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I can calculate the motions of the heavenly bodies, 
but not the madness of people. 

—Sir Isaac Newton 

Last October's dramatic 23 percent decline in the U.S. 
stock market sent shock waves through the economy, 
policymakers, and economists. Noneconomists and 
economists alike scurried to find some previously 
unforeseen new development that might explain the 
crash. Could the crash have been caused by the sudden 
appearance of a comet, by a supernova explosion in a 
distant galaxy, or by a startling change in sunspot 
activity? Or perhaps it was caused by psychological 
factors? Until recently, most economists would have 
pooh-poohed such ideas as crazy. 

To an economist (and also to market analysts on 
Wall Street) it seems natural to look for changes in 
consumer tastes or technological factors as possible 
explanations. After all, one would expect that a sudden 
shift in consumer tastes toward eating out would drive 
up the stocks of fast-food chains and restaurants or 
that a new technological development in the computer 
industry would drive up the stocks of computer firms. 
(This surely explains why a considerable amount of 
market research on Wall Street consists of keeping 
track of technological developments and shifts in 
consumer trends.) It is not easy, however, to see why 
there should be any relationship between extraterres-
trial happenings and new developments in consumer 
tastes or technology. 

Thus it is that most of the currently popular models of 
economic fluctuations are based on recurring random 
shocks to economic fundamentals. These fundamentals 
consist, of course, of consumer tastes and the technolog-
ical possibilities available to firms. Shocks to consumer 
tastes affect the demands for various goods, whereas 
shocks to technology—by affecting costs of production-
affect the supplies of various goods. In this way, these 
shocks give rise to fluctuations in prices and quantities. 
In the absence of such continued random influences on 
tastes or technology, the currently popular models 
would predict that the economy would (in a reasonable 
amount of time) settle down into a steady state, with no 
fluctuations whatsoever.1 

The stock market crash has revived interest in the 
possibility of explaining fluctuations without such 
shocks to fundamentals. One clear reason for this 
renewed interest has been the inability of economists or 
market analysts to find any new developments in tastes 
or technology which could explain a crash of that 
magnitude. The appeal to psychological factors or, in 
general, random factors unrelated to fundamentals is, 
however, not new. In 1936, toward the end of the Great 
Depression, John Maynard Keynes published his classic 
General Theory of Employment, Interest, and Money, in 
which he attributed business fluctuations not to random 

*For a recent example of one such model, see Prescott 1986. The 

fluctuations in Prescott's model are driven by shocks to technology. 
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shocks to tastes or technology, but to the animal spirits 

of investors. That is, investors may be seized by moods 

of optimistic or pessimistic expectations which bear no 

necessary relation to any changes in tastes or tech-

nology. Keynes also asserted that such expectations on 

the part of investors need not necessarily be irrational. 

The moods of optimism or pessimism can cause inves-

tors to either expand or contract investment spending; 

this, in turn, can lead to either an overall economic 

expansion or a contraction, thereby justifying the opti-

mistic or pessimistic expectations. Thus, these animal 

spirits can become self-fulfilling and hence be rational.2 

This alternative view of business fluctuations may be 

described as nonfundamental, intrinsic, or endogenous. 

In this article I explain how economic fluctuations 

can occur without shocks to fundamentals. This is not to 

say that taste or technology shocks do not exist or that 

they are totally unimportant. Instead, the purpose here 

is to try and understand whether there exist forces 

intrinsic to an economic system that tend toward in-

stability; whether such instability is bad from the point 

of view of economic welfare; and, if so, what sorts of 

policies or institutions may be set in place to avoid such 

instability and put the economy on a steady course.3 

To explain these issues, I describe two models that 

illustrate intrinsic fluctuations and the role of animal 

spirits. Both models are simplified versions of existing 

ones that are part of the burgeoning literature on 

intrinsic fluctuations. Throughout the paper, the em-

phasis is on explaining how such fluctuations can arise 

in an environment in which the economic fundamentals 

consisting of tastes and technology are unchanging 

over time. Further, in both models, expectations are 

assumed to be rational. Without this assumption, one 

can explain anything, given a sufficiently perverse or 

irrational view of the world. Requiring beliefs to be 

rational imposes a notion of consistency between 

beliefs and reality and rules out explanations based on a 

pathological view of the world. 

The first model described is a simple model of stock 

price determination in which consumers may hold 

many possible sets of beliefs that may be self-fulfilling 

and hence rational. Some of these beliefs may even be 

based on random factors totally unrelated to the ob-

jective factors of tastes and technology.4 Furthermore, 

some of these beliefs lead the economy to a steady 

course while many others set the economy on a wildly 

fluctuating path.5 

The second model described is a model of frictional 

unemployment in which production and exchange take 

place in a decentralized fashion.61 show that there may 

be several stable paths for the economy along which 

beliefs are self-fulfilling. Among these, some involve 

high employment and output whereas others involve 

low employment and output, depending on whether 

expectations are optimistic or pessimistic. In addition, 

there are many fluctuating paths corresponding to 

changing moods of optimism and pessimism. I argue 

that the low employment and output situation has some 

resemblance to the widespread lack of confidence and 

consequent breakdown of market interactions that 

seem to characterize deep economic depressions. 

Can such models explain the qualitative and quan-

titative properties of economic fluctuations in real 

economies? Perhaps. But I attempt no such explana-

tions here, since the models described are chosen for 

their expositional simplicity rather than their ability to 

explain observed business fluctuations. I believe it is 

much too early to judge the empirical applicability of 

these models, for only recently have economists started 

analyzing such models. Further development and elab-

oration of such models may prove to be empirically 

useful, in addition to being theoretically insightful. 

Are there any policy implications that emerge from 

the study of these models? Yes, although these impli-

cations are subject to some important qualifications. I 

show that for each model there exist very simple 

policies which can eliminate all fluctuations and set the 

economy on a unique stable course. In addition, for the 

frictional unemployment model I show that such a 

policy can move the economy from a state of low 

employment and output to one of high employment and 

output in which many people are better off and none is 

worse off. 

A Stock Price Model 
In this section I describe and analyze a simple model of 
stock price determination and then discuss an appropri-
ate stabilization policy. 

2
 Expectations are said to be rational if beliefs regarding possible future 

events are (probabilistically) correct, that is, verified by the actual future course 

of events. In a world without uncertainty, this amounts to having perfect 

foresight regarding future developments. 

3
 It should be clear that allowing for taste or technology shocks would only 

magnify the fluctuations. 

4
This may be viewed as capturing Keynes' notion of animal spirits. 

Fluctuations resulting from such beliefs are often referred to as sunspot 

fluctuations (see Cass and Shell 1983). 

5
 Models exhibiting these features have been studied extensively by many 

people, among whom the following are prominent: Costas Azariadis (1981) , 

David Cass and Karl Shell (1983), and Jean-Michel Grandmont (1985). 

6
Models of this type were pioneered and studied by Peter Diamond (1984). 
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Consider an environment that is completely sta-
tionary and in which there is one unit of a perfectly 
divisible asset (a stock, if you like) which pays a 
constant and known stream of dividends forever. 
Consumers can purchase shares in this stock with a 
view to obtaining dividends and capital gains when the 
shares are sold. The current stock price depends on the 
current demand, which in turn depends on the capital 
gains (or losses) that consumers expect. This, in turn, 
depends on the price at which the stock can be sold, 
which again depends on the demand for the stock on 
the part of future buyers. I show by means of examples 
how, even in a completely stationary environment, the 
stock price can be subject to wild gyrations. My ex-
position is based on the models of Grandmont (1985) 
and Azariadis (1981).7 

People, Preferences, and Prices 
Suppose that at each date t, numbered 1, 2, 3, . . . , a 
representative consumer who lives for two periods is 
born. A consumer born at date t is young at t and old at 
t+1. Assume that at date 1, in addition to the young 
consumer, there is also an old consumer who was born 
in the previous period. In each period of life, the 
consumer is endowed with one unit of total time, which 
may be divided between leisure time and working time. 
When the consumer is young, each unit of working time 
results in units of the consumption good and when 
old, each unit of working time results in vv2 units of the 
consumption good. The consumption good is nonstor-
able and may be either consumed or traded. The old 
consumer at date 1 is endowed with one unit of a stock 
which yields a constant dividend stream of d (in units of 
consumption) each period. The old consumer will, of 
course, collect the current dividend and then trade the 
stock for consumption from the young at date 1. The 
young consumer, in turn, will hold the shares till period 
2, then collect the dividend and sell the shares to the 
new young at date 2. This process then goes on forever. 

Let C\(t) and c2it) be the consumptions at date t of the 
young and the old consumers, respectively, and let l\(t) 
and l2(t) be the amounts of leisure time enjoyed by the 
young and the old. The young consumer at each date t 
maximizes lifetime utility, denoted by u and given by 

(1) u = U(cMM)) + V(c2(t+l)Mt+Dl 

In equation (1), the functions f/(-) and represent 
utility derived in the first and second periods of life. 
Utility in each period of life depends on consumption 
and the amount of leisure time enjoyed in that period. 

The budget constraints faced by the consumer are 

(2) cl(t) = w{[\-ll(t)]-p(t)s(t) 

(3) c2(t+l) = w2[l-l2(t+l)] + [p<(t+l) + d]s(t). 

In equations (2) and (3), pit) is the stock price at t, 
pe(t +1) is the consumer's expectation (held with cer-
tainty) of the stock price at t +1, and sit) is the quantity 
of shares purchased by the young at t. Equation (2) 
states that consumption by the young equals the total 
output produced when young minus the value of shares 
purchased. Note that [1— l\(t)] is the amount of time 
spent working when young, and hence w\[\—l{(t)] is 
the output produced when young. Equation (3) states 
that consumption by the old equals the total output 
produced when old plus the dividends on shares held 
and the proceeds from the sale of shares. The consumer 
chooses lifetime consumptions, leisure times, and the 
demand for shares sit) in order to maximize lifetime 
utility given by (1). 

The determination of the stock price is shown in 
Figure 1. It is easy to show that the demand for shares 
depends on pit) and peit+1) and that demand is 
downward sloping in the current price pit). (See the 
Appendix for a derivation.) Figure 1 depicts a demand 
curve such that the demand for shares is decreasing in 
pit). The position of the demand curve in Figure 1 
depends on the expected future price peit +1). The 
supply of shares is perfectly inelastic at one unit since 
there is a fixed amount of one unit of the stock avail-
able, all of which is supplied by the old inelastically. 
Thus, the equilibrium condition for shares is given by 

(4) sit)= 1. 

That is, the equilibrium price pit) must be such that the 
demand for shares equals the supply. 

Since the position of the demand curve for shares in 
Figure 1 depends on the consumer's expectation of next 
period's price, it follows that the current equilibrium 
price of shares also depends on the price expected to 
prevail next period. Now assume that the expectations 
of consumers are rational; that is, the price that 
consumers at t expect will prevail at t + l is in fact the 
actual price at r+1. Therefore, we have 

7
The mathematical details of solving the model are given in the Appendix, 

where I also note the (very minor) differences between my exposition and the 

models of Grandmont (1985) and Azariadis (1981). 
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Figure 1 

How the Stock Price is Determined in the Model* 

*The position of the demand curve depends on the expected future price p e ( /+1) . 

(5) pe(t + l)=p(t + l). 

It follows that the current equilibrium price pit) de-
pends on next period's price p(t+1). This relationship 
is illustrated in Figure 2 for a particular choice of the 
utility functions £/(�) and V(-). These functions have 
been chosen in such a way as to generate a hump-
shaped curve in which the hump occurs to the left of the 
45-degree line. 

It is important to understand the reason for the 
particular hump-shaped curve (with the hump occur-
ring to the left of the 45-degree line) shown in Figure 2, 
since this shape is the source of fluctuations to be 
described. This shape arises due to the conflict between 
the substitution effect and the wealth effect of a change in 
pit +1) on the demand for shares. These effects may be 
explained as follows. An increase in p(t+1) increases 
the rate of return on the stock, thereby making saving 
for future consumption more attractive. This induces 
the consumer to reduce current consumption and 
increase saving, and therefore increases the demand for 
shares. This is the substitution effect. However, an 
increase in pit+1) also increases the value of savings in 
the form of shares and therefore increases wealth. This 

Figure 2 

The Relationship Between Today's 
and Tomorrow's Stock Price 

perceived increase in wealth causes the consumer to 
increase current (as well as future) consumption. The 
increase in current consumption reduces the demand 
for shares. This is the wealth effect. Consequently, the 
substitution effect and the wealth effect of an increase 
in p(t+1) have opposite effects on the demand curve 
for shares. At low values of p(t+1) the substitution 
effect dominates the wealth effect; as a result, an 
increase in p(t +1) increases the demand for shares. 
Thus, the demand curve in Figure I shifts to the right, 
thereby increasing the current equilibrium pricepit). At 
high values of p(t +1) the wealth effect dominates the 
substitution effect; as a result, an increase in p(t+1) 
reduces the demand for shares. Therefore, the demand 
curve in Figure 1 shifts to the left, thereby lowering the 
current equilibrium price pit). This conflict between the 
two effects is the reason for the hump-shaped relation-
ship between pit) and p(t+1) depicted in Figure 2—a 
relationship which yields a variety of possibilities for 
fluctuations. 

Since Figure 2 gives a relationship between the stock 
price today and the stock price tomorrow, it is possible 
to calculate some equilibrium time paths for the stock 
price for various parameter values. The way to do this is 
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also illustrated in Figure 2. Start with some pricep(l) at 
date 1. Then find a price p(2) such that the point 
(/?(l),/?(2)) is on the hump-shaped curve. Then use the 
45-degree line to transposep(2) to the vertical axis and 
find a pricep(3) such that the point (/?(2),/?(3)) is on the 
curve. By proceeding this way, we can construct a time 
path for the stock price. This time path constitutes a 
perfect foresight equilibrium path because each pair of 
prices (p(t),p(t+1)) has the property (by construction) 
that pit) is the equilibrium price at t, given that 
consumers expect the price at t+l to be p(t +1). 

Once we have an equilibrium time path for the stock 
price, we can also calculate time paths for the real 
interest rate and total output by making use of the 
following relationships. The real interest rate r(t) from t 
to t+\ is given by 

(6) r ( f ) = [p(t+l)-p(t) + d]/p(t). 

There is a simple linear relationship between total out-
put y(t) and the stock price pit) for the chosen utility 
functions U(-) and V(-); that is, 

(7) y(t) = a + bp(t). 

Equation (7) is derived in the Appendix. 

Illustrations of Intrinsic Fluctuations 
In what follows, I illustrate the variety of fluctuations 
that can be generated by the model. Each illustration 
corresponds to a different choice of utility functions. 

At this point it is worth emphasizing that each 
economy illustrated is completely stationary in terms of 
its characteristics over time. Each generation looks 
exactly the same as any other in terms of its tastes, 
endowments, and productivities. That is, the fundamen-
tals of each economy are constant over time. In spite of 
this constancy in the fundamentals, we will see that it is 
possible for the stock price, real interest rate, and output 
to exhibit pretty wild behavior. 

� Periodic and Bizarre Paths 
The model can generate a variety of periodic time 
paths. In Figures 3 and 4 we see that there is indeed a 
constant time path that can be generated for the stock 
price. This price, denoted/?*, corresponds to the intersec-
tion in Figure 3 of the 45-degree line and the hump-
shaped curve between p(t) and p(t+1). If all consumers 
expect that the price next period will be /?*, then it will 
be p* today and hence forever. From equations (6) and 
(7), it follows that the interest rate and output will also 

be constant over time in this example. However, 
Figures 3 and 4 also show how another time path for the 
stock price can be generated, along which it follows an 
up-and-down cyclical path that repeats every two 
periods. Therefore, equations (6) and (7) imply that 
along this alternative path, the interest rate and output 
will also exhibit a similar pattern. In Figures 5 and 6 
we see the generation of a four-period cycle in stock 
prices (and hence also in the interest rate and output). 
Figures 7 and 8 show how a three-period cycle can be 
generated. 

The model can also generate some bizarre time 
paths. Figure 9 depicts a pretty bizarre time path for the 
stock price in which it is hard to discern any strictly 
periodic pattern. Figure 10 shows a pattern that is hard 
to distinguish from a time path that might be generated 
due to the presence of random shocks, even though such 
shocks have been explicitly ruled out in constructing 
these illustrations. 

Although we have shown only one or two of the 
possible time paths of the stock price for each example, 
there are in fact many possible time paths for each set of 
parameter values. For instance, the example that gives 
rise to the four-period cycle of Figure 6 can also give 
rise to a two-period cycle. The example that produces 
the bizarre path of Figure 9 can also give rise to cycles 
of two, four, and eight periods as well as periods of some 
higher powers of two. And the parameter values used to 
generate Figure 8 can also give rise to cycles of every 
integer period in addition to the bizarre sorts of time 
paths, as in Figures 9 and 10, which seem to lack any 
periodic pattern.8 Furthermore, in every example there 
is an equilibrium path along which the stock price is 
constant over time. This is because in all of these 
examples, the nature of the relationship between p(t) 
andp(t +1) is similar to the hump-shaped curve shown 
in Figure 2. This constant time path is indicated by the 
line marked p* on the figures. 

� Animal Spirits and Hemlines 
We now turn to an illustration of the kind of time path 
that can be generated when consumers are driven by 
animal spirits. Suppose consumers believe the follow-
ing maxim: 

When hemlines are up, stocks will be up; 
when hemlines are down, stocks will be down. 

8
The variety of different periodic cycles that can exist simultaneously was 

discovered by the Russian mathematician A. N. Sarkovskii and systematized in 

a beautiful mathematical theorem. See Grandmont 1985 (pp. 1 0 1 9 - 2 0 ) for a 

more detailed explanation. 
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Figures 3 - 8 

Some Periodic Cycles Generated by the Stock Price Model* 

Relationships Between Today's 
and Tomorrow's Stock Price 

Figure 3 When n = 4.0 

Pit) 

P(t+1) 

Figure 5 When /x = 6.0 

P(t) 

h 

Pi h P('+1) 

Figure 7 When n = 11.0 

Equilibrium Time Paths 
for the Stock Price 

Figure 4 A Two-Period Cycle 

/ 

V 

Figure 6 A Four-Period Cycle 
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Figure 8 A Three-Period Cycle 
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*These figures are based on computer simulations. For details of the parameter values and simulation method used, see the Appendix. 
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Figures 9 and 10 

Some Bizarre Time Paths for the Stock Price* 

Figure 9 When n = 7.5 

Pit) 

| A 11 ft a A | i l l i h r 
f m j n n 

1 I 1 1 1 1 

i f n r : 

Date t 

Figure 10 When d = 0.001 , p = 10.0, and n = 15.0 

Pit) 
161 

12 -

Date/ 

'These figures are reproduced from actual computer simulations. For details of the parameter values 

and simulation method used, see the Appendix. 

Suppose further that the fashion industry decides 
randomly when hemlines will be up and when they will 
be down, perhaps by consulting a different astrologer 
each period. Even though such randomness has no 
connection with the tastes, endowments, or productiv-
ities of consumers in the model, it turns out that stock 
prices (and hence interest rates and output) respond to 
such extraneous randomness. 

I now explain how such beliefs, which have no rela-
tion to economic fundamentals, can be self-fulfilling. 
Let the indexes i and j indicate the state of hemlines at 
dates t and t+1, respectively, and suppose that each 
index takes the value of 1 or 2, depending on whether 
hemlines are high or low. In state i, let pt be the stock 
price, Si the demand for shares, C\(i) and c2(i) the con-
sumptions of the young and the old, and l\(i) and l2(i) 
the leisure times of the young and the old. Let ^ be the 
probability that the hemline state at t+l is j, given that 
the hemline state at t is i. The young consumer at t 
maximizes expected utility given the state i at t. This is 
denoted by E(u\i). Using (1), the expression for ex-
pected utility can be written as 

(8) E(u\i) = U(cx(i)J !(0) + Zj7TijV(c2(j\l2U))-

In equation (8), we are simply adding up the utilities in 
each possible state in the second period of life, weighted 
by the respective probabilities. 

The consumer's budget constraints can be written, by 
analogy with (2) and (3), as 

(9) d(i) =wx[l~h(i)] - p ^ 

( 1 0 ) c 2 ( j ) = w 2 [ l - / 2 0 ) ] + ( P j + d ) S i . 

The interpretation of the constraints (9) and (10) is 
similar to that for (2) and (3). 

It is now possible to solve for the consumer's demand 
for shares. We can then impose the equilibrium con-
dition (4) and solve for the pricespx andp2 . (Details are 
provided in the Appendix.) These prices together with 
the probabilities tt^ determine the possible time paths 
for the stock price. Such an equilibrium is self-fulfilling, 
or rational, because the distribution of future prices on 
the basis of which the consumer determines the demand 
for shares is in fact the actual distribution of prices that 
lead to equilibrium between the demand and supply of 
shares. Thus, the consumer's beliefs are consistent with 
the actual behavior of equilibrium prices. 

Figure 11 shows an example in which the stock price 
fluctuates randomly between two values, marked p\ 
and /?2, with probabilities as noted. The reason for such 
behavior is the following. If the current state i of hem-
lines were to be different (say, 2 instead of 1), then the 
probabilities 77y for the future state j of hemlines will be 
different. Given the belief held by consumers about the 
relationship between hemlines and stock prices, the 
probabilities 77y affect the consumer's expectation of 
tomorrow's stock price. This influences the consumer's 
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current demand for the stock and hence its current 
price. 

For this result, it is indeed important that the 
probabilities 77̂  vary as i varies. That is, the probability 
distribution of future hemline states must differ if the 
current hemline state is different. Otherwise, the con-
sumer's expectation of tomorrow's stock price will be 
independent of the current state and hence so will be the 
consumer's demand for shares. Consequently, the cur-
rent equilibrium price will be the same no matter what 
the current state is. Rational expectations then imply 
that the stock price must be constant forever. 

� Summary 
So far we have seen many examples in which even 
though there is always a path along which stock prices 
and other variables are constant, there are also many 
other equilibrium paths along which stock prices and 

Figure 11 

The Hemline Example 

An Equilibrium Time Path Generated When Consumers Believe 

That Movements in Stock Prices and Hemlines Correspond* 

(m — 8.0) 

Pit) 

- -

-

-

- 1 ; 
-

1 1 1 1 1 1 1 1 1 
5 10 15 20 25 30 35 40 45 50 

Date t 

Probability Matrix: 

7Tjj = probability that the stock 

price is pj tomorrow, given 

that it is Pi today, for / = 1 , 2 . 

*This figure is reproduced from an actual computer simulation. For details of parameter values and 

simulation method used, see the Appendix. 

other macroeconomic variables can exhibit somewhat 
unusual fluctuations. Therefore, it follows that the 
economy can exhibit instability even when there is a 
stable path that is attainable if only consumers would 
believe in it. 

Policy Implications 
What implications does this simple stock price model 
have for consumer welfare and government policy? It 
turns out that every one of the equilibrium paths we 
have studied has the property of being Pareto optimal; 
that is, it is not possible to make some consumer better 
off without hurting some other consumer.9 Therefore, 
there is no government policy that will improve every-
one's lot. However, this conclusion depends on how 
seriously we take the assumption of perfect foresight. 
Remember that every one of the equilibrium paths was 
constructed on the assumption that it was perfectly 
foreseen by all consumers. If consumers make occasion-
al mistakes in expectations, then the welfare properties 
of the paths discussed may no longer be true. Conse-
quently, there may exist government policies that 
enhance the welfare of all consumers. 

The perfect foresight assumption may not seem 
unreasonable if the economy has been moving along a 
constant path or perhaps along a path with an easily 
discernible cyclical pattern. Then we may reasonably 
expect that consumers, by looking at the past behavior 
of stock prices, will be able to form accurate forecasts 
of their future behavior, somewhat like the chartists on 
Wall Street. However, some of the paths we have seen 
(for instance, those in Figures 9 and 10) are so complex 
that it is hard to imagine how anyone could form an 
accurate forecast of the future behavior of stock prices 
based on past observations.10 When such forecasting 
seems difficult, the assumption of rational expectations 
may be somewhat questionable. At the very least, 
however, one can argue that the government ought to 
pursue policies that put the economy on a stable path, 
thereby making it easier for consumers to form ac-
curate forecasts of the future and thus keeping the 
economy moving along a stable path. The justification 

9
This property is named after the Italian economist and sociologist Vilfredo 

Pareto ( 1 8 4 8 - 1 9 2 3 ) . The converse of this property, that it is possible to improve 

someone's welfare without hurting anyone else, is known as Pareto non-

optimality. In this case it would generally be possible to find government 

policies that would make everyone better off. 

1 0
This is only partially true in the present model because of its very simple 

structure. For instance, one can use past data on stock prices to plot the current 

price against the future price, as in Figure 2. In a more complex model such 

simple procedures will no longer be useful. 

""u 7r12 .49 .51 

j r 2 1 7T22_ .95 .05 
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for this argument is simply that mistaken expectations 

are much more likely when the economy is following a 

highly unstable path. 

Do there exist government policies that can elimi-

nate all the highly fluctuating paths we have seen are 

possible and push the economy inexorably onto a 

constant path with no fluctuations whatsoever? In the 

context of the stock price model, there is in fact a fairly 

simple policy that can achieve this objective: Let the 

government announce a benchmark stock price p\ 

which is less than w1? and also levy a tax (or subsidy, if 

negative) at the proportional rate [l —p'/p(t)] on the 

value of shares held by the old at each date t (including 

the initial old). The proceeds of this tax are handed over 

to the young at t as a lump-sum rebate (or tax, if 

negative), denoted r(t). This policy will alter the budget 

constraints (2) and (3) as follows: 

(11) c r f f ) = ^[1-VO] ~p(t)s(t) + r(t) 

(12) c 2 a + l ) = w 2 [ l - / 2 ( f + l ) ] 

+ [p(t+l) + d]s(t) 

-[\-p'lp(t+\j\p(t+\)s(t) 

= w2[l-l2(t+l)] + (p'+d)s(t). 

Along an equilibrium path, the rebate r(t) must 

satisfy the following relationship: 

(13) r(t)=p(t)-p\ 

Equation (13) follows because in equilibrium the 

quantity of shares sold is unity, and hence the value 

of shares sold is p(t). Therefore, taxes paid must be 

p(t)[\ —p'/p(t)]9 which equals [p(t)~p']. 

It is possible to show that under such a policy, the 

only possible equilibrium path for the stock price (and 

hence for the interest rate and output) is a constant one. 

(See the Appendix for details.) The reason for this is as 

follows. Since the government taxes away any excess of 

p(t+l) above the benchmark pricep' [or subsidizes the 

difference i f p ( t + 1 ) falls short o f p ' \ the consumer is, 

in effect, faced with a future price that is always equal 

top'. Consequently, the consumer's current demand for 

shares depends on pf but not on/?(r+l) . Therefore, the 

current equilibrium price pit) also depends on p' only 

and is hence constant over time. This simple policy, 

therefore, eliminates the possibility of all fluctuations 

and leads the economy onto a stable path. In addition, it 

is possible to choose the benchmark price p' in order to 

ensure that the equilibrium path is Pareto optimal. 

The policy just described should be viewed with 

caution, however. Even though it works for the simple 

stock price model, it may not work for a more complex 

model with more assets, uncertainty, and capital ac-

cumulation. In practice, the policy is likely to be very 

difficult to define and implement and may also have 

undesirable side effects on risk taking and investment. 

To judge the overall desirability of such a policy, these 

potential ill effects would have to be weighed against 

the possible benefits from a stabilized economy and 

improved forecasting. 

A Model of Frictional Unemployment 
We now turn to the second model chosen to illustrate 
intrinsic fluctuations and the role of animal spirits—a 
model of frictional unemployment. 

The concept of frictional unemployment plays an 
important role in policy discussions in government and 
the media. Frictional unemployment represents unem-
ployment resulting from the imperfect matching of 
workers and employment opportunities. The natural 
rate of unemployment represents the normal level of 
frictional unemployment and is taken as the benchmark 
for full employment. It is often said that in the 1960s, 
full employment corresponded roughly to a natural 
rate of unemployment between 3 and 4 percent, while 
in the 1970s the natural rate of unemployment in-
creased to around 6 percent. This is considered relevant 
for aggregate demand policies because it is thought that 
any attempt to keep the unemployment rate below the 
natural rate will only result in spiraling inflation. In 
spite of this, most models of business fluctuations 
eschew any attempt to explain the determination of 
frictional unemployment and instead focus on explain-
ing the characteristics of fluctuations around the 
natural rate of unemployment. In contrast, I show here 
that an explicit attempt to model frictional unemploy-
ment leads to some very surprising results and some 
important policy implications. 

The model discussed consists of a large number of 
producer-traders who can only trade bilaterally, if at all. 
I show that because of this decentralization, there may 
be several stationary equilibria in some of which em-
ployment and output are higher and many people are 
better off (and none is worse off) than in others. Which 
of these equilibria obtains depends on whether the 
expectations of the producer-traders are optimistic or 
pessimistic. In addition, there may be fluctuations in 
employment and output due to changing moods of 
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optimism and pessimism. The model is a simplified 
version of Diamond's (1984).11 

An Island Economy 
Consider a hypothetical economy in which there are a 
large number of individuals scattered all over a large 
number of islands, one person per island. Each indi-
vidual has the opportunity to produce one unit of a 
specialized good which is of no use to the producer but 
is desired by all the other persons. Therefore, each 
person would like to be able to exchange the good 
produced (if that person chooses to produce) for the 
product of another person. This setup is designed to 
capture the notion that in large, modern industrial 
economies, people develop specialized skills which are, 
for the most part, of no use to themselves. Instead, these 
skills (or goods produced with them) are sold to others 
and the proceeds are used to purchase goods produced 
by others. 

Assume that the cost of production, measured in units 
of foregone utility u, is different for different people 
and varies between u\ and u2, where 0 < U\ < u2 <

 00. 
Let the distribution function G(u) denote the fraction of 
people whose costs of production are no higher than u. 
If an individual chooses to produce, then that person 
must engage in a search for other producers (across the 
many islands) in order to trade. Assume that each 
person can visit only one other island and that the 
probability of running into a producer (as opposed to a 
nonproducer) is tt. Also assume that each unit of the 
good yields a utility of w* when traded. Therefore, if a 
producer is successful in meeting a trading partner, then 
each of them receives utility w*. If a producer is un-
successful in meeting a trading partner, then the 
producer receives zero utility, since the product is use-
less to its maker.12 

It is now easy to describe an individual's decision 
regarding whether or not to engage in production. In-
tuitively, if the probability of meeting another producer 
n is sufficiently large relative to the cost of production 
u, then it pays to produce. More formally, the following 
condition describes the production decision: 

If 7 t m * > u, then produce; 
(14) 

if ttu* < u, then do not produce. 

In (14), ttu* is the expected benefit (utility) from pro-
ducing and u is the cost. It follows that the fraction of 
producers (and also the per capita output) y is given by 

(15) y = G(Tru*). 

Assume also that u2 < u*. This assumption has the 
following implication. If producers could costlessly 
communicate and trade with each other, then the best 
situation is one in which everyone produces and trades. 
Such a situation might arise if all trade took place in 
a centralized market with everyone present. In this case 
it pays for even the producer with the highest produc-
tion costs to produce, and therefore per capita output 
will be at its maximum possible level of one. In this 
model the lack of communication and hence coordina-
tion among the many producer-traders is the friction 
which prevents a costless centralized market from 
arising. We will see that because of this friction, it will 
not be possible to attain the maximum possible per 
capita output. In fact, the situation could be consider-
ably worse. 

Next I need to describe how the probability of a 
successful match between producers is related to the 
decisions of all the people. It is intuitively clear that if 
either all persons or all but one person decide not to 
produce and seek out trading partners, then the prob-
ability tt is zero. If everyone decides to produce and 
seek out trading partners, then the probability of a 
successful match will be high.13 Therefore, in general, 
there is an increasing relationship between the fraction 
of people who decide to produce and the probability of 
a match. This is described by the increasing function 
f(y) as follows: 

(16) 7 r = f ( y ) . 

Equilibria 

It is now easy to describe the determination of the 
equilibrium values of tt and y. Figure 12 graphs the two 
relationships between tt and y as given by equations 
(15) and (16). Equation (15) is marked by G, while (16) 
is marked by /. By virtue of my assumptions, both 

11
 The main difference between Diamond's model and my simplified 

version is that his is dynamic, since he allows production to be stored as 

inventories, whereas I assume that production is nonstorable; hence, my version 

is static. See the Appendix for a fuller discussion of the differences. 

12
I also assume that production must occur prior to trade and that no 

production is possible once trade starts. This assumption rules out the possibility 

that someone who initially chose not to produce might wish to produce after 

encountering another producer. This corresponds to the real-world feature that 

most production is not for immediate sale but for inventory, with sales occurring 

subsequently out of inventory. 

1 3
The probability of a successful match need not be one even in this case 

when everyone decides to produce. Imagine that there are two producers on two 

islands. If each producer decides with equal chance either to stay home or to go 

to the other island, then there is only a 50-50 chance that the two will meet. 
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functions are increasing.14 Any intersection of the two 
curves gives an equilibrium pair (ir,y). This pair has the 
property that given the probability of a match 7r, a 
fraction y of people find it profitable to produce; and 
given the fraction of producers, each person's expectation 
of the probability of a successful match is accurate. 
We see that in Figure 12 there are three possible 
equilibrium pairs (77-,;y), marked low, middle, and high. 

There are two remarkable features of this simple 
model of production and trading. The first is that there 
may be several equilibria which are distinguished by 
varying levels of output and trade, depending on the 
expectations of producers regarding trading opportun-
ities. If expectations are optimistic, so that people think 
the probability of successfully consummating trade is 
high, then many people will be induced to produce and 
seek out partners. This in turn leads to a high probability 
of success, thereby justifying the optimistic beliefs. This 
corresponds to the high equilibrium in Figure 12, in-
dicating a high level of output and trade. If people have 
pessimistic expectations of being able to trade, then few 
will be induced to produce and look for trades. This in 
turn leads to a low probability of a successful match, 
thereby justifying the pessimism. In Figure 12 this is 
indicated by the low equilibrium, for low (in this case, 
zero!) output and trade. 

Also shown in Figure 12 is a middle equilibrium 
outcome which, however, is unstable. This is because if 
some nonproducers become slightly more optimistic 
than at the middle outcome, then they will choose to 
produce, which increases the probability of a match for 
everyone sufficiently that even more nonproducers will 
choose to produce, and so on, until the high equilibrium 
is reached. Conversely, if some producers become 
slightly more pessimistic than at the middle outcome, 
then they will choose not to produce, which decreases 
the probability of a match sufficiently for the remaining 
producers so that more producers will stop production, 
and so on, until the low equilibrium is reached and the 
economy shuts down. The situation of the low equilib-
rium economy resembles that of a depression economy. 

In fact, the three equilibria marked in Figure 12 are 
not the only equilibria for this economy. There also 
exist many other equilibria characterized by fluctua-
tions in which output and employment are forever 
shifting between the high and low equilibria. For in-
stance, suppose people believe that when sunspot 
activity is high the economy will be in the good (high 
equilibrium) state and when sunspot activity is low the 
economy will be in the bad (low equilibrium) state. That 
is, people become optimistic or pessimistic depending 

Figure 12 

Three Equilibria for the Frictional Unemployment Model 

Probability 

(Per Capita Output) 

y 

on whether sunspot activity is high or low. Then indeed 
it will be the case that the state of the economy will 
fluctuate between the high and the low equilibria 
precisely in tune with sunspot activity! These fluc-
tuations will be just like the ones for the stock price 
model's economy, as depicted in the hemline example 
of Figure 11, in which people were driven by animal 
spirits bearing no relation to economic fundamentals.15 

A second remarkable feature of this hypothetical 
economy is that some people are unambiguously better 
off and no one is worse off (in terms of expected utility) 
at the high equilibrium than at the low one, yet there 
is no market mechanism that can move the economy 
out of the low equilibrium and toward the high. Spe-
cifically, all those who are producing at the high 
equilibrium are better off than they were at the low one 
(or they would not be producing), and those who are not 

1 4
 Intuitively, the curve marked G must be increasing because as n goes up 

the expected utility of producing and trading goes up. This increase in expected 

utility induces more people to undertake production, thereby increasing output. 

1 5
 Here is another illustration of Keynes' idea of self-fulfi l l ing animal 

spirits. 

18 



S. Rao Aiyagari 

Intrinsic Fluctuations 

Figure 13 

A Policy That Produces Only a High Equilibrium 

Probability 

People Producing 
(Per Capita Output) 

y 

producing at the high equilibrium are no worse off than 

at the low.16 

Policy Implications 
Is there a government policy that can get the economy 
out of the doldrums at the low equilibrium and move it 
permanently to the better equilibrium with high em-
ployment and output? In fact, it is possible to suggest 
such a policy in the context of the island economy. 

Consider a production subsidy equal to u'/u* units of 
the good, where u' is just slightly larger than U\. Suppose 
that this subsidy is financed by a sales tax of a levied on 
successful trades. This policy changes condition (14) to 

If (1 —a)7TM* + u' > u, then produce; 
(17) 

if (1 cj)itu* + u' <u, then do not produce. 

Equation (15) describing the fraction of people who 

choose to produce (and also the per capita output) gets 

modified to 

(18) y = G((l-o)7ru* + u'). 

Equation (16) continues to describe the probability of 

a successful match as a function of the fraction of 

producers. 

In Figure 13 the relation between n and y described 

by equation (18) has been superimposed on the pre-

vious relations described by equations (15) and (16) 

and shown in Figure 12. The new curve, indicated by G, 

has a positive intercept on the horizontal axis, unlike G 

of Figure 12. This is because even if the probability of a 

successful match is zero, a positive fraction of pro-

ducers (those with production costs between ux and u') 

will find it profitable to produce in-order to collect the 

subsidy. However, the new curve G must pass through 

the same high equilibrium point. This is because in 

equilibrium the sales taxes collected must be just 

sufficient to pay for the production subsidies. This 

requires that the following relationship hold: 

(19) ouy — u'ytu*. 

When we substitute equation (19) in (18), we see that 
it reduces to equation (15) at equilibrium, which shows 
that the new equilibrium according to equations (17), 
(18), and (19), is the same as the high one. However, we 
see that whereas in Figure 12 there are three possible 
equilibria, in Figure 13 the high equilibrium is the only 
one. The low depression equilibrium in Figure 12 is no 
longer a possible equilibrium in Figure 13. This is be-
cause even under the most pessimistic assumptions 
regarding trading opportunities, a positive fraction of 
people will produce and look for trading partners. 
Therefore, such grossly pessimistic expectations are 
incompatible with equilibrium, and the only equilibri-
um is the one corresponding to optimistic expectations. 
Thus, such a production subsidy financed by a sales tax 
can move the economy to a better and higher level of 
output. 

It should also be noted that because the equilibrium 
under such a policy is unique, there cannot be any 
fluctuations in output and employment resulting from 
changing moods of optimism and pessimism. There-
fore, such a policy, in addition to making it possible to 
achieve a better and higher level of output, also 
eliminates fluctuations and leads the economy onto a 
stable path. 

1 6
This feature is in sharp contrast to the traditional e conomic model of 

perfect competi t ion as described by, say, Debreu (1959) . All of the equilibria in 

the Debreu model are Pareto optimal. Therefore, in that model it is impossible 

for one equilibrium to dominate another, in the sense that some consumers are 

better off and none is worse off. 

19 



This policy conclusion needs to be qualified because 

of the friction in the model. The policy conclusion 

depends very critically on there being some external 

entity (say, a government) which is outside the economic 

system of producer-traders and which is able to impose 

taxes and distribute subsidies. Indirectly, the govern-

ment is performing a coordinating role by moving 

goods across people and islands costlessly via taxes and 

subsidies—a role which the islanders are, by assump-

tion, unable to perform for themselves. In the absence of 

such an external entity, it is not at all clear whether such 

policies are even feasible and whether there exist any 

feasible policies that can improve matters. Therefore, 

the fact that an economy is in a bad equilibrium state 

may not necessarily imply that anything can be done 

about it. 

Conclusion 
I now summarize what I think economists are learning 
by studying the sorts of models I have described in this 
paper. I should emphasize that this is a tentative report 
on a relatively new and ongoing research program 
rather than a definitive judgment of a ripe old one. The 
important points seem to be the following. 

Most business cycle models explain fluctuations in 
economic variables as resulting from the effects of taste 
and technology shocks continually impinging on the 
economy. While some of these models are able to 
explain some of the qualitative and quantitative fea-
tures of observed business fluctuations, there are many 
phenomena that they have difficulty explaining or for 
which explanations based on taste or technology shocks 
strain credibility. Some of these phenomena include 
the high degree of volatility of the financial markets, 
the great sensitivity of these markets to apparently 
unrelated events, and deep depressions like the one 
in 1929.17 

These considerations suggest that perhaps even in 
the absence of any taste or technology shocks hitting 
the economy and even when the environment is com-
pletely stationary, the economy might be unstable and 
exhibit fluctuations. As Keynes argued, the economy 
might be driven by investors' animal spirits, which need 
bear no relation to economic fundamentals. Further, the 
economy might simply become stuck in a situation of 
low employment and output, with market forces being 
powerless to move the economy to a better situation of 
higher employment and output. 

I have shown by means of two examples that it is not 
at all difficult to construct simple model economies that 
exhibit the above properties. The stock price model 

generates a variety of periodic and aperiodic paths for 

the stock price as well as paths driven by purely 

extraneous shocks having no relation to fundamentals. 

The frictional unemployment model seems to capture 

to some extent the cycle of pessimism followed by the 

breakdown of market interactions followed by more 

pessimism—a cycle that may be an integral part of 

severe depressions. I have also shown that in each of 

these models there exist appropriate government poli-

cies that, although subject to some important qualifi-

cations, are capable of eliminating fluctuations. 

Additionally, in the frictional unemployment model 

such policies can lift the economy out of a state of low 

output and move it to a better state with higher output. 

I therefore conclude that there are important ad-

vances in understanding to be gained by further study of 

models of intrinsic fluctuations. 

17
 For instance, Keynesians like Franco Modigliani have ridiculed neo-

classical economists by saying that the only way to explain the Great 

Depression on the basis of neoclassical theories is to attribute it to a "severe 

attack of contagious laziness!" (Modigliani 1977, p. 6). 
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Appendix 

More About the Models 

This Appendix provides the details of solving the stock price 

model and explains the simulation method used to generate 

time paths for the stock price. I also explain how my 

exposition of the stock price model and the frictional 

unemployment model differs from the models on which they 

are based. 

The Stock Price Model 

I assume the following form for the utility function in equation 

(1) of the text: 

(Al) u = c,(/)a,/|(f)l~°!| 

+ {P foC + 1 + 1 ) ' 1 1 ~ / x ) }� 

I assume that 0 < a , < 1, 0 < a 2 < 1, fi > 0, and n > 0, but 

that ijl ^ 1. If ju = 1, the second term in (A1) should be replaced 

by 

p[a2 In c2(t+1) + ( l - a 2 ) In l2(t+1)]. 

Here I note some of the differences between my model and 

the ones of Grandmont (1985) and Azariadis (1981). The 

main difference is that the asset in their models pays a zero 

dividend forever, rather than a positive dividend. One may 

think of their asset as corresponding to cash. In addition, my 

specification of the utility function is a special case of that of 

Grandmont (1985). If I set a\ to zero and a 2
1 0 unity (so that 

people consume only leisure when young and only the 

consumption good when old), then my specification of the 

utility function becomes a special case of that of Azariadis 

(1981). Grandmont (1985) analyzes only deterministic fluc-

tuations, like the ones generated in Figures 3-10, where there 

is no uncertainty about the time path of prices. Azariadis 

(1981) analyzes fluctuations, like the hemline example in 

Figure 11, which are generated by extraneous uncertain 

events that have no connection to tastes or technology. 

Consumer Choices and Equilibrium 
I now analyze the consumer's choices of lifetime consump-

tions, leisure times, and the quantity of shares to buy, given the 

current stock price and the expected future price. 

First, the consumer will equate the marginal rate of 

substitution between leisure time and consumption in each 

period of life to the corresponding opportunity cost of leisure 

time. The opportunity cost of leisure time is w, when the 

consumer is young and w2 when old. This leads to the follow-

ing relationships: 

(A2) (l-al)cl(t)/a[li(t) = w, 

(A3) (1 ~a2)c2(t+1) / ot2l2(t +1) = w2. 

Second, the consumer will equate the marginal rate of 

substitution between consumption at t and consumption at 

t + \ to the gross expected rate of return on the stock. This 

yields 

(A4) («, /)3«2>[/1(o/c1a)]1 [c2a+1 )a2/2(^+1 )l 

x [ c 2 a + l ) / / 2 ( r + l ) ] , _ a 2 

= [pfi(t+\) + d]/p(t). 

We may now substitute for /,(f) and l2(t + 1 ) from (A2) and 

(A3) into equations (2) and (3) of the text to obtain the 

following simplified expressions for the consumer's budget 

constraints: 

(A5) c,(0 = «i[w, -p(t)s(t)] 

(A6) c2(t+1) = <*2{w2 + [pe(t+1) + d]s(t)}. 

Next we may substitute for /,(*) and /2(/ + l) from (A2) and 

(A3), and c 2 ( f + 1) from (A6) into (A4) to obtain 

(A7) {w2 + [pe(t+\) + d]s(t)Y 

= A[pe(t+\) + d]/p(t). 

Equation (A7) determines the demand for shares in terms of 

pit) and pe(t+\). The coefficient A in (A7) is given by 

(A8) A = p[<xxwxK\-OLX)ta\*2w2l 

-5- a , a / " 1 . 

It may be verified from equation (A7) that the demand for 

shares is decreasing in the current price pit). Now substitute 

equations (4) and (5) in (A7) to get the following relationship 

between p(t) and p(t+1): 
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(A9) pit)=f(pit+D) 

= A[p(t+1) + d]/[p(t+1) + d+ w2f. 

Illustrating the Choices for Parameter Values 

and for Prices in the Hemline Example 

The graph of pit) against p(t +1) will be hump shaped (as in 

Figure 2) provided n > 1 and w2 > (ju— 1 )d. Any time path for 

p(t) that satisfies (A9) for all t constitutes a perfect foresight 

or rational expectations equilibrium. 

Output and the Stock Price 
A simple relationship between total output and the stock price 

can be obtained as follows. From equations (2) - (5) we have 

(A10) d ( f ) + c2(t) = w , [ l - / | ( 0 ] + w 2 [ l - / 2 ( 0 ] + d 

= y(t). 

Substituting from equations (A5), (A6), (4), and (5) into 

equation (A 10), we obtain the following linear relationship 

between y(t) and pit): 

(All) y(t) = a,w, + ot2iw2+d) + (a2-a{ )p(t). 

Parameter Values and Simulation Method 
I now describe the choice of parameter values and the method 

of simulation used to produce the intrinsic fluctuations shown 

in Figures 3-11 . Except for Figure 10,1 chose these values: 

= l
/4,ot2 = x

h,Wj = 50, and d = 0 . 0 1 . The parameter /jl was 

varied from 2 to 20 in steps of one half. The parameters w2 

and P were chosen indirectly as follows: Let p be the 

maximum value o f f i p ) and let pm be the value of p at which 

/ ( � ) attains its maximum. These values are illustrated in the 

accompanying figure. The value ofp m may be found by setting 

the derivative of /(�) equal to zero and solving for p. This 

yields 

(A 12) pm = [w2/(m
—1)] — d 

(A 13) p =A/[^(Pm+dy-1]. 

We may now substitute for w2 and A from (A 12) and (A 13) 

into (A9) and express the function /(�) in terms of the 

parameters pm, p, \i, and d. I chose pm = 1 and p = 2/jl + 1. 

The implied values of w2 and f3 may now be found using 

(A 12), (A 13), and (A8). Figure 10 was generated using the 

same parameter values as above, with the following excep-

tions: d = 0.001, n = 15.0, and p = 10.0. Note that the values 

of p and pm are chosen such that p > pm. That is, the hump 

occurs to the left of the 45-degree line. Equivalently, the curve 

cuts the 45-degree line at p* with a negative slope. This is 

crucial in order to be able to generate fluctuations. 

Figures 3 - 9 were generated by iterating backward using 

the relationship between pit) and p(t+1) given by equation 

(A9). That is, I started with a terminal value of the stock price 

and worked backward to find the values of the stock price at 

earlier dates. Figure 10, however, was generated by iterating 

forward. This procedure has to be used with care. As the 

appendix figure shows, there are two possible values of 

p(t +1) for some values of pit). Which value of p(t +1) to 

choose may depend on whether there exists some value of 

p(t+ 2) that can follow p(t+1) and whether there is some 

value of p(t+ 3) that can follow p(t+ 2), and so on. For 

instance, if p(t) is too small, then for whichever value of 

p(t +1) we pick, there will be no value of pit+2) that can 

follow it. If pit) is somewhat larger, then only the larger of 

the two values of pit + \) can be chosen. However, if pit) is 

sufficiently large, then either of the two values of pit-hi) is a 

legitimate choice. In generating Figure 10, this type of 

situation was resolved by selecting randomly between the two 

values. 

Note that the backward iteration time path in Figure 9 can 

be extended indefinitely into the future by starting with the 

terminal price and using the forward iteration procedure that 

generated Figure 10. As noted in the previous paragraph, to 

do this it is, of course, necessary that the terminal price be not 

too low. Therefore, the time path in Figure 9 does indeed 

constitute a legitimate equilibrium time path that satisfies 

(A9) for all t. 

Solving the Hemline Example 
I now show how to solve the hemline example presented in the 

text (and depicted there in Figure 11). Substitute from 
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equat ions (1) and (A 1) into equation (8) to get the following 

expression for expected utility: 

(A 14) £ ( « | i ) = c I(/)<" ,/ l(i)1"01 

+ {^2/=17ii;[c20T2/20')1"a2]1"7(i-M)}. 

In deriving (A 14), it is implicitly assumed that the young 

consumer at da te t is born after the current state i is realized. 

In the contrary case, equation (A 14) would have to be 

modified by also adding up the utilities in each state when 

young, weighted by the respective probabilities. In addition, 

we would have to recognize the possibilities for risk sharing 

between the young and the old, which will alter the budget 

constraints (9) and (10). By assuming that the young con-

sumer is born af ter the current state is realized, we rule out 

such risk-sharing arrangements . This assumption leads to 

(A 14) and the budget constraints (9) and (10). The assump-

tion is indeed very crucial because in the contrary case it can 

be shown that it is impossible for stock prices to f luctuate in 

response to extraneous events like hemlines or sunspots. For a 

demonstration of this statement, see Azariadis 1981. 

I now analyze in several steps the consumer 's choice 

problem. As before, the consumer equates the marginal rate 

of substitution between leisure and consumption in each 

period and in each state to the corresponding opportunity cost. 

This yields the following conditions, analogous to (A2) and 

(A3): 

(A15) (1 - a 1 ) C i ( i ) / a , / , ( i ) = w, 

(A 16) (\-a2)c2(j)/a2l2(j) = w2. 

Now substitute equations (A 15) and (A 16) into equat ions 

(A 14), (9), and (10) to simplify them as follows: 

(A 17) E(ii | /) = [ ( l - a , ) / a , w I ] I " 0 , c , ( i ) 

+ { / * [ ( 1 - a 2 ) / a 2 w 2 f -
a

^ 

X X ^ j C ^ - ' / d - n ) } 

(A 18) c , ( 0 = ot^w—pjSi) 

(A 19) c2(j) = a2[w2 + (pj+d)si]. 

We can now substitute (A 18) and (A 19) in (A 17) and 

maximize expected utility by choice of s,-. This leads to the 

following condition: 

(A20) Pi = AXf={ [tty(pf*-d)]/[w2 + (/>,+</)*,�]". 

We may now substitute the equilibrium condition (4) in (A20) 

to obtain 

(A21) Pi = AXJ=, [ 7 n j ( P j + d ) ] / ( w 2 + P j + d y 

= XjTTijfiPj) 

for i = 1 ,2 , where / ( � ) is the same function as in (A9). 

We thus have two equat ions in the two unknowns, p\ and 

p2. Note that there is always a solution in which/?, a n d p 2 both 

equal p*. When p] equals p2, the two equations in (A21) 

collapse to a single equation because the sum of probabilities 

(7T/i+7t-2) must be unity for each i. The resulting equation is 

the same as equation (A9) with p(t) equal t o p ( t +1), and the 

solution isp*. This solution corresponds to the case where the 

stock price is unaffected by people 's belief about hemlines 

and the stock market . If we can find probabilit ies ny such that 

there is a solution in which /?, and p2 are different, then we 

have an example where the stock price responds to " ra t ional" 

animal spirits. 

Such an example can be constructed as follows. First, 

substitute 7t,2 = 1 — 7r,, and 7t2, = 1 — 7t22 in equation (A21) 

and solve for 7T] 1 and 7r22 to obtain 

(A22) t t , , = [ / ( p 2 ) - p , ] / [ / ( p 2 ) - / ( P i ) ] 

(A23) 7r22 = [ p 2 - / ( p 1 ) ] / [ / ( / 7 2 ) - / ( / 7 1 ) ] . 

I look for a solution such that / ? , > / ? * > p2 and such that 

the points (p\,f(p\)) and (p 2 , f (p 2 ) ) lie on the downward-

sloping branch of the curve / ( � ) . It fol lows that we must have 

f(p2) > f(p\). (See the appendix f igure for an illustration.) 

Since the probabili t ies 7r, j and 7t22 must each be between zero 

and one, we require that and p2 satisfy the following 

conditions: 

(A24) / ( / > , ) < / ? , < / ( / > 2 ) 

(A25) f(pO<P2<f(P2l 

The appendix figure shows two values, /?, and p2, that satisfy 

the two inequalities. The associated probabilities 77̂  can be 

calculated f rom (A22) and (A23). 

For the examples presented here, it is important that the 

slope of the curve at /?*, shown in the appendix figure, be 

negative and greater than one in absolute value in order to 

generate periodic cycles other than the constant t ime path 

corresponding to p*. This slope condition is also crucial for 

generat ing the hemline example of Figure 11. Otherwise, the 

inequalities (A24) and (A25) cannot be met. In fact, it turns 

out that for the type of model presented here, such a hemline 

equilibrium will exist if and only if there exists a two-period 

cycle such as the one generated in Figures 3 and 4 (see 

Azariadis and Guesnerie 1986). A heuristic argument for the 

if part of this s ta tement can be made as follows. A two-period 

cycle corresponds to having 7r, 1 and 7r22 each equal to zero. 

Therefore , it will generally be possible to find differing values 

for P\ and p2 if 7r,, and 7r22 are both positive but small. The 

only if part is not generally true. For example, if the / ( � ) 
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function has a slope that is positive and greater than one at p* 

(this can never happen in the present model), then there 

cannot be a two-period cycle. However, it is possible to find 

differing values for /?, and p2 and values for the probabilities 

7Tj j and 7r22 that satisfy equations (A22) and (A23). 

As noted in the text, it is also important that the probabili-

ties 7Tij depend on i. Otherwise, the only solution to (A21) is 

P\~Pi~P*- This follows because the right-hand side of 

(A21) is then independent of i. 

The Tax/Subsidy Policy 
I now analyze the tax/subsidy policy described in the text. The 

consumer's choices lead to the same conditions as before, 

namely, equations (A2), (A3), and (A4), except t h a t p e ( t + 1 ) is 

replaced by p'. This is because the after-tax gross rate of 

return on the stock is given by (p'+d)/p(t). As before, we may 

substitute for lx(t) and /2(f+1) from (A2) and (A3), s(t) from 

(4), and r(t) from (13) into equations (11) and (12) to obtain 

(A26) cx(t) = ax(w-p') 

(A27) c 2 ( f + l ) = a 2 (w 2 +/ /+</ ) . 

Next, we may substitute for lx(t) and l2(t+1) from (A2) and 

(A3), and c2(t+1) from (A27) into equation (A4) and replace 

pe(t+1) by p' to get the following version of equation (A9): 

(A28) p(t) = A(p'+d)/(p'+d+w2y. 

This proves that the equilibrium stock price will be constant 

over time. The equilibrium price under such a policy need not 

equal the benchmark price p\ This will happen only when p' 

is the same as/?*, wherep* is the price depicted in the appendix 

figure. This follows from equations (A9) and (A28), and the 

figure. Further, if the government announces p* as the 

benchmark price, then it can be seen from equation (13) that 

along the equilibrium path there will be no taxes or rebates. 

The Frictional Unemployment Model 

Here I explain in some detail the difference between 

Diamond's (1984) model and my simplified version of it. As 

stated in footnote 11, Diamond's model is dynamic since he 

allows the good to be stored. However, no more than one unit 

of the good may be stored; therefore, production cannot be 

resumed until the current inventory is sold. Thus, at any given 

time, the economy consists of some people who hold a unit in 

inventories and cannot produce any more until they have sold 

it and of others who have zero inventories and can produce. 

Further, over time a given individual may receive a variety of 

production opportunities which may differ in cost. The 

individual may, therefore, choose either to take advantage of 

the current production opportunity or to wait for a better (less 

costly) one. This makes the decision to produce a more 

complicated dynamic problem, and thereby makes the deriva-

tion of the G curve in Figure 12 more difficult. 
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