry standing. This can be clearly visualized in Figure 2 by comparing their kernel density 

functions, whose patterns closely follow each other, and is further corroborated by the Li-test 

comparing  ,c l lCITE X Y  vs.  ,c l lFCE X Y   (i.e., 0.735), whose result does not allow to reject the 

null hypothesis of the equality of distributions, as reported in Table 3.    

Figure 2. Estimated kernel density distributions of the standard,  ,c l lCITE X Y  (5), and new 

Farrell economic cross-efficiencies:  ,c l lFCE X Y  (21) (under CRS), and 

 ,v l lFCE X Y  (21) (under VRS). 

 

 

 
Table 3. Results of Simar and Zelenyuk (2006) adapted Li test  

(test statistic and significance level).  
 

  

 ,c l lCITE X Y   

vs  
 ,c l lFCE X Y  

 ,c l lCITE X Y  

vs  
 ,v l lFCE X Y  

 ,c l lFCE X Y  

vs  
 ,v l lFCE X Y  

  1
, ; ,

n

v l l k k k
NCI X Y X Y



vs  
 ,c l lCDDF X Y  

Statistic -0.735 6.257* 2.056* 15.245* 

p value (0.220) (0.000) (0.000) (0.000) 

 Notes:  ,c l lCITE X Y , (5);   ,c l lFCE X Y , (21)under CRS;   ,v l lFCE X Y , (21)under VRS.  

               1
, ; ,

n

v l l k k k
NCI X Y X Y


, (29);  ,c l lCDDF X Y , (32). 

             * Denotes statistically significant differences between models at the critical 1 percent level. 
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The similarity of results confirmed in all three dimensions (Spearman correlation, density 

distributions and Li tests) is a remarkable result that confirms the reliability of the new Farrell 

cost cross-efficiency measure when ranking performance (when compared to its traditional 

constant returns to scale counterpart), and endorses its use under variable returns to scale (VRS), 

for which a well-defined standard analogue does not exist.  

However, before we comment on this additional set of results under VRS, we stress that for 

the warehouse industry, overall cost (in)efficiency can be almost equally blamed on faulty 

technical and allocative performance, with the latter having a marginally higher weight. While 

average technical efficiency is 0.484, allocative efficiency is 0.582. The median values being 

0.411 and 0.605, respectively. We remark once again that this interpretation of cross-efficiency 

in economic terms, and its decomposition into both sources, as presented in (22), were unavailable 

until now. Finally, focusing still on the results under constant returns to scale, a second conclusion 

emerges. Despite the high similarly, the existence of large numerical differences at the individual 

level between the economic and standard cross-efficiency measures (in favor of the former as 

stated in Proposition 1,    , ,c l l c l lCITE X Y FCE X Y ) suggest that the warehouse production 

technology is non-homothetic. Indeed, according to Theorem 1,  ,c l lCITE X Y  =  ,c l lFCE X Y  

under input homotheticity, and therefore these disparities rule out its existence.    

We comment now on the new economic cross-efficiency measure under variable returns to 

scale,  ,v l lFCE X Y , presented on the right hand side of Table 2. An immediate critic that can be 

raised against it is that it does not solve that the lack of discriminatory power of the standard 

Farrell input measure when observations are efficient: i.e.,  ,c l lITE X Y   = 1. We can qualify this 

drawback of the new measure by remarking that as many as 37 warehouses are efficient under 

VRS (36.3% of the sample), while only 10 warehouses exhibit  ,v l lFCE X Y = 1 (9.8%)we also 

stress the fact that it is a well-defined measure not prone to negative values as the standard 

technical cross-efficiency under VRS.  Hence, while full cost cross-efficiency under VRS is a 

feasible result likely to be observed (as opposed to its CRS counterpart  ,c l lFCE X Y ), its 

calculation is still quite useful from a managerial perspective, as it substantially increases 

discrimination among observation that are VRS efficient. As for the sources of cost (in)efficiency 

when decomposing  ,v l lFCE X Y  according to (22), we note that the characterization of the 

reference technology by VRS does not change the relative weights of technical and allocative 

efficiencies, although the higher weight of the latter is now reversed. The average and median 

values of the technical efficiency are now 0.662 and 0.622, on a par with allocative efficiency 

whose values are 0.631 and 0.606, respectively.   
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One can compare the new Farrell cost cross-efficiencies calculated under both constant and 

variable returns to scale, i.e.,  ,c l lFCE X Y  vs.  ,v l lFCE X Y , but the exercise requires further 

assumptions about the market structure. Generally only the technical side of the economic 

performance would have a valid interpretation as the usual measure of scale efficiency, defined 

as  ,c l lITE X Y  /  ,v l lITE X Y . The notion of a cost function defined under the restrictive case of 

constant returns to scale does not have any justification if the technology exhibits variable returns 

to scale or, from a weaker perspective, is non-homothetic. This is indeed the case for the usual 

DEA characterization of the production technologies, as in the current warehouse 

application―recalling Aparicio et al. (2015, 887; Proposition 3), these authors show that in the 

restrictive case of a single output and CRS, the technology is homothetic. Since virtually in all 

empirical applications the technology is characterized by VRS, our newly proposed Farrell cost 

cross-efficiency exhibits its full potential in its VRS definition (on top of its ability to provide an 

analytical framework that excludes negative values). Hence, the CRS definition of the Farrell cost 

cross-efficiency,  ,c l lFCE X Y  (equal to its traditional counterpart  ,c l lCITE X Y under input 

homotheticity), from which our paper starts out theoretically, is only relevant for pedagogical 

purposes, presented so as to reinterpret the existing CRS (technical) cross efficiency measures in 

economic terms and, later on, move on to introduce the (empirically) relevant VRS definitions of 

(21) and (22), i.e.,  ,v l lFCE X Y .  

The only exception that would grant the assumption of CRS in studies where a distinct market 

structure can be considered, is the theoretical consideration of the perfectly competitive long run 

equilibrium, where the technology exhibits CRS, industry profits are zero and average cost is 

minimum, by definition. In this case, the difference between  ,v l lFCE X Y k  and  ,c l lFCE X Y k , 

compares the performance corresponding to the current short run situation (normally associated 

with a suboptimal scale size if scale inefficiency exists), and the hypothetical long run 

equilibrium―both measures evaluated at their respective optimal prices,  * *,k kV U . Arguably, the 

warehouse industry departs from the perfectly competitive framework in many ways, but if one 

were willing to assume it, then the comparison between the average values corresponding to 

 ,v l lFCE X Y  and  ,c l lFCE X Y  shows that the difference between both measures is noticeable, 

i.e., 0.443 and 0.233 (with a similar gap at the median). As for the ranking compatibility, it is 

relatively high:     , , ,c l l v l lFCE X Y FCE X Y  = 0.720, also significant at the 1% level. However, 

in Figure 2 the kernel density functions between the two follow different patterns with lower and 

higher density values for  ,v l lFCE X Y  in the lower and upper tails, respectively. As seen in Table 

3, this translates in a Li test result (2.056) that rejects the null hypothesis that both distributions 

are the same. Therefore, as expected, scale efficiency would play a big part in the assessment of 
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performance through the new economic efficiency measures, under alternative assumptions of 

market structures. 2   

4.2 Nerlovian economic (profit) cross-inefficiency 

Table 4 presents our second set of results on to the new Nerlovian profit cross-inefficiency 

measure based on the profit function and its duality with the directional distance function; i.e., 

expression (30). As normally assumed in the empirical literature we consider that the directional 

vector corresponds to the observed input and output quantities:    , ,x y
k k k kG G X Y , 1,...,k n . 

Following the presentation in the theoretical section, we start our discussion considering the 

results obtained under the assumption of variable returns to scale. The first conclusion worth 

highlighting is that the ability to discriminate among VRS efficient observations is complete. 

Although once again a large set of warehouses are deemed efficient, with  , ; ,v l l l lD X Y X Y


 = 0 

(43, representing 42.2% of the sample), none of them are cross-efficient from an economic 

perspective: i.e.,   1
, ; ,

n

v l l k k k
NCI X Y X Y


 > 0. 3  Consequently, the above criticism against the 

Farrell economic cross-efficiency measure cannot be raised on this occasion. This result also 

suggests that Nerlovian profit inefficiency, once the input and output dimensions are taken into 

consideration, is larger than in the Farrell case where inefficiency refers only to the input (cost) 

dimension.  

Ultimately, the obtained Nerlovian cross-inefficiency values bear proof of the fact that, again 

for the first time, our model can effectively rank observations by appraising their profit 

performance against all remaining peers under VRS. Moreover, it is possible to decompose this 

relative economic performance following expression (30). The descriptive statistics show that the 

sources of Nerlovian profit cross-inefficiency substantially change with respect to those of the 

Farrell’s cost approach. The average profit cross-inefficiency amounts 0.666, but now average 

technical inefficiency is a meager 0.102, while allocative inefficiency is 0.562; representing 

15.3% and 84.7% of the overall profit inefficiency, respectively.

                                                 
2  We conclude this subsection commenting on the disparity between  ,v l lFCE X Y  and the standard 

technical cross-efficiency measure  ,c l lCITE X Y , rather than  ,c l lFCE X Y . The Li test, with a statistic 

equal to 6.257, also returns that both distributions are statistically different, as can be confirmed by visually 
inspecting them in Figure 2. This result simply reinforces the previous one, i.e., between  ,v l lFCE X Y  

and  ,c l lFCE X Y , as  ,c l lCITE X Y  would be equal to the latter under input-homotheticity. Hence the 

numerical difference between both tests (columns 3 and 4 in Table 3), can be associated to the existence of 
a non-homothetic technology. 
3 For additive measures, the greater the score the higher the inefficiency; hence the change in denomination. 
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Table 4. Nerlovian profit cross-inefficiency decomposition   1
, ; ,

nx y
T l l k k k

NCI X Y G G


. Expression (30), T{c,v}, —CRS and VRS, respectively. 

 Variable Returns to Scale, VRS (DDF model,    , ,x y
k k k kG G X Y ) Constant Returns to Scale, CRS (DDF model,    , ,x y

k k k kG G X Y ) 

Ranking 
 

Warehouse 
 # 

Standard DDF 

 , ; ,v l l l lD X Y X Y


(25) 

New  Nerlovian 
Cross-Ineffic. 

  1
, ; ,

n

v l l k k k
NCI X Y X Y



(29) 

New Nerlovian 
Alloc. Inefficiency 

  1
, ; ,

n

v l l k k k
NCI X Y X Y


 

 , ; ,v l l l lD X Y X Y


 

(30)  

 
Warehouse  

 # 
Standard  DDF 

 , ; ,c l l l lD X Y X Y


(24) 

New Nerlovian 
Cross Efficiency  

  1
, ; ,

n

c l l k k k
NCI X Y X Y


 

 ,c l lCDDF X Y  

(32) 

New Nerlovian 
Alloc. Efficiency 

  1
, ; ,

n

c l l k k k
NCI X Y X Y


 

 , ; ,c l l l lD X Y X Y


 

(34) 

1 50 0.000 0.176 0.176 50 0.000 0.112 0.112 

2 89 0.000 0.226 0.226 19 0.000 0.130 0.130 

3 34 0.000 0.250 0.250 49 0.000 0.181 0.181 

4 23 0.000 0.275 0.275 54 0.000 0.229 0.229 

5 25 0.000 0.280 0.280 33 0.000 0.272 0.272 

98 93 0.283 1.642 1.359 11 0.789 0.891 0.102 

99 13 0.199 1.678 1.479 12 0.734 0.898 0.164 

100 77 0.497 1.792 1.295 69 0.808 0.921 0.113 

101 75 0.250 1.981 1.731 65 0.816 0.944 0.128 

102 96 0.000 2.119 2.119 77 0.903 0.956 0.053 

 Minimum 0.000 0.176 0.176 Minimum 0.000 0.112 0.053 

 Median 0.045 0.550 0.444 Median 0.418 0.709 0.254 

 Average 0.102 0.666 0.564 Average 0.398 0.671 0.273 

 Maximum  0.568 2.119 2.119 Maximum  0.903 0.956 0.695 

 Stand. Dev. 0.140 0.390 0.350 Stand. Dev. 0.259 0.187 0.140 
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 As recalled on expression (33), if constant returns to scale were assumed, the new Nerlovian 

profit cross-inefficiency coincides with the technical cross-inefficiency measure proposed by 

Ruiz (2013):   1
, ; ,

n

c l l k k k
NCI X Y X Y


 =  ,c l lCDDF X Y . However, as previously discussed, the 

economic re-interpretation of the (technical) directional cross-efficiency under CRS would not be 

adequate unless its assumption is granted by the existence of a perfectly competitive market 

structure framed in the long run. In that case, although the average levels of profit cross-

inefficiency are very similar,   1
, ; ,

n

v l l k k k
NCI X Y X Y


 = 0.666 vs.   1

, ; ,
n

c l l k k k
NCI X Y X Y


= 0.671, 

its sources greatly differ since now technical and allocative inefficiencies represent 59.4% and 

40.7% of the overall inefficiency. Despite the similar average values, the rank correlation between 

both series is relatively low at       1 1
, ; , , , ; ,

n n

v l l k k c l l k kk k
NCI X Y X Y NCI X Y X Y

 
 = 

0.285―significant at the 1% level, and implying that the choice of returns to scale is even more 

relevant when assessing industry performance than in the Farrell case. The disparity between both 

sets of results can be seen in Figure 3, where the density of the CRS results peaks around one 

(rather than 0.5 under VRS), followed by its sudden fall and disappearance because no values 

beyond this threshold are observed. It comes, then, as no surprise that the associated Li test 

comparing   1
, ; ,

n

v l l k k k
NCI X Y X Y


 and  ,c l lCDDF X Y  (with a Li statistic equal to 15.245) rejects 

the null hypothesis of equality of distributions.   

Figure 3. Estimated kernel density distributions of the new Nerlovian economic cross-

inefficiency,   1
, ; ,

n

v l l k k k
NCI X Y X Y


 (29),  and the standard cross-inefficiency, 

 ,c l lCDDF X Y  (32). 
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5. Summary and Conclusions 

Despite the capability of cross-efficiency to yield a suitable ranking of observations based on 

the (shadow) prices associated with all the sample units when evaluating each observation, these 

techniques have developed without establishing any connection with the literature devoted to 

measuring economic efficiency when prices are present; i.e., relying on microeconomic theory. 

This paper makes the connection between the concepts of economic efficiency and cross-

efficiency. Economic cross-(in)efficiency measures the performance of observations in terms of 

a set of reference prices that could correspond to either market prices, shadow prices or any other 

imputed prices. Hence, this economic cross-efficiency measure can be interpreted as the 

capability of firms to behave optimally by reaching minimum cost or maximum profit for a wide 

range of prices. The new methodology is particularly relevant in studies where market prices are 

not readily available because of the institutional framework (e.g., public services such as 

education, health, safety, etc.), but yet a robust ranking of observations based on their performance 

is demanded by decision makers and stakeholders.  

Within the DEA framework we show that, under input homotheticity, the traditional bilateral 

notion of input cross-efficiency for unit l, when the weights of unit k are used in the evaluation, 

coincides with the well-known Farrell notion of cost efficiency for unit l when precisely unit k 

weights are taken as market prices. However, this result does not hold if the technology is not 

input homothetic. This motivates the introduction of the concept of bilateral Farrell cost cross-

efficiency (FCE), corresponding to his notion of cost efficiency under either constant or variable 

returns to scale. We also extend this proposal based on the classic Farrell framework restricted to 

the input dimension to more recent developments corresponding to a complete representation of 

the economic objective of the firms through the profit function, and its dual characterization by 

way of the flexible directional distance function. This results in the introduction of the parallel 

concept of Nerlovian (profit) cross-inefficiency (NCI). In both cases, either à la Farrell or à la 

Nerlove, the new analytical framework allows us to further exploit the duality properties of the 

economic measures and decompose economic cross-(in)efficiency according to technological and 

allocative criteria. 

We emphasize that a key advantage of the Farrell and Nerlovian cross-(in)efficiency measures 

is that they are well defined under variable returns to scale (VRS) by yielding  scores that always 

lay between zero and one for the former and are always greater than zero for the latter. This solves 

a well-known weakness of the standard cross-efficiency methods, which may result in negative 

scores when the technology is characterized by VRS. The economic cross-(in)efficiency 

methodology solves this problem in a natural way, without proposing ad-hoc methods such as 

those based on data translations (e.g., Lim and Zhu, 2015). 



33 
 

We illustrate the new models and associated measures using a recently compiled data set of 

European warehouses. We show that the economic cross-efficiency measures FCE and NCI are 

well defined under constant and variable returns to scale, and how they can be decomposed 

according to technical and allocative criteria. Moreover, the large rank correlation between the 

standard cross-efficiency values and the new Farrell cost cross-efficiency under constant returns 

to scale, suggests that these latter model can be extended to variable returns to scale with 

confidence. We compare the constant and variable returns to scale measures, and conclude 

through the visual inspection of their kernel density functions and associated Li tests that 

assuming alternative returns to scale does make a difference in the evaluation of economic 

performance, since results are statistically different. This is a remarkable conclusion because the 

numerical differences between the constant and variable returns to scale measures signal that 

warehouse operations are characterized by non-homothetic technologies (i.e., Theorem 1 does not 

hold), which further justifies the introduction of the new economic cross-efficiency models under 

variable returns and reinforces their use in empirical applications. How to interpret the difference 

between both sets of results in economic terms is harder than in the technological case associated 

to scale (in)efficiency, because different assumptions regarding the market structure need to be 

brought into the analysis (e.g., perfectly or  imperfectly competitive markets, and long and short-

run equilibria). 

Next we identify some avenues for further follow-up research. First, we resorted in this paper 

to two specific approaches for measuring economic efficiency, and transpose them to the realm 

of what we term economic cross-efficiency evaluation. However, it seems natural to apply other 

alternative approaches like, for example, those related to the hyperbolic measure (Färe et al. 2002, 

and Zofío and Prieto, 2006) or the weighted additive model (Cooper et al., 2011, and Aparicio et 

al., 2016). Second, there are contributions in the literature that study the measurement and 

decomposition of economic efficiency change over time when panel data are available (see, for 

example, Maniadakis and Thanassoulis, 2004, and Juo et al., 2015). A natural extension of the 

current paper would result in a model measuring how economic cross-efficiency rankings change 

over time. Third, there does not exist a notion of cross-efficiency in the parametric approach to 

efficiency analysis, where cost functions, for example, are estimated once a functional form has 

been specified, and depending on a set of parameters that must be estimated. In this respect, the 

introduced Farrell cost cross-efficiency measure could be determined parametrically, constituting 

a first application of cross-efficiency in the parametric framework for efficiency measurement. 

Fourth, one difficulty with traditional cross-efficiency evaluation is the possible existence of 

alternative optima in the DEA models providing the weights (first stage), resulting in different 

cross-efficiency scores (second stage). The approach that has been traditionally followed to 

address this issue is based on the use of secondary goals as criteria to choose a given set of weights 
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among the alternative optimal solutions. The well-known benevolent and aggressive approaches 

proposed in Sexton et al. (1986) and Doyle and Green (1994) are among the most popular ones. 

All these proposals are relevant qualifications and natural extensions that would result in the 

consolidation and improvement of the new concept of economic cross-efficiency. 
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