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Heuristic Optimization Techniques With an Improved
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Abstract—In this paper an improved coordinated aggrega-
tion-based particle swarm optimization (ICA-PSO) algorithm
is introduced for solving the optimal economic load dispatch
(ELD) problem in power systems. In the ICA-PSO algorithm each
particle in the swarm retains a memory of its best position ever
encountered, and is attracted only by other particles with better
achievements than its own with the exception of the particle with
the best achievement, which moves randomly. Moreover, the pop-
ulation size is increased adaptively, the number of search intervals
for the particles is selected adaptively and the particles search the
decision space with accuracy up to two digit points resulting in the
improved convergence of the process. The ICA-PSO algorithm is
tested on a number of power systems, including the systems with 6,
13, 15, and 40 generating units, the island power system of Crete in
Greece and the Hellenic bulk power system, and is compared with
other state-of-the-art heuristic optimization techniques (HOTs),
demonstrating improved performance over them.

Index Terms—Adaptive velocity limits, coordinated aggregation,
economic dispatch, heuristic optimization techniques, nonsmooth
cost functions, particle swarm optimization.

I. INTRODUCTION

I
N the electric power supply systems, there exist a wide

range of problems involving optimization processes.

Among them, the power system scheduling is one of the most

important problems in the operation and management [1].

Recently, modern meta-heuristic algorithms are considered as

effective tools for nonlinear optimization problems with appli-

cations to power systems scheduling, e.g., economic load dis-

patch (ELD) [2]–[26]. The algorithms do not require that the

objective functions and the constraints have to be differentiable

and continuous. A particle swarm optimization (PSO) is such

an algorithm that can be applied to nonlinear optimization prob-

lems.

PSO has been developed from the simulation of simplified so-

cial systems such as bird flocking and fish schooling. In general,

swarm behavior can be modeled with a few simple information

rules. The decision process of particles in the swarm takes into
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account two important operators. The first one is their own ex-

perience (cognitive operator); that is, they have tried the choices

and know which state has been better so far, and they know how

good it was. The second one is other particles’ experiences (so-

cial operator); that is, they have knowledge of how the other

particles around them have performed [1]. Unlike other heuris-

tics optimization techniques (HOTs) such as genetic algorithm

(GA), PSO has a flexible and well-balanced mechanism to en-

hance and adapt to the global and local exploration and exploita-

tion abilities within a short calculation time. Since PSO seems

to be sensitive to the tuning of its parameters, many researches

are still in progress in regulating these.

Recently, the coordinated aggregation based PSO (CA-PSO)

was introduced for optimal steady-state performance of power

systems [27]. The main idea of CA-PSO is based on the fact

that the achievement of each particle is distributed in the en-

tire swarm. At each iterative cycle, each particle updates its ve-

locity taking into account the differences between its position

and the positions of better achieving particles. These differences

play the role of coordinators as they are multiplied as weighting

factors. The best particle in the swarm is excluded from this

process, as it regulates its velocity randomly [27]. However, a

drawback in the CA-PSO [27] is that particles do not take into

account the cognitive operator and do not adaptively organize

their search.

This paper focuses on the performance evaluation of a newly

introduced improved coordinated aggregation-based particle

swarm optimization (ICA-PSO) algorithm in the ELD problem.

Specifically, ICA-PSO is produced enhancing the CA-PSO

algorithm [27]. Specifically, the CA-PSO is modified with a

cognitive operator in the particles, adaptively selected number

of search intervals for the particles, variable population size and

search accuracy for particles up to two digit points, resulting in

the improved convergence of the process.

The ICA-PSO is implemented in the ELD problem. Since

2003 the ELD problem has been solved by various modern

HOTs [2]–[26], and some of them have been implemented into

practice [1]. The obtained results by ICA-PSO are compared

with those given by other state-of-the-art HOTs on power

systems with 6, 13, 15, and 40 generating units, the island

power system of Crete and the Hellenic bulk power system

with various loads subjected to all operating constraints.

II. PREVIOUS WORKS ON HOTS FOR ELD

The state-of-the-art HOTs for ELD are presented in this sec-

tion in the reverse chronological publishing order:

0885-8950/$25.00 © 2009 IEEE
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1) Simulated annealing-PSO (SA-PSO): This paper proposes

a new approach and coding scheme for solving economic

dispatch problems in power systems through simulated an-

nealing like particle swarm optimization [2].

2) Quantum-inspired version of the PSO using the harmonic

oscillator (HQPSO): The HQPSO is inspired by the

classical PSO and quantum mechanics theories, using a

harmonic oscillator (HQPSO) to solve economic dispatch

problems [3].

3) Self-organizing hierarchical particle swarm optimization

(SOH-PSO): In the SOH-PSO the particle velocities are

reinitialized whenever the population stagnates at local op-

tima during the search [4].

4) Bacterial foraging with Nelder–Mead algorithm (BF-NM):

This paper proposes a stochastic optimization approach to

solve constrained economic load dispatch problem using

hybrid bacterial foraging technique. In order to explore the

search space for finding the local minima, the simplex al-

gorithm called Nelder–Mead is used along with BF algo-

rithm [5].

5) Adaptive-PSO (APSO): This paper presents a novel

heuristic optimization approach to constrained ELD

problems using the adaptive-variable population-PSO

technique [6].

6) Uniform design with the genetic algorithm (UHGA): This

paper presents an efficient method for solving the eco-

nomic dispatch problem (EDP) through combination of ge-

netic algorithm (GA), the sequential quadratic program-

ming (SQP) technique, uniform design technique, the max-

imum entropy principle, simplex crossover and nonuni-

form mutation [7].

7) Differential evolution (DE): The DE is a classical differen-

tial evolution algorithm attempting to solve ELD problem

[8].

8) Particle swarm optimization with chaotic and Gaussian

approaches (PSO-CG): In the PSO-CG a Gaussian prob-

ability distribution and chaotic sequences to generate

random numbers into velocity update equation are used

[9].

9) Directional search genetic algorithm (DSGA): The DSGA

instead of GA-searching for final best fit chromosome in

the entire random search space follows a directional pro-

cedure to reach the solution. The total search space is nar-

rowed down to single route. The DSGA is a special algo-

rithm for ELD problem with prohibited operating zones

[10].

10) Real-parameter quantum evolutionary algorithm (RQEA):

The RQEA is a modern population-based probabilistic EA

that integrates concepts from quantum computing for ob-

jective functions with real parameters [11].

11) Hybrid differential evolution (HDE) and self-tuning HDE

(STHDE): The HDE is a differential evolution algorithm

where the fittest of an offspring competes one by one with

that of the corresponding parent, which is different from

the other evolutionary algorithms (EAs). The STHDE uti-

lizes the concept of the 1/5 success rule of evolutionary

strategies in the original HDE to accelerate the search for

the global optimum [12].

12) Artificial immune system (AIS): This paper presents a

novel optimization approach to constrained ELD problem

using artificial immune system. The approach utilizes

the clonal selection principle and evolutionary approach

wherein cloning of antibodies is performed followed by

hypermutation [13].

13) Variable scaling hybrid differential evolution (VSHDE):

The VSHDE is an HDE with nonlinear scaling factor [14].

14) New particle swarm optimization with local random search

(NPSO-LRS): The NPSO-LRS uses the classical PSO split-

ting up the cognitive operator into best and worst memories

integrating with simple local random searches [15].

15) Improved genetic algorithm with multiplier updating

(IGAMU): The IGAMU integrates an improved evolu-

tionary direction operator and a migrating operator to

avoid deforming the augmented Lagrange function [16].

16) Differential evolution combination with sequential

quadratic programming method (DEC-SQP): The

DEC-SQP combines the differential evolution algorithm

with the generator of chaos sequences and sequential

quadratic programming technique [17].

17) Evolutionary strategy optimization (ESO): The ESO is

based on classical evolutionary strategy -ES para-

digm, considering Gaussian mutation operator [18], [19].

18) Taguchi method (TM): The Taguchi method involves the

use of orthogonal arrays in estimating the gradient of the

cost function and has been widely used in experimental

designs for problems with multiple parameters where the

optimization of a cost function is required [20].

19) Modified particle swarm optimization (MPSO): The

MPSO introduces a mechanism in classical PSO to deal

with the equality and inequality constraints in the ELD. A

constraint treatment mechanism is devised in such a way

that the dynamic process inherent in the conventional PSO

is preserved. Moreover, a dynamic search-space reduction

strategy is devised to accelerate the optimization process

[21].

20) Evolutionary programming algorithm with non-linear

scaling factor (EP-NSF): In the proposed EP-NSF algo-

rithm, mutation changes nonlinearly with respect to the

number of generations avoiding premature condition [22].

21) Hybrid particle swarm optimization with sequential

quadratic programming (PSO-SQP): The PSO-SQP com-

bines the PSO with the conventional sequential quadratic

programming technique [23].

22) Particle swarm optimization (PSO): The classical PSO al-

gorithm is introduced as a solution method of ELD [24].

23) Real GA: The developed real-coded GA is based on a

floating-point coding scheme observing transmission line

power-flow limits [25].

24) Improved fast evolutionary programming (IFEP): The pro-

posed IFEP algorithm uses both Gaussian and Cauchy mu-

tations to create offspring from the same parent and the

better ones are chosen for next generation [26].

III. ECONOMIC LOAD DISPATCH

The main purpose of this paper is the performance evalua-

tion of the proposed ICA-PSO in optimal ELD. Therefore, the
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ICA-PSO algorithm is tested and compared with other state-of-

the-art HOTs on this problem. Thus, a clear picture of the ef-

fectiveness of the proposed ICA-PSO is given. The objective of

the ELD problem is to minimize the total fuel cost at thermal

power plants subjected to the operating constraints of a power

system. Therefore, it can be formulated mathematically with an

objective function and two constraints (equality and inequality).

A. Equality Constraint

In the power balance criterion, the equality constraint should

be satisfied as

(1)

where represents the total number of generators. So, the

total generated real power should be the same with the total load

demand plus transmission losses of the system. The

are calculated using power flows coefficients by the

following formula:

(2)

B. Inequality Constraints

The real power output of each generator- should lie be-

tween maximum and minimum limits represented

by

(3)

Also generators have certain prohibited operating zones due

to steam valve or vibration in shaft bearings

(4)

where and are, respectively, the lower and

upper bounds of prohibited zone of generator- and is the

number of prohibited zones in generator- .

C. Fitness Function

The total fuel cost function (in $/h or /h) addressing the

valve-point loadings of generating units to be minimized is

given by

(5)

where are the fuel cost coefficients of generating

unit- .

In order to speed up the convergence of iteration procedure,

the evaluation value is normalized into the range between 0 and

0.5. Specifically, the evaluation function is adopted as in [24]

(6)

where

(7)

(8)

Here, and are the total cost of generating units at

their maximum and minimum limits, respectively, calculated at

the initial population.

Evaluation function (6) is the reciprocal of power balance

constraint and the generation cost function as in (1) and (5). This

implies that if the values of (7) and (8) of a particle are small,

then its evaluation value (6) would be large.

In order to limit the evaluation value of each particle of the

swarm within a feasible range, before estimating the evaluation

value of a particle (6), the generation power output must satisfy

the constraints in (4). If a particle satisfies all constraints, then

it is a feasible particle and (7) has a small value. Otherwise, the

value (7) of the particle is penalized with a very large positive

constant.

IV. IMPROVED COORDINATED AGGREGATION-BASED PSO

The coordinated aggregation is a new operator introduced

recently in the swarm, where each particle moves considering

only the positions of particles with better achievements than its

own with the exception of the best particle, which moves ran-

domly. The coordinated aggregation can be considered as a type

of active aggregation where particles are attracted only by places

with the most food. Specifically, at each iterative cycle- of ICA-

PSO, each particle- with better achievement than particle- reg-

ulates the velocity of the second. The velocity of particle is

adapted by means of coordinators multiplied by weighting fac-

tors. The differences between the positions of particles- and

the position of particle- are defined as coordi-

nators of particle- velocity. The ratios of differences between

the achievement of particle- , and the better achieve-

ments by particles- , to the sum of all these differences

are the weighting factors of the coordinators

(9)

where represents the set of particles with better achieve-

ment than particle- .

Also, the ICA-PSO considers the following additional con-

cepts and techniques.
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1) The cognitive operator of the particles (the ability of

the particles to retain a memory of its best position ever

achieved) for better exploitation of the search space.

2) He adaptively selected number of search intervals for the

particles and the variable population size, resulting in the

improved convergence of the process for better exploration

of the search space. Specifically, the maximum velocities

are constricted in a small number of search intervals, Nr,

in the search space for better balance between exploration

and exploitation. A small Nr facilitates global exploration

(searching new areas), while a large one tends to facilitate

local exploration (fine tuning of the current search area)

[see (13)]. A suitable value for the Nr usually provides

balance between global and local exploration abilities and

consequently results in a reduction of the number of it-

erations required to locate the optimum solution [27]. In

the ICA-PSO, the number of search intervals (Nr) is se-

lected adaptively during the iterative process in the areas

with the rate of search in (10) at the bottom of the page,

where and are, respectively, the limits

on the allowed, emergency and failed number of iterations

are the limits of Nr in the area of

normal search rate; are the limits of Nr

in the area of intensive search rate, and

are the limits of Nr in the area of scrutiny. Moreover, if no

improvement in the global best achievement is observed for

number of iterations the population size is increased

by 15%.

3) The particles search the decision space with accuracy up to

two decimal points. So, they avoid many local minima, pre-

mature convergence and explore/exploit better and faster

only three surfaces (0–2 digit points) of the decision space.

The steps of ICA-PSO for ELD are listed in the following.

Step 1) Initialization: Generate -particles. For each par-

ticle- choose initial position vector (initial

vector of generators’ real power outputs) randomly

and set it as best position of particle- . Calcu-

late its initial achievement using the eval-

uation function (6) and find the maximum

called the global best achievement.

Then, particles update their positions (generators’

real power outputs) in accordance with the following

steps.

Step 2) Swarm’s manipulation: The particles, except the best

of them regulate their velocities in accordance with

the equation

(11)

where is the cognitive parameter;

is the best position of the particle- it ever en-

countered; the random parameters and

are used to maintain the diversity of the population

and are respectively uniformly distributed within the

ranges [0.999, 1] and [0, 1]; are the weighting

factors of the coordinators (9).

Step 3) Best particle’s manipulation: The best particle in the

swarm updates its velocity using a random coordi-

nator calculated between its position and the posi-

tion of a randomly chosen particle in the swarm.

Step 4) Velocity bounds’ oscillations: Check if the bounds

of velocities are enforced, (12), (13). If the bounds

are violated then they are replaced by the respective

limits. The velocities of the th particle in the -di-

mensional decision space are limited by

(12)

where the maximum velocity in the -th dimension

(generator- ) of the search space is proposed as

(13)

where and are the limits in the -dimen-

sion of the search space [limits of real power outputs

of generator- , (3)] and Nr is the chosen number of

the search intervals (10). Normally, choose a random

integer number in the range of .

Step 5) Position update: The positions of particles (genera-

tors’ real power outputs) are updated on the basis of

(14)

Step 6) Position limits: Check if the limits of particles’ po-

sitions (generators prohibited operating zones) are

enforced (4). If any of the limits are violated then a

high penalty is added in (7) and the corresponding

number of search interval (10) is set at the lowest

value .

Step 7) Evaluation: Calculate the achievement of

each particle- using the evaluation function (6) and

calculate the maximum one among them.

Step 8) Update search intervals and population size: If no

improvement in the global best is achieved for

number of iterations with:

choose a random integer number of search intervals

in the range of

(10)
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choose a random integer number of search in-

tervals in the range of

increase the population size every

iterations by 15% up to 90% of the

initial size.

Step 9) Stopping criteria: The ICA-PSO algorithm will be

terminated if the maximum number of allowed iter-

ations is achieved . If the stopping

criteria are not satisfied, go to Step 2.

Step 10) Global optimal solution: Choose the optimal solu-

tion as the global best achievement

(15)

V. PERFORMANCE EVALUATION

To assess the efficiency of the proposed ICA-PSO, the fol-

lowing seven case studies of ELD with various loads are applied.

Case 1) Six-generating units of IEEE 30-bus system. In this

application the obtained results are compared with

those given by EP-NSF [22].

Case 2) 13-generating units. In this application the results are

compared with those given by SA-PSO [2], HQPSO

[3], BF-NM [5], UHGA [7], DE [8], RQEA [11],

HDE and STHDE [12], IGAMU [16], DEC-SQP

[17], ESO [18], [19], PSO-SQP [23], and IFEP [26].

Case 3) 15-generating units. In this application the results

are compared with those given by SA-PSO [2],

SOH-PSO [4], BF-NM [5], APSO [6], DE [8],

PSO-CG [9], DSGA [10], AIS [13], HDE and

VSHDE [14], IGAMU [16], ESO [18], [19], and

PSO [24].

Case 4) 40-generating units. In this application the results

are compared with those given by SA-PSO [2],

SOH-PSO [4], BF-NM [5], UHGA [7], DE [8],

HDE and STHDE [12], NPSO-LRS [15], IGAMU

[16], DEC-SQP [17], ESO [18], [19], TM [20],

MPSO [21], PSO-SQP [23], and IFEP [26].

Case 5) Autonomous power system of island of Crete,

Greece. In this application the results are compared

with those given by Real GA [25].

Case 6) Hellenic bulk power system. The version with 32

combined cycle co-generation plant (CCCP) gener-

ating units is considered.

Case 7) A six-generating units with prohibited operating

zones considering power loss. In this application

the obtained results are compared with those given

by SA-PSO [2], BF-NM [5], APSO [6], DE [8],

AIS [13], NPSO-LRS [15], ESO [18], [19], and

PSO [24].

The performance of ICA-PSO is quite sensitive to the var-

ious parameter settings. Tuning of parameters is essential in all

PSO based methods. Based on empirical studies on a number

of mathematical benchmarks, we [27], [28] have reported the

best range of variation for cognitive and social parameters, in-

ertia weighting factor, number of search intervals, and popula-

tion size. This paper further explores the best range of newly

TABLE I
PARAMETERS OF ICA-PSO

TABLE II
ICA-PSO FOR SIX-GENERATING UNITS: RESULTS

AND CONVERGENCE CHARACTERISTICS

introduced parameters in (10), where sensitivity analysis was

performed with respect to the parameters: allowed, emergency

and failed limits in the number of iterations; chosen limits of

search intervals for the particles in the normal, intensive and

scrutiny search areas; population size ; and cognitive pa-

rameter . The stochastic parameters of ICA-PSO shown in

Table I are those, which yielded best solution for each case

study. They were selected after many trial runs by means of

sensitivity analysis. The minimum, mean and maximum of cost

functions (8) are estimated with up to 1000 iterations in 100

trials on a 1.4-GHz Pentium-IV PC.

A. Case 1

The ICA-PSO is applied to the IEEE-30 bus system with

six-generating units, 41 transmission lines, four tap changing

transformers, and two injected VAR sources. The total system

load demand is 283.4 MW. The cost coefficients of IEEE 30-bus

system are slightly modified to incorporate nonsmooth fuel cost

functions as given in EP-NSF [22]. The first generating unit is a

combined cycle co-generation plant (CCCP), the second gener-

ating unit has piecewise cost function, the third and fourth gen-

erators have valve point loadings, and the last two have quadratic

cost functions. The ramp rate limits of generating units are also

given in EP-NSF [22]. Table II shows the best dispatch solution

obtained by ICA-PSO for this system. They are better than those

given by EP-NSF (total minimum cost: 747.3 $/h) [22].
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TABLE III
ICA-PSO FOR 13-GENERATING UNITS: RESULTS

AND CONVERGENCE CHARACTERISTICS

B. Case 2

In this application power system has 13-generating units.

In the literature there are four different applications with load

demand of the system at values of 1800 MW, 2520 MW without

power loss (constrained and unconstrained cases), and 2520

MW considering power loss [2], [3], [5], [7], [8], [11], [12],

[14], [16]–[19], [23], [26]. In the “constrained” case with load

demand at value of 2520 MW without power loss, the outputs

of generating units 11 and 12 are fixed at 75 MW and 60 MW,

respectively. In the fourth application where power loss is

considered the total power generation is 2559.05 MW, namely

there is a power loss of 39.05 MW. In this case, the HDE and

STHDE [12] achieve power loss of 39.15 MW and 44.33 MW,

respectively. Table III shows the best dispatch solution and

convergence characteristics of ICA-PSO, for all cases of load

demand. The results obtained by ICA-PSO are compared with

those available from the literature in Table IV. The results of

ICA-PSO are better than all cases except in the case of load

demand at value of 2520 MW without power loss, where RQEA

[11] achieves better minimum cost.

C. Case 3

In this application power system has 15-generating units,

where four units have prohibited operating zones. In the litera-

ture there are three applications with the load demand of 2650

MW without power loss, 2650 MW considering power loss, and

2630 MW considering power loss [2], [4]–[6], [8]–[10], [13],

[14], [16], [18], [19], [24]. Table V shows the best dispatch

solution and convergence characteristics of ICA-PSO for all

TABLE IV
MINIMUM GENERATION COST OBTAINED BY DIFFERENT

METHODS ON 13-GENERATING UNITS SYSTEM

TABLE V
ICA-PSO FOR 15-GENERATING UNITS: RESULTS

AND CONVERGENCE CHARACTERISTICS

cases of load demand. The table also shows the convergence

characteristics of ICA-PSO, namely the iteration number

achieved, the minimum cost (best iteration), mean CPU time

per iteration, and minimum, mean and maximum cost (5). The

results obtained by ICA-PSO are compared with those avail-

able from the literature in Table VI. It shows that the ICA-PSO

performed better than all other HOTs.

D. Case 4

In this application power system has 40-generating units.

Total load demand of the system is 10500 MW. In the literature

there are many HOTs applications in this system [2], [4], [5],
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TABLE VI
MINIMUM GENERATION COST OBTAINED BY DIFFERENT

METHODS ON 15-GENERATING UNITS SYSTEM

TABLE VII
ICA-PSO FOR 40-GENERATING UNITS: RESULTS

AND CONVERGENCE CHARACTERISTICS

[7], [8], [12], [15]–[21], [23], [26]. Table VII shows the best

dispatch solution and convergence characteristics of ICA-PSO.

The results obtained by ICA-PSO are compared with those

available from the literature in Table VIII, which shows that the

performance of the ICA-PSO is exceeding in all other cases.

TABLE VIII
MINIMUM GENERATION COST OBTAINED BY DIFFERENT

METHODS ON 40-GENERATING UNITS SYSTEM

TABLE IX
ICA-PSO FOR CRETE’S POWER SYSTEM (18-GENERATING

UNITS): RESULTS AND CONVERGENCE CHARACTERISTICS

E. Case 5

In this application the ELD problem in the autonomous power

system of Greek island of Crete is solved. Two subcases are con-

sidered. In the first sub-case the system comprises of 18-gener-

ating units with quadratic (convex) cost functions, 52 buses, 66

branches, and 18 thermal units. In this subcase branch-power

flow limits are considered. The data are given in [25]. Table IX

shows the best dispatch solution and the convergence charac-

teristics of ICA-PSO. The results of ICA-PSO in this version

of the Crete’s power system with various loads are compared

with those given by Real GA [25] in Table X. The maximum

power capability is MW. The results given

by ICA-PSO are better than those given by Real GA [25]. In the

second sub-case the system comprises 19-generating units with

cubic (nonconvex) cost functions. In this subcase also branch-

power flow limits are considered. The maximum power capa-

bility is MW. Total load demand of the system

is 400 MW (medium load). The technical limits and the coeffi-

cients of cost functions of 19-generating units are given in Ap-

pendix A. Table XI shows the best dispatch solution and con-

vergence characteristics of ICA-PSO.
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TABLE X
ICA-PSO AND REAL GA FOR CRETE’S POWER SYSTEM

(18-GENERATING UNITS-VARIOUS LOADS)

TABLE XI
ICA-PSO FOR CRETE’S POWER SYSTEM (19-GENERATING

UNITS): RESULTS AND CONVERGENCE CHARACTERISTICS

F. Case 6

In this application the Hellenic bulk power system has

32-generating units. The maximum power capability is

MW. Total load demand of the system is 6300

MW (heavy load). Technical limits and the coefficients of cost

functions for 32-generating units are given in Appendix B. The

system is also constrained because generating unit 26 is fixed

at 28.00 MW.

Table XII shows the best dispatch solution and the conver-

gence characteristics of ICA-PSO.

G. Case 7

We finalize the results giving full details of ICA-PSO opera-

tion on a representative case study. In this case study, the power

loss is considered and each one of the six-generating units has

two prohibited operating zones. Total load demand of the system

is 1263 MW. All correct data are given in [19]. In the literature

there are many HOTs applications in this system [2], [5], [6],

[8], [13], [15], [18], [19], [24].

Also in this case study, sensitivity analysis [27], [28] was

performed with respect to the parameters: allowed ,

emergency and failed limits in the number of

iterations; chosen limits of search intervals for the particles in

the normal , intensive

TABLE XII
ICA-PSO FOR 32-GENERATING UNITS OF HELLENIC BULK

POWER SYSTEM: RESULTS AND CONVERGENCE CHARACTERISTICS

and scrutiny search areas; initial population

size ; and cognitive parameter . Specifically, the following

empirical 4-tuples of stochastic parameters were considered in

the simulation results:

(16)

The chosen values were evaluated by minimum of objective

function (6) which was calculated with up to 1000 iterations in

100 trials. Due to the space limitation, the simulation results

are omitted. They need few large matrices to be presented. The

results reveal that the appropriate values for stochastic parame-

ters are those given in the last column of Table I. Alternatively,

the determination of optimum parameters of ICA-PSO can be

achieved by incorporating any of the modern evolutionary al-

gorithms such as cultural algorithms [29] in the ICA-PSO. This

will be studied in a future research on stochastic optimization

techniques.
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TABLE XIII
RESULTS OF ICA-PSO FOR SIX-GENERATING UNITS WITH PROHIBITED

OPERATING ZONES CONSIDERING OF POWER LOSS

TABLE XIV
RESULTS OBTAINED BY DIFFERENT METHODS ON SIX-GENERATING UNITS

SYSTEM WITH PROHIBITED OPERATING ZONES CONSIDERING POWER LOSS

Table XIII shows the best dispatch solution of ICA-PSO. It

shows the mean and maximum cost, too. The results obtained

by ICA-PSO are compared with those available from the liter-

ature in Table XIV, which shows that the performance of the

ICA-PSO exceeds all other feasible solutions.

Fig. 1 shows the convergence of ICA-PSO in the best case

of generation dispatch. The ICA-PSO converges after only 101

iterations (best iteration ).

Table XV represents the performance of ICA-PSO on the best

case. Specifically, it gives the intensity of search for the particles

iteration by iteration as a function of the global best achieve-

ment. It shows clearly how the population size is increased and

the number of search intervals of the particles is oscillated adap-

tively. The rhythm of search the space for the best solution is

similar to radio-emission frequency of pulsars (see Fig. 1). The

critical numbers of iterations during the convergence process

are also shown in Fig. 1. It is demonstrated the fast convergence

capability of the coordinately aggregated particles in finding a

high quality solution.

H. Advantages of ICA-PSO Over Other HOTs

Observing the comparison results given in Tables II, IV, VI,

VIII, X, and XIV, the ICA-PSO algorithm is shown to be more

efficient than all other HOTs except a quantum evolutionary al-

gorithm (RQEA [11]) in one case, in finding optimal solutions.

Fig. 1. ICA-PSO convergence for six-generating unit system with prohibited
operating zones considering power loss (best dispatch solution).

TABLE XV
ICA-PSO OPERATION (BEST CASE) ON SIX-GENERATING UNITS SYSTEM WITH

PROHIBITED OPERATING ZONES CONSIDERING POWER LOSS

Regarding ICA-PSO, it has an excellent performance in finding

the global best solution in a comparable computing time over

other HOTs because of the following main advantages.

1) It optimally manipulates the swarm with an adapted search

rhythm similar to pulsars radio-emission one, namely the

adaptively selected number of search intervals for the par-

ticles (10). Also the swarm is renewed by the introduced

concept of variable population size (see Step 8 of ICA-PSO

algorithm).

2) It manipulates well the violated particles and penalized

them, but simultaneously giving them more search oppor-

tunities (see Step 6 of ICA-PSO algorithm).

3) It takes into account much more coordinators for the

swarm’s manipulation than the other PSO (see Step 2

of ICA-PSO algorithm). To be specific, the other PSO

considers only two coordinators, namely the best position

a particle it has ever encountered and the global/local best

in the swarm.
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TABLE XVI
TECHNICAL LIMITS AND COEFFICIENTS OF THE CUBIC COST FUNCTIONS OF

THE 19-GENERATING UNITS OF AUTONOMOUS POWER SYSTEM OF CRETE

4) It adopts a stochastic coordination for the manipulation

of best particles giving them full freedom (see Step 3 of

ICA-PSO algorithm).

5) In the programming code of ICA-PSO algorithm the par-

ticles search the decision space only with accuracy of two

decimal points. So, swarm does not exhaust its capability

of “walking around.” This technique is well supported by

previous mentioned advantages.

These advantages provide the ICA-PSO more possibilities

than the other HOTs, in exploring the decision space around

local minima and escaping from them.

VI. CONCLUSION

This paper proposed a new type of PSO algorithm, the

ICA-PSO based on the cognitive and coordinated aggregation

operators. It also introduced the variable population size,

adaptive number of search intervals for the particles and search

accuracy of particles up to two digit points, resulting in the

improved convergence of the process. The ICA-PSO as well

as the state-of-the-art HOTs competed in the optimization

of ELD problem considering a number of different types of

constrains. The results obtained in the systems with 6, 13, 15,

and 40 generating units, the island power system of Crete and

the Hellenic bulk power system with various loads indicated an

improved performance of the ICA-PSO over other HOTs, and

good convergence characteristics.

APPENDIX A

The technical limits and coefficients of the cubic cost func-

tions of the 19-generating units of autonomous power system of

Crete are shown in Table XVI.

TABLE XVII
TECHNICAL LIMITS AND COEFFICIENTS OF LINEAR COST FUNCTIONS OF THE

32-GENERATING UNITS (CPPP) OF HELLENIC BULK SYSTEM

APPENDIX B

The technical limits and coefficients of linear cost functions

of the 32-generating units (CPPP) of Hellenic bulk system are

shown in Table XVII.
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