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ECONOMIC-EMISSION DISPATCH WITH SEMIDEFINITE
PROGRAMMING AND RATIONAL FUNCTION

APPROXIMATIONS

Abimbola M. Jubril and Philip O. Ogunbona

Abstract. The emission function associated with the economic-emission dispatch prob-
lem contains exponential functions that model the emission pollutants. This paper
presents a strategy of solving the economic-emission dispatch problem whereby the ex-
ponential function is approximated by a rational function that permits reduction to
a standard polynomial optimization problem. This is reformulated as a hierarchy of
semidefinite relaxation problems using the moment theory and the resulting SDP prob-
lem is solved. Different degrees of rational functional approximation were considered.
The approach was tested on the IEEE 30-bus test systems to investigate its effectiveness.
Solutions obtained were compared with those from some of the well known evolutionary
methods. Results showed that SDP has inherently good convergence property and a
lower but comparable diversity property.
Keywords: rational polynomial approximation, semidefinite program, multiobjective
optimization, economic dispatch, emission dispatch

1. Introduction

Concern for the environmental impact of power plants and the high cost of retrofitting
have made emission-economic dispatch (EED) a very promising option for optimiz-
ing their operation. In practice, the emission and fuel cost of generating stations are
simultaneously minimized in a multi-objective optimization formulation [1]. Sev-
eral methods have been proposed to solve the resulting multi-objective problem
and notably most recent approaches revolve around the use of evolutionary algo-
rithms [1, 2, 3, 4, 5, 6, 7, 8]. A drawback of evolutionary algorithms is the high
computational burden which results in large time consumption and possible pre-
mature convergence [2]. There are few examples of the application of semidefinite
programming (SDP) to emission dispatch (ED) problems where the objectives and
constraints are either linear or quadratic [9], [10] and [11]. A straightforward ap-
plication of the SDP to EED problem will necessitate dealing with an emission
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objective consisting of polynomial function (of at least second degree) and expo-
nential functions when it is accurately modelled.

It is reasonable to express the exponential part of the objective as a power series
and take advantage of algorithms that guarantee the infimum of the class of poly-
nomial functions [12]. However, the exponential function is embedded in an infinite
dimensional polynomial space. Using the results of Devolder et al. [13], the prob-
lem can be projected unto a finite dimensional space. Such projection reduces the
infinite dimensional polynomial problem to the standard polynomial optimization
problem (POP) form which can be efficiently solved via SDP [14]. Mostly, a good
approximation can be achieved using a relatively high degree polynomial. However,
the size of the matrix of the resulting SDP program grows prohibitively large with
the degree of the polynomial. This also tends to increase the computational cost
associated with solving the resulting semidefinite program. The problem can be
mitigated by using an alternative found in rational function approximation. This
achieves high accuracy and at the same time uses a rational function having lower
degree of numerator and denominator.

A key motivation for the approach adopted in this paper is the ability of opti-
mal rational approximating function to achieve higher accuracy than the optimal
polynomial approximation with same number of coefficients [15]. Furthermore, re-
cent advances in rational function optimization [12, 16] allow the reduction of the
problem to a constrained polynomial optimization problem (POP) which can be
solved using the semidefinite program. Although POPs are generally non-convex
and difficult to solve, various hierarchy of convex relaxation of the problem have
been proposed which monotonically converge to the exact global optimal solution
[14, 17]. This simplifies and allows non-convex problems to be solved by convex
optimization techniques. Furthermore, unlike most multiobjective evolutionary al-
gorithms (MOEA) which are stochastic optimizers and which find it difficult or even
impossible to attain the ideal Pareto surface, SDP provides a cheaply computable
lower bound of the minimum value [18]. Therefore, it has a very good ability to
converge to solution set that are close to the ideal Pareto surface.

It is noteworthy that the SDP applications considered in [9], [10] and [11] are
limited to problems with quadratic constraint and objective functions. The con-
tribution of this paper is the solution of EED problem that includes exponential
function in the emission objective through the application of SDP. Specifically, the
exponential function is projected unto a finite dimensional rational function space
and the resulting problem is transformed into a POP.

The organization of the paper is as follows. In Section 2. of the paper, the
formulation of the multiobjective dispatch problem is presented. A sketch of the
solution of the problem is provided in Section 3.. The vector objective is convex-
ified through semidefinite relaxations and then scalarized using the weighted sum
method. This reduces the dispatch problem to a convex optimization problem. By
employing the nonlinear weight selection method proposed earlier in [20], the SDP
algorithm was guided to provide a better capture of the solution set. In order to
make the paper self-contained, in Section 4. semindefinite programming is briefly
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reviewed along with the notations. In Section 5. rational function approximation
and SDP relaxation methods are reviewed and key results presented. This paves
the way for a formulation of the emission part of the EED taking into consideration
the rational function approximation of the exponential function in Section 6.. In
Section 7. performance of the method is evaluated by comparing its solution set
with that generated by Non-dominated Sorting Genetic Algorithm -II (NSGA-II).
The two methods are employed to solve the IEEE 30-bus 6-generator test system
with the fuel cost and the transmission loss as the objectives to be minimized.

2. Problem Statement

The multiobjective economic-emission dispatch problem is formulated, for s gen-
erating plants, as follows:

(2.1)
minimize [C(x), E(x)]
subject to: h(x) = 0 x = [x1, . . . , xs]

T

g(x) ≤ 0

where x, the decision variable, is the vector of generated power, C is the fuel cost
objective, E is the pollutant emission objective, g and h are the respective equality
and the inequality constraints of the system. Further elaboration of the problem is
now provided.

2.1. Problem Objectives

2.1.1. Total Fuel Cost, C(x)
The generator costs are represented by quadratic functions. and the total fuel cost,
C(x), can be expressed as

(2.2) C(x) =

s
∑

i=1

αi + βi xi + γi x
2
i ,

where xi is the real power output of the ith plant, and αi, βi, and γi are the
corresponding fuel cost coefficients of the plant.

2.1.2. Pollutant Emission

The total emission of atmospheric pollutants (e.g. SOx, NOx) in ton/h can be
expressed as

(2.3) E(x) =
s

∑

i=1

10−2
(

ai + bi xi + ci x
2
i

)

+ ζi exp(λixi),

where ai, bi, ci, λi and ζi are the coefficients of emission characteristics of the ith

plant .
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2.2. Problem Constraints

2.2.1. Generation capacity constraints
The real power output of each generating unit is constrained between an upper and
lower limit as follows:

(2.4) xmin
i ≤ xi ≤ xi

max, i, . . . , s.

This defines the inequality constraint g(x).

2.2.2. Power balance constraint

The power balance constraint is given by

(2.5)

s
∑

i=1

xi = PD + PL(x),

where PD is the total load demand, and PL(x) is the transmission loss, which is
given, by the Kron’s loss formula, as

(2.6) PL(x) =

s
∑

i=1

s
∑

j=1

xi Bij xj +

s
∑

i=1

Bi01 xi +B00,

where Bij , Bi01 and B00 are the Kron’s loss coefficients. Equation (2.6) defines the
equality constraint h(x).

3. Multiobjective Optimization

Scalarization is a class of methods of solving the multiobjective optimization prob-
lem (MOP). In one of the approaches, it reduces the vector objective function into
a single objective (scalar) optimization problem by forming a weighted sum of ob-
jectives.

Consider the weight vector w = (w1, . . . , ws)
T ∈ R

s, the vector objective func-
tion f(x) = (f1(x), . . . , fs(x))

T ∈ R
s and the map φ(x,w) : R

s × R
s 7→ R.

The weighted sum method involves a convex combination of the objectives fi(x),
i = 1, . . . , s to give the scalar objective φ(x,w):

φ(x,w) =

s
∑

i

wifi(x)

= wT f(x)

(3.1)

where

(3.2)

s
∑

i=1

wi = 1, wi > 0, i = 1, . . . , s
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This transforms the vector optimization to a scalar of the form:

(3.3)
minimize φ(x,w)
subject to x ∈ X ; X ⊆ R

n

This process maps the s-dimensional objective space onto the positive real line
R and all the optimal (nondominated) points are mapped to the same point on the
line.

For illustrative purpose, consider the bi-objective problem with s = 2, equations
(3.1) and (3.2), respectively, reduce to

(3.4) φ(x,w) = w1f1(x) + w2f2(x)

and

(3.5) w1 + w2 = 1, w1, w2 > 0

The weighted sum method is the commonly used scalarization method because
of its simplicity, ease of use, and direct translation of weights into the relative
importance of the objectives [19]. However, it is known to miss solution points on
the non-convex part of the Pareto surface, and even distribution of weights does not
translate to uniform distribution of the solution points. If the weights in (3.4) are
parameterized by λ, such that w1 = λ and w2 = 1−λ, a uniform spacing on λ does
not produce a uniform spacing on the Pareto front. Furthermore, the distribution
of solution points is highly dependent on the relative scaling of the objectives.

It was observed in [20], that the weight can be parameterized by λ and con-
strained on the surface of an ellipsoid, so that

(3.6)
λ2
1

k21
+

λ2
2

k22
= 1.

where k1 and k2 are the axes of the ellipsoid. The parametrization has led to
an improvement in distribution of the points on the Pareto front. The expression
can be normalized by setting k2 = 1. Variation in k1 allows for the control of
the curvature of the ellipsoidal surface. Thus, the non-linear weight selection gives
a higher sensitivity and provides for further sensitivity improvement through the
free parameter k1. This parameter can be used to efficiently explore the Pareto
surface. Further, it aids the control of the slope of the weight factor such that
clustered points can be spread out, thereby improving computational efficiency of
the weighted sum method.

4. Semidefinite programming

A semidefinite program (SDP) is a type of convex optimization that generalizes the
linear program (LP) with the vector variables replaced by matrix variables and the
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element-wise nonnegativity replaced by positive semidefiniteness of the matrices.
Of the various forms of SDP, this paper uses the primal form in its formulation.
Thus, the optimization problem is defined as

(4.1)
minimize 〈A0, X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m

X > 0

and the associated dual SDP is

(4.2)
maximize 〈b,y〉
subject to

∑m

i=1 yiAi 6 A0, y ∈ R
m

where X ∈ Sn is the decision variable, b ∈ R
n and A0, Ai ∈ Sn (the set of all

symmetric matrices in R
n×n). Let p∗ and d∗ be the optimal values of (4.1) and (4.2)

respectively. Efficient interior point method has been developed for the primal/dual
program [22, 23, 24]. More details on SDP can be found in [21].

5. SDP Relaxation for FPOP and Rational Functions

In this section, a brief overview of the rational function approximation and results
of different convex SDP relaxations methods found in the literature are presented.
We start with notations and objects from real algebra.

Let R[x] denotes the ring of all real polynomials in the variables x1, x2, . . . , xn

and P denote the R-vector space spanned by the infinite monomial basis v ∈ P ,
given by

(5.1) v =
[

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . x1xn, x2x3, . . .

]T

vk is a finite monomial basis in v with deg(vk) 6 k and defines a polynomial sub-
space Pk ⊂ P . The subset of R[x] consisting of the sums of squares of polynomials

is denoted by
∑2

[x]. A quadratic module, M(g1, . . . , gm), generated by the poly-
nomial gi(x) ∈ R[x], i = 1, 2, . . . ,m is defined as:

(5.2) M(g1, . . . , gm) :=







σ0 +

m
∑

j=1

σjgj
∣

∣σj ∈ Σ2[x]







The truncated quadratic module of degree 2k, Mk(g1, . . . , gm) ⊂ M(g1, . . . , gm)
have deg(σ0) 6 2k, deg(σigi) 6 2k, i = 1, . . . ,m.

5.1. Rational Polynomial Function Approximation of ex

The sum of an infinite geometric series (or rather an infinite degree polynomial),
s(x) = a+ ax+ ax2 + . . . axn + . . . can be compactly written as a rational function
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s(x) = a/(1− x), |x| 6 1. This is an example of low degree rational function
representing very high degree (even infinite degree) polynomial accurately.

The Padé approximant is a rational function whose power series expansion agrees
with a given power series to the highest possible order [15]. Given an arbitrary
function f(x) which can be described by an infinite series

(5.3) f(x) =

∞
∑

i=1

cix
i

the Padé approximate rational function, z(x), of degree [m,n] to function f(x) is
given as

(5.4) z(x) =

m
∑

k=0

akx
k

1 +
n
∑

k=1

bkxk

=
p(x)

q(x)

with

(5.5) z(0) = f(0)

and

(5.6)
dk

dxk
z(x)

∣

∣

∣

∣

x=xo

=
dk

dxk
f(x)

∣

∣

∣

∣

x=xo

, k = 1, 2, . . . ,m+ n

The point x = xo is the point about which the series expansion is done. The
unknown coefficient of both the numerator polynomial, p(x), and the denominator
polynomial, q(x), are determined from equations (5.5) and (5.6).

Optimal determination of the coefficients of the rational function can be achieved
by minimizing the ℓ∞-norm of the residual |f(x)− z(x)| . Thus,

(5.7) min max q(x)>0
(a,b)∈D

|f(x)− z(x)|

with the constraint

D =
{

(a, b) ∈ R
m+n|q(x) > 0, α 6 x 6 β

}

where [α, β] defines the interval over which q(x) is positive. This improved approx-
imation is called Chebychev-Padé approximation.
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5.2. Rational Function Optimization Problem (RFOP)

The rational function optimization is of the form

(5.8) z∗ = inf
q(x) 6=0
x∈K

p(x)

q(x)

where p(x), q(x) ∈ R[x] are relative primes, K is a basic closed semialgebraic
set,

(5.9) K = {x ∈ R
n |gi(x) > 0, i = 1, . . . , s}

defined by polynomial gi(x) ∈ R[x], i = 1, . . . , s.

The above rational function optimization reduces to a polynomial optimization
problem if the denominator function, q(x), is 1, i.e.

(5.10) p∗ = inf {p(x) |x ∈ K}

In order to optimize the rational function, one might turn to global optimiza-
tion techniques. However, several of these techniques are inapplicable because the
Lipschitz continuity requirement for global convergence does not hold in general for
rational functions [25]. Recent techniques to mitigate this difficulty involve convex
relaxation of the problem and aim to compute a tight lower bound on the objective
function. Two of these convex relaxation approaches are usually considered and
both proceed by reformulating the rational function objective as constrained poly-
nomial objective, thus reducing the problem to a POP. A semidefinite program is
then used to solve the resulting POP.

Jibetean [12], in a reformulation, considered the function f(x) = p(x)
q(x) > α and

showed that if q(x) changes sign in K, then

(5.11) inf
p(x)

q(x)
= −∞.

Otherwise, the problem reduces to

(5.12) f∗ = sup {α |p(x) − α q(x) > 0, ∀x ∈ K}

which is in the form (5.10). This was further reduced to a sum-of-squares (SOS)
problem and solved through semidefinite program. The nonnegative polynomial
p(x)− α q(x) > 0 is then written as quadratic module

(5.13) p∗ = sup







α

∣

∣

∣

∣

∣

∣

p(x) − α q(x) = σ0 +
r

∑

j=1

σjgj ∈ Σ2[x]
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where σj ∈ Σ2[x], j = 0, . . . , r.This is transformed into an SDP form

(5.14)
sup α

subject to p(x)− αq(x) = 〈Q, V 〉
V > 0

where Q is a positive semidefinite matrix and V = vtv
T
t is a positive semidefinite

variable. Various hierarchy of SDP relaxation (approximation) is introduced by
setting the polynomial to the truncated quadratic modules Mt(g1, . . . , gr) such that
deg(σ0) 6 2t, deg(σjgj) 6 2t:

(5.15) psost = sup
{

α
∣

∣p(x) − α q(x) = vTt Qvt
}

It follows that psost can be computed through a semidefinite program. And
as t → ∞, psost → p∗ provided that there exists a number N ∈ N such that
N − ‖x‖2 ∈ M(g1, . . . , gr) [25].

In a second approached proposed by Bugarin et al.[26] the problem is reduced
to a generalized moment problem:

(5.16) p∗ = min

{
∫

p(x)dµ |µ ∈ M(K) ;

∫

q(x)dµ = 1

}

This formulation defines a probability measure M(K) on K, and replaces every
point x ∈ K by its Dirac probability measure δx at x. The probability measure
µ ∈ M is equipped with the properties µ(Ø) = 0 and µ(K) = 1. As a representing
measure, µ defines the sequence y = {yα}, named the moment of order α, as

(5.17) yα =

∫

K

xαdµ ∀α ∈ Nn

The sequences y is characterized by its moment matrix, M(y), and the localizing

matrix, M(giy). Every polynomial p(x) ∈ P can be identified by its vector p =
{pα}α∈Nn of coefficients in the infinite basis v. To define the above two matrices,
consider a linear mapping, Ly : P 7→ R:

(5.18) Ly(p) = 〈p, y〉 =
∑

α∈Nn

pαyα

and a bilinear mapping 〈·, ·〉y : pα × pα 7→ R:

〈p, q〉y = Ly(pq) =

∫

〈p, v〉 〈v, q〉µ(dx)(5.19)

=

∫

〈

p, vvT q
〉

dµ =

〈

p,

∫

vvT dµ q

〉

(5.20)

= 〈p,M(y) q〉(5.21)

The moment matrix M(y) =
∫

vvT dµ is indexed in the infinite basis v. Let vk
denote the finite basis of the subspaces Pk ⊂ P of real polynomial with deg(Pk) 6
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k. Then, for all p(x), q(x) ∈ Pk, Mk(y) =
∫

vkv
T
k dµ. It follows that if y has

a representing measure, then Mk(y) > 0, k = 0, 1, . . . ,. Consider g(x) ∈ P ,
g(x) =

∑

α gαx
α. The bilinear mapping associated with gy

(5.22) 〈p, q〉gy = Ly(gpq) = 〈p,M(gy) q〉

where M(gy) is called the localizing matrix associated with y and g. For all poly-
nomials in Pk, Mk(gy) > 0 for all k.

A finite-dimensional relaxation of the problem can now be defined. For max (deg p(x),max gi) 6
2k, a semidefinite program equivalent of (5.10) is

(5.23)
pmom
k = inf yT p

s.t. y0 = 1,Mk(y) > 0
Mk−di

(giy) > 0, i = 1, . . . , r

where di = deg(gi). The problem in (5.23) can be clearly seen as an SDP relaxation
of order k of the problem in (5.16) by writing Mk(y) =

∑

α Bαyα and Mk−di
(giy) =

∑

α Ci
αyα, i = 1, . . . , r with appropriate symmetric matrices Bα, C

i
α. The SDP dual

of (5.23) is the LMI problem [27, 28, 29]

(5.24)

max
λ,X,Zi

λ

s.t. 〈B0, X〉+
r
∑

i=1

〈

Ci
0, Zi

〉

= p(x)− λ

〈Bα, X〉+
r
∑

i=1

〈

Ci
α, Zi

〉

= pα, i = 1, . . . , r; |α| 6 2k

X > 0, Zi > 0, i = 1, . . . , r

and with X,Zi ∈ Σ2[x], problem (5.24) can be written as problem (5.15). The two
programs (5.15) and (5.16) give the dual formulation for the polynomial (5.10), while
the programs (5.23) and (5.24) are SDP dual. By weak duality psosk 6 pmom

k 6 p∗,
and equality psosk = pmom

k when the set K is strictly feasible.

6. EED Problem Formulated as POP

In the EED problem of (2.1), the emission pollutant objective contain exponential
terms that can be expressed as a power series using the Maclaurin series expansion:

(6.1) ex =
∞
∑

i=1

xi

i!

The expansion indicates that the function resides in an infinite dimensional space
spanned by the infinite monomial basis

{

1, x, x2, . . . , xk, . . .
}

.

Using (5.7), a Chebychev-Padé approximant of reasonable degree [m,n] for ex-
ponential function can be determined such that

(6.2) ex ≈
p(x)

q(x)
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Fixing the degree [m,n], Chebychev-Padé approximants, pi(x)/qi(x), for each weighted
exponential function ζi exp(λixi) in Ei(x), can be computed with Maple Chebyshev-
Pade approximation function chebpade().

Replacing the weighted exponential function in Ei(xi) by the rational function
approximation, gives

(6.3) E(x) =

N
∑

i=1

Ei(xi) ≈

N
∑

i=1

10−2
(

ai + bi xi + ci x
2
i

)

+
pi(xi)

qi(xi)
,

Equation (6.3) is observed to have mixed parts, namely: polynomial and rational
parts. This is different frommost of the problems tackled in the literature which may
have all-polynomial or all-rational functions. However, because of these fractional
parts, the whole optimization problem can be reduced to an all-rational polynomial
optimization problem by combining the polynomial and the rational function in each
Ei(xi) into fractional polynomial function and then sum them to a single fractional
function E(x). This is observed to increase the degree of both the numerator and
the denominator polynomials, and consequently the complexity of the problem.

Another approach, namely the epigraph approach [26], introduces additional
lifting variables ri, for each unit, with associated constraints

(6.4) ri >
pi(xi)

qi(xi)
, or riqi(xi)− pi(xi) > 0; i = 1, . . . , s

A minimum ri is selected such that (6.4) is satisfied.

Using the epigraph approach, (6.3) becomes

(6.5) E(x) ≈
s

∑

i=1

10−2
(

ai + bi xi + ci x
2
i

)

+min ri,

with the new feasible set K̂,

(6.6) K̂ =
{

(x, r) ∈ R
2s |K; riqi(xi)− pi(xi) > 0; i = 1, . . . , s

}

This approach is noted to preserve the pattern of the problem [26]. To ensure
that ris are minimized in the program, a regularization term λ‖r‖2 is added to
E(x). Thus the EED problem reduces to a multiobjective polynomial optimization
problem (MOPOP) as

(6.7)

minimize [C(x), E(x), λ‖r‖2 ]
subject to: h(x) = 0

g(x) ≤ 0
riqi(xi)− pi(xi) > 0 i = 1, . . . , p

The MOPOP is further reduced to a scalar (or standard) POP by aggregating
the objectives into one in φ(x) = w1C(x)+w2E

o
k(x)+λ‖r‖2 using the weighted sum
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method. The problem thus reduces to the standard POP form with a regularization
term:

(6.8)

minimize φ(x) = w1C(x) + w2Ek(x) + λ‖r‖2

subject to: h(x) ≤ 0; h(x) ≥ 0
g(x) ≤ 0
riqi(xi)− pi(xi) > 0; i = 1, . . . , p

SDP relaxation of the resulting POP was performed using Gloptipoly; an efficient
SDP parser for POP.

Gloptipoly is a freely available MATLAB software that implements POP solu-
tion algorithm based on the theory of moments [30]. It builds hierarchy of SDP
relaxations of increasing dimension whose associated monotone sequence of opti-
mal values converges to the global value and provides theoretical guarantee of the
asymptotic convergence to the global optimum at low relaxation order. It also gives
the global optimal value and can extract the global optimizer. It solves the resulting
SDP using SeDuMi solver [31].

7. Simulations, results and discussion

The algorithm was tested on the standard IEEE 30-bus 6-generator test system to
investigate the effectiveness of the approach. The total real load on the system is
283.4 MW. Details of the bus and line data of the test system, including the cost
coefficients, emission coefficients and power generation limits, can be found in [32].

The rational polynomial approximation is compared with polynomial approxi-
mations. Two degrees of polynomial approximation (degree 4 and 6) and two ratio-
nal polynomial approximations of degrees [m,n] = [1, 1] and [2, 2], were considered
for the emission function using the Chebychev-Pade approximation in (5.7).

The resulting multiobjective POP was reduced to single objective POP using
the weighted sum method. Gloptipoly was applied to solve each of the resulting
POPs. Table 7.1 shows the simulation results for the extreme points of the Pareto
front for the different approximations. It is interesting to note in Table 7.1, that
although the polynomial approximations had greater number of coefficients to be
determined, the computational time is less than that required by the problems
with rational approximations. This is contrary to expectations. Analysis of the
matrix of the semidefinite program generated by Sedumi [31], see Table 7.2, showed
that, apart from the degree of the polynomials and the number of variables in
the polynomial, the number of constraints which determines the sparsity of the
resulting SDP matrix is a major factor determining the complexity of the resulting
SDP problem. In Table 7.2, the sparsity of the matrix is measured by the number
non-zero (nnz ) elements in the matrix, while m and n specify the size of the matrix.
For the polynomial approximations, while the size of the matrix did not change,
nnz is observed to almost double by the inclusion of the transmission losses in the
power balance equality constraint. This large change can also be observed for the
rational approximations, too. Also to be noted in (6.6) is that for any number
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Table 7.1: Best Solutions Comparison between Rational and Polynomial Approxi-
mations

Case Rational Rational Polynomial Polynomial
[m,n] [1,1] [2,2] [4,0] [6,0]

Minimum Fuel Cost Case I
Cost ($/h) 600.1114 600.1114 600.1114 600.1114

Emi 0.2219 0.2219 0.2222 0.22214
Time (s) 37.33 32.17 0.45 19.75

Minimum Emission Case I
Cost ($/h) 638.721 638.3375 638.300 638.269

Emi 0.1944 0.1942 0.1942 0.1942

Time (s) 67.30 60.81 0.56 20.83
Minimum Fuel Cost Case II

Cost ($/h) 606.2348 606.2348 606.2348 606.2348

Emi 0.2194 0.2196 0.2196 0.2196
Time (s) 40.90 48.45 0.45 26.01

Minimum Emission Case II
Cost ($/h) 644.5435 644.1825 644.1087 644.1105

Emi 0.19438 0.19419 0.194192 0.194183

Time (s) 76.88 67.69 0.56 24.32

Table 7.2: The sparsity of the resulting SDP matrix
deg m n nnz

4,0 w/out losses 209 127 1455
4,0 with losses 209 127 2631
6,0 w/out losses 923 477 18983
6,0 with losses 923 477 36035
1,1 w/out losses 1819 276 9807
1,1 with losses 1819 276 13629
2,2 w/out losses 1819 276 8091
2,2 with losses 1819 276 11913
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Table 7.3: Best Solutions for Fuel Cost without Transmission Losses
SDP SDP LP NPGA SPEA NSGA-II

[m,n] [1,1] [2,2]

Pg1 0.1097 0.1097 0.1500 0.1080 0.1062 0.1050

Pg2 0.2998 0.2998 0.3000 0.3284 0.2897 0.3177

Pg3 0.5243 0.5243 0.5500 0.5386 0.5289 0.5216

Pg4 1.0161 1.0161 1.0500 1.0067 1.0025 1.0146

Pg5 0.5243 0.5243 0.4600 0.4949 0.5402 0.5159

Pg6 0.3597 0.3597 0.3500 0.3574 0.3664 0.3583

Cost 600.1114 600.1114 604.15 600.259 600.15 600.155

Emi 0.2219 0.2219 0.2233 0.22116 0.2215 0.22188

Table 7.4: Best Solutions for Emission without Transmission Losses
SDP SDP LP NPGA SPEA NSGA-II

[m,n] [1,1] [2,2]

Pg1 0.4020 0.4058 0.4000 0.4002 0.4116 0.4077

Pg2 0.4605 0.4587 0.4500 0.4474 0.4532 0.4577

Pg3 0.5371 0.5387 0.5500 0.5166 0.5329 0.5389

Pg4 0.3783 0.3818 0.4000 0.3688 0.3832 0.3837

Pg5 0.5371 0.5387 0.5500 0.5751 0.5383 0.5352

Pg6 0.5190 0.5103 0.5000 0.5259 0.5148 0.5110

Cost 638.721 638.338 639.600 639.182 638.51 638.269

Emi 0.1944 0.1942 0.1942 0.1943 0.1942 0.1942

of lifting variables introduced, there is the same number of inequality constraints
added to the problem. This may be responsible for the exceptional increase in the
computational time and complexity of problems with rational approximation.

The results for the best fuel cost and the best emission objectives against those
reported using Linear Programming (LP) [33], Strength Pareto Evolutionary Al-
gorithm (SPEA) [3], Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [34]
and Niched Pareto Genetic Algorithm (NPGA) [1], with and without the transmis-
sion losses, are shown in Tables 7.4 -7.6. Notice that the solutions with rational
approximations were not dominated. It actually dominated most of the reported
results. This is indicative of the effectiveness of the approximation.

In order to explore the Pareto front generated using the rational approximation
considered, twenty one runs were carried out on the problem using the bi-quadratic
rational approximation. The generated Pareto fronts, both with and without the
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transmission losses, using the weighted sum with nonlinear weight selection in [20],
are as shown in Figure 7.1. In Figure 7.1, a typical value of 12.123 was used for the
free parameter introduced in [20].
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Fig. 7.1: Pareto fronts for the bi-quadratic rational approximation with and without
Transmission Losses

Table 7.5: Best Solutions for Fuel Cost with Transmission Losses
SDP SDP NPGA SPEA NSGA-II

[m,n] [1,1] [2,2]

Pg1 0.1134 0.1134 0.1245 0.1086 0.1182

Pg2 0.2990 0.2990 0.2797 0.3056 0.3142

Pg3 0.5977 0.5977 0.6284 0.5818 0.5910

Pg4 0.9736 0.9737 1.0264 0.9846 0.9710

Pg5 0.5218 0.5218 0.4693 0.5288 0.5172

Pg6 0.3546 0.3546 0.3993 0.3584 0.3548

Cost 606.2348 606.2348 608.147 607.807 608.147

Emi 0.2194 0.2196 0.22364 0.22015 0.22364
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Table 7.6: Best Solutions for Emission with Transmission Losses
SDP SDP NPGA SPEA NSGA-II

[m,n] [1,1] [2,2]

Pg1 0.4055 0.4097 0.3923 0.4043 0.4141

Pg2 0.4639 0.4624 0.4700 0.4525 0.4602

Pg3 0.5419 0.5430 0.5565 0.5525 0.5429

Pg4 0.3941 0.3876 0.3695 0.4079 0.4011

Pg5 0.5420 0.5431 0.5599 0.5468 0.5422

Pg6 0.5227 0.5143 0.5163 0.5005 0.5045

Cost 644.544 644.182 645.984 642.603 644.133

Emi 0.19439 0.19419 0.19424 0.19422 0.19419

8. Conclusion

In this paper, a multiobjective economic-emission dispatch problem with transmis-
sion losses is formulated as a convex optimization problem through SDP relaxation
technique, and solved. Although the problem is an infinite-dimensional polynomial
problem, a finite dimensional rational polynomial approximation was computed.
Aggregation of the objectives using the non linear weight selection weighted sum
reduced the multiobjective problem into a scalar form. A free MATLAB software,
Gloptipoly, that efficiently solves POP was employed. The SDP-based weighted
sum shows good convergence property and better exploration of the Pareto front
was achieved through non linear weight selection.

A numerical example is considered which shows that the proposed formulation
is efficient. And when compared with well known evolutionary algorithms, it was
observed to have better convergence properties.
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