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Abstract - This paper presents a new method t o  solve 
the problem o f  economic power dispatch wi th  piecewise 
quadratic cost function using the Hopfield neural network. 
Traditionally one convex cost function for each generator is 
assumed. However, it is more realistic t o  represent the cost 
function as a piecewise quadratic function rather than one 
convex function. In this study, multiple intersecting cost 
functions are used for each unit. Through case studies, we 
have shown the possibility o f  the application of the 
Hopfield neural network t o  the ELD problem wi th  general 
nonconvex cost functions. The proposed approach is much 
simpler and the results are very close t o  those of the 
numerical method. 

Key words - Neural network, Economic 
Energy Function, Piecewise Quadratic Cost 
Point Loading, Multiple Fuel. 

1. INTRODUCTION 

There has been a growing interest in 

Load Dispatch, 
Function, Valve 

neural network 
models wi th  massively parallel structures, which purport t o  
resemble the human brain. Owing t o  the powerful 
capabilities o f  neural networks such as learning, 
optimization and fault-tolerance, neural networks have been 
applied t o  the various fields of complex, non-linear and 
large-scale power systems[l-61. 

The Hopfield neural network has been applied t o  various 
fields since Hopfield proposed the model in  1982[71 and 
1984[81. In the problem of optimization, the Hopfield neural 
network has a well demonstrated capability of finding 
solutions t o  difficult optimization problems. The 
TSP(traveling salesman problem), typical problems of 
NPhondeterministic polynomial)-complete class, AID 
conversion, linear programming and job-shopping schedule 
are good examplesI9-121 which the Hopfield network 
provides with solutions. In the field of power systems, the 
Hopfield network has been applied t o  optimal power f low 
and economic load dispatch problemsIl3-151. 

In the conventional Hopfield model, the neuron potential 
has arbitrary numbers during the intermediate stages but at 
the final stage the neuron potential converges t o  the limit 
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values (0.1) or ( -1 , l )  and thus, provides a solution. 
Sometimes it converges to  the interior values of a 
hypercube instead of its vertices[l61. This is regarded as 
undesirable and calls for improvement. In general an 
optimization problem frequently needs a large numerical 
value as i ts  solution. Thus far the counting method or the 
binary number representationIl71 of various schemes has 
been used t o  represent real numbers. These methods, 
however, employ a large number of neurons to  represent a 
correspondingly large numerical value. Therefore it is 
proposed t o  represent a large value by using a single 
neuron. 

The economic load dispatch(ELD) problem is one of the 
important optimization problems in a power system. 
Traditionally, in the ELD problem, the cost function for 
each generator has been approximately represented by a 
single quadratic function. It is more realistic, however, t o  
represent the generation cost function for fossil fired plants 
as a segmented piecewise quadratic function, as in the 
case of valve point loading. Some generation units, 
especially those units which are supplied wi th  multiple fuel 
sources(gas and oil), are faced with the problem of 
determining which is the most economical fuel t o  burnLl81. 

As fossil fuel costs increase, it becomes even more 
important to  have a good model for the production cost of 
each generator. Therefore a more accurate formulation is 
obtained for the ELD problem by expressing the generation 
cost function as a piecewise quadratic function. This 
approach can be applied t o  generators supplied wi th  various 
fuels as well as valve point loading problems. 

In this paper, a method of the Hopfield neural network 
t o  solve the ELD problem has been proposed. The proposed 
method has been successful in solving ELD problem with 
piecewise quadratic cost function. Compared wi th  the 
hierarchical approach[l91, the proposed method is much 
simpler t o  implement and the results are very close t o  
those of the hierarchical method. 

2. HOPFIELD NEURAL NETWORK 

The Hopfield network which is useful for associative 
memory and optimization is a nonhierarchical structure. The 
structure of the network is shown in Fig. 1. 

2.1. Binary Neuron Model 

The original model of Hopfield neural networkr71 used a 
two-state threshold “neuron” that followed a stochastic 
algorithm. Each neuron, or processing element, i had t w o  
states wi th  values V i ”  or V i ’ (which may often be taken as 
0 and 1, respectively). The input of each neuron came from 
t w o  sources, external inputs I i  and inputs from other 
neurons Vj .  The total input to  neuron i is given by  
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Fig.1. The structure of the Hopfield network. 

U i  = . C T i j V j  + li. 
J f '  

where 
U i  : the total input to  neuron i 
T i j  : the synaptic interconnection strength from neuron j 

Ii : the external input t o  neuron i 
V j  : the output of neuron j .  

to  neuron i 

Each neuron samples i ts  input at random times. It changes 
the value of i ts ouput or leaves it fixed according t o  a 
threshold rule with thresholds B i :  

V i  = Vi0 i f  U i  < B i  
V i  = V i '  i f  U i  > Bi ,  

where 
B i  : threshold of neuron i. 

The energy function of the Hopfield network is defined as 

E = - 1 / 2 Z X T i j V i V j  - Z l i V i  + C B i V i .  (3) 
1+?j 1 1 

0 Ui  

Fig.2. A sigmoidal function. 

2.2. Continuous Neuron Model 

The continuous and deterministic model of the Hopfield 
neural network[81 is based on continuous variables and 
responses but retains all of the significant behaviors of the 
original model. The output variable V i  for neuron i has the 
range Vi0 I V i  I Vi1 and the input-output function is a 
continuous and monotonically increasing function of the 
input U i  to  neuron i. The typical input-output function 
g i ( U i )  is a sigmoidal function as shown in Fig. 2. 

The dynamics of the neurons is defined by 

dUi /d t  = C T i j V j  + li. (5) 
J 

where 
V i  = g i ( U i )  : the output value of the neuron i 
g i ( U i )  = 1/(1 + exp(-Ui/uo) 

g i  : the input-output function of the neuron i 

uo : a coefficient that determines the shape of 
(shown in Fig. 2) 

the sigmoidal function. 

The change AE in E due t o  changing the state of neuron i 
by A V i  is similarily defined as 

The energy function of the continuous Hopfield network is 

AE = - [ . C . T i j V j  + Ii - B i  I A V i .  
J =++I 

where A V i  is the change in the output of neuron i. 

Suppose that the input U i  of neuron i is greater than 
the threshold. This will cause the term in brackets in eq.(4) 
t o  be positive and, from eq. ( l )  and eq.(2), the output of 
neuron i changes in the positive direction. This means that 
A V i  is positive, and AE negative; hence the network 
energy decreases. Similarly, when the U i  is less than the 
threshold, it can be seen that AE is also negative. 

The dynamics of the system state follows this simple 
rule and is asynchronous. An element, chosen at random, 
looks at i ts inputs, and changes state, depending on 
whether or not the sum of i ts input is above or below 
threshold. It can be seen from the form of the energy term 
that a state change leads to  a decrease in energy. 
Therefore, the updating rule is an energy minimizing rule. 
Modifications of element activities continue until a stable 
state is reached, that is, a minimum energy is reached. 

(6) E = - 1 / 2 C C T i j V i V j  I J  - Clivi, (4) 

and its time derivative is given by 

dE/dt = -1 / 2 C C T i  j [ V j  (dVi /d t )  + V i  (dVj /d t ) l  - Fli (dVi  /dt) 

= -1 / 2 F ( d V i / d t ) I T ( T i  J j V j  + T j  i V j )  + 21il 

= -1 /2C(dVi /d t ) (2CTi jV j  +21i) ( 7 )  
1 J 

= - C ( d V i / d t ) ( z T i j V j  J + l i )  

= -5 (d V i  I d  t )  (dU i /d t)  

= - 7 s  i '(U i )(  dU i /d t ) z  

From this, we can see that dE/dt is always less than zero 
because g i  is a monotonic increasing function. Therefore 
the network solution moves in the same direction as the 
decrease in  energy. The solution seeks out a minimum of E 
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COST(Pij) 

and comes to  a stop at such point. 

‘ a i j l  + b i j l X P i j  +Ci j lXPZi j ,  
P i j  < P i j  < PI 

a i j z + b i j z X P i j + C i j z X P Z i j ,  

PI < P i j  I PZ 

Pk-I P i j  < P i j  
a i j k +  b i j k X P i j  + Cijkxp’ i  j ,  

+ ??(A+Bci)PiPi12 + I I A P i P j / 2  + B F a i l 2 .  
i + j  I 

3. MAPPING OF THE ELD INTO THE HOPFIELD NETWORK 

3.1 .The Economic Load DisDatch Problem 

The ELD problem is t o  find the optimal combination of 
power generation which minimizes the total cost while 
satisfying the total required demand. In this paper, the cost 
function is as follows : 

C = ?(a i  + b iP i  + CiPiZ), (8) 
1 

where 
C : total cost 
a i ,  b i ,  c i  : cost coefficients of generator i 
Pi : the generated power of generator i. 

In minimizing total cost, the following constraints should 
be satisfied. 

a) Power balance 

D + L = CPi  (9) 
1 

where 
D : total load. 
L : transmission loss. 

The transmission loss can be represented as 

L = & C  a i jP iP j .  (10) 
I J  

where 
a i  j : transmission loss coefficient. 

b) Maximum and minimum limits of Dower 
The generation power of each generator should be laid 

between maximum limit and minimum limit. That is, 

where 
pi : the minimum generation power 
Pi : the maximum generation power. 
- 

3.2. MaDDinQ of the ELD into the HoDfield network 

In order to  solve the ELD problem, the following energy 
function is defined by combining the objective function 
eq.(8) wi th  the constraint eq.(9): 

E = A(D+L-zPi )Z/2 + B F ( a i +  b i P i +  c iP i2) /2 ,  (12)  
1 I 

where A(>O) and B(>O)are weighting factors. 
The synaptic strength and the external input are 

obtained by mapping the above energy function, eq. ( l2) ,  
into the Hopfield energy function, eq.(6). First by assuming 
that the loss L is constant, the eq.(12) is expanded and 
compared t o  eq.(6) in  which V i  and V j  correspond to  Pi 
and Pj, respectively: 

E = A[(D+L)z - 2 (D+L) (FPi )  + (FPi)2] /2  

+BC(ai  + b iP i  + ciPiZ)/2 ( 1  3 )  
I 

= A(D+L)Z/2 - ? [A(D+L)  + Bbi/21Pi 

Thus by comparing eq.(6) with eq.(13), the synaptic 
strength and external input of neuron i in the Hopfield 
network are given by 

T i i  = - A - Bci 
T i j  = -A 
Ii = A(D+L)  -Bbi/2. 

The differential synchronous transition moder131 used in 
computation for this Hofield neural network is as follows: 

Ui (k)  - U i ( k - I )  = Z T i j V j ( k )  + I i  
J 

V i ( k +  1) = g i IUi (k) l .  (1  5) 

We then find the output value Pi by this Hopfield 
network and calculate the transmission loss by the loss 
formula, eq.(lO). Again the calculated loss is assumed as a 
constant, thereafter the above process is repeated. 

In representing a large value with the neural network, 
the binary number representation requires a large number of 
neurons which is a disadvantage. Therefore in this paper, 
we use a modified sigmoidal function: 

V i  = g i ( U i )  = ( F i - P i ) ( I / ( I  +exp(-Ui/uo)) + P i .  (16)  

4. HIERARCHICAL STRUCTURE APPROACH 

In the hierarchical structure approach[l91, the hybrid 
cost function and hybrid incremental cost function of unit j 
in subsystem i are shown in Fig. 3. These functions are 

fuel 1 

fuel 2 

fLel k 
(1  7) 

where a i  jk; b i  j k ,  C i j k  are cost coefficients of fuel type k. 
Subscript j indicates units, and subscript k indicates fuel 
type. The hybrid cost functions give rise t o  an additional 
variable, f, which describes the available fuels. The 
Lagrangian with the transmission loss term neglected is 
writ ten as 

m i t i ,  1’ 1 I’ 2 rnnx 
r’owrii ( E I W )  

Fig. 3 Hybrid cost and incremental cost function. 
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where 
f : discrete index for fuel type, 
h : Lagrangian multiplier or incremental cost, 
p : vector of power generations, 
F(f,p) : total cost, 
G(p) : power balance constraint(demand-generation). 

(18) 

The hierarchical structure of a power system is 
composed of several subsystems. Each subsystem includes 
several generation units as shown in Fig. 4. The power 
outf low fram each subsystem is referred to  as the 
subsystem demand. The details of this approach are shown 
in referenceIl91. 

\ .  U' . . .--A \ 
'- - - &  . / 

Fig.4 Hierarchical structure of a power system. 

5. SIMULATION RESULTS AND DISCUSSIONS 

Prior to  applying the Hopfield model to  the ELD problem wi th  
piecewise quadratic cost functions, it has been applied to  simple 
ELD problem t o  prove i ts usefulness. The chosen ELD problem is 
in reference1201 which has 3 cases. Simulation results by the 
Hopfield neural network are compared with the results by 
numerical method in reference[201. Total load in  each case is 
850[MW1. This system has three generator units. Transmission 
losses are neglected in case 1 and case 2. 

a) Case 1 

Table 1 Cost coefficients for case 1. )I 
561.0 7.92 0.001562 150.0 600.0 

310.0 7.85 0.00194 100.0 400.0 ( 
b) Case 2 
All  the conditions are the same as case 1, but the cost 

function for unit 1 becomes 

Ci = 0.00128P21 + 6.48P1 + 459[$1hl. 

c) Case3 
All the conditions are the same as case 1 except that 

the constraint equation includes the network losses. 
Simplified loss formula is give by 

PL =O.O0003Pz1 + 0.00009P2z + 0.00012P23[MWl. 

During simulation, it was found that the assumed initial 
solutions did not affect the results for all cases since they 
are convex problems. Determination of weighting factors in 
optimization problems is generally not easy. 

In eq.(12), A is the penalty factor t o  the constraint of 
total load demand and B is the penalty factor t o  the 
constraint of the objective function. It was found that 
when A was bigger than 0.4 regardless of B values, the 
network oscillated. Usually when there is 
self-feedback(Ti i S O ) ,  the solutions can be in oscillation[91. 
Through simple trial and error method, i t  was found that 
A = 0 . 4  and B =  0.05 were appropriate values. The 
inequality constraints of  maximum-minimum limits are dealt 
by the sigmoidal function variation, eq . ( l6 ) .  

The results of case studies are shown in Table 2 and 
compared with those of conventional methods[201. The 
results of the Hopfield network method shows small error 
in power balance(the mismatch power is 0.81MWI in case 1 
and 0.5[MW1 in case 2.). When we convert this error into 
the fuel cost of a power plant with the highest cost 
function, the total cost increase is extremely small 
compared with the total cost of conventional method. 

Table 2 The simulation results for case studies. 

The energy change for case 1 during iterations is shown 
in Fig. 5. The aspects of convergence for each case are 
shown in Figs. 6, 7, and 8. In case 3, where the 
transmission loss is considered, the neural network method 
also shows good results. This neural network method has 
the special advantage of solving the ELD problem by a 
simple neural network without calculating incremental fuel 
costs and incremental losses required by conventional 
numerical methods. 

The Hopfield neural network is applied t o  the ELD 
problem wi th  nonconvex cost functions which is in 
reference[l9].  In reference11 91 this problem was solved by 
a hierarchical structure method, which is a numerical 
method. In order t o  prove the usefulness of the proposed 
neural network method, the same data used in the 
numerical method[l91 have been used for computer 
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Fig. 5 Energy vs. iteration(case 1) 
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Fig. 6 Each power vs. iteration(case 1)  

simulation. The hierarchical system characteristics are 
shown in Table 3. Generation (MIN) and (MAX) are the 
lower and upper limits of each generation unit. There are 
three different types of fuels: type 1, 2, and 3. 

The optimal power dispatch with system demands rising 
from 2400[MW] to  2700[MWl is shown in  Table 4 and 
Table 5. In Table 4 the results of the hierarchical structure 
method are shown. In Table 5 the results of the proposed 
neural network method are shown. The total costs of t w o  
methods are shown in Table 6. Comparing Table 4 with 
Table 5, the following results are observed. First i t  is 
observed that in Table 4, obtained by numerical methods 
proposed in reference[l91, the power outputs of unit 4 are 
exchanged with those of unit 6. Second, the neural 
network method satisfies total load better than the 
hierarchical structure method. In the results of the neural 
network method the mismatched powers are -0.2 t o  
0.3[MW], while in  the results of numerical method the 
mismatched powers are + 1.2IMWI at a system demand of 
2400IMWl. + l . l [ M W ]  at a system demand of 2500IMW1, 
-0.7[MW1 at a system demand of 2600[MW1, and 
+2.2[MWl at a system demand of 2700[MWl.  Third, when 
the total loads are 2400[MWl, 2500[MWl and 2600[MWl, 
the power outputs for t w o  methods do not show large 
differences. When the total load is 2700[MWl, the power 
outputs of the t w o  methods are much different from each 

Iteration 

Fig. 7 Each power vs. iteration(case 2) 

6oo Ih 

Iteration 

Fig. 8 Each power vs. iteration(case 3) 

other. But total cost obtained by the neural network 
method is nearly the same as the hierarchical structure 
method as shown in Table 6. Therefore the solutions by 
the neural network method are very close t o  those of the 
numerical method. 

The algorithm of the proposed neural method is simple 
as shown in this paper; in contrast t o  the proposed 
method, the algorithm of the hierarchical method is much 
more complicated. 

The simulation time of the hierarchical structure method 
wi th  VAX 11/780 is a little bit more than 1 sec., while the 
simulation time of the proposed neural network method 
with IBM PC-386 is about 1 min.. Considering the use of a 
personal computer rather than a main frame, there is 
practically no difference in calculation time. When 
implemented in hardware, the proposed neural network 
method can achieve much faster real time response than 
the hierarchical structure method. Therefore the proposed 
method promises t o  have a good merit in i ts  applications. 

6. CONCLUSIONS 

It is more accurate t o  represent the generation cost 
function for a fossil fired plant as a segmented piecewise 
quadratic function. However, it requires a much 
complicated algorithm t o  solve the ELD problem through 



Table 3. The data of cost coefficients for piecewise 

10 1 246.8 1 255.7 1 272.6 

GT 2399.8 2499.8 2599.8 

quadratic cost function. 

2 3 1  

1 3 2  

S : subsystem, U : unit, F : fuel, 
a,b,c : cost coefficients in eq.(16) 
MIN,Pl ,P2,MAX : breakpoints in Fig. 3 
F1 ,F2,F3 : operating fuel between breakpoints 

1 289.5 

2699.7 

Table 4. Results using hierarchical structure method. 

I I 

S : subsystem 
F : fuel 

Total Load 

2400.0 

2500.0 

2600.0 

2700.0 

U : unit 
GEN. : Unit Generation(MW) 
GT : Total Generation(MW) 

numerical method neural method 

488.50 487. a7 

526.70 526.13 

574.03 574.26 

625.18 626.12 
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Table 5. Results using neural network. 

Table 6. The comparison of total costs. 

general numerical methods such as the hierarchical 

structure approach[l91. 
In comparison wi th  the hierarchical structure method the 

proposed Hopfield neural network method demonstrates a 
much simpler algorithm wi th  nearly the same results. The 
Hopfield neural network method can be easily applied t o  
situations involving a large number of generators. Through 
case studies, we have shown the possibility o f  the 
application of the Hopfield neural network t o  the ELD 
problem with general nonconvex cost functions. 
Specifically, the neural network method does not require 
the calculation o f  incremental fuel costs and incremental 
losses needed in conventional numerical methods. The 
hardware implementation is also promising because of the 
advantage of the real time response. 

References 

I l l  D.J.Sobajic and Y.H.Pao, "Artificial Neural-Net Based 
Dynamic Security Assessment for Electric Power 
Systems", IEEE Trans. on Power Systems, vo1.4, no.1, 

121 F.Zhuang and F.D.Galiana, "Unit Commitment by 
Simulated Annealing", IEEE Trans. on Power Systems, 
vo1.5, no.1, pp.311-318, 1990. 

and Sou r ce 
Monitoring and Identification using Neural Networks", 
IEEE Trans. on Power Systems, vo1.5, no.4, 

pp.220-228, 1989. 

[ 31 R . K . Hart ana G . G . Richards , " Harm on i c 

pp. 1098-1 104, 1990. 



1036 

D.C.Park and M.A.El-Sharkawi, "Electric Load 
Forecasting using an Artificial Neural Network", IEEE 
Trans. on Power Systems, ~01.6,  no.2, pp.442-448, 
1991. 
K.Y.Lee, Y.T.Cha and J.H.Park, "Artificial Neural 
Network Methodology for Short-term Load 
Forecasting", NSF workshop on Artificial Neural 
Network Methodology in  Power System Engineering, 
Clemson University, SC, Apr.9-10, 1990. 
K.Y.Lee, Y.T.Cha and J.H.Park, "Short-term load 
forecasting using an artificial neural network", IEEE 
Trans. on Power System, vo1.7, no.1, pp.124-132,1992. 
J.J.Hopfield, "Neural networks and physical systems 
with ab i I i t i es " , 
Proceedings of the National Academy of Science USA, 

J.J.Hopfield, "Neurons with graded response have 
collective, computational properties like those of 
two-state neuron", proceedings of National Academy of 
Science USA, vo1.81, pp.3088-3092, 1984. 
J.J.Hopfield and D.W.Tank, "Neural computation of 
d esi ci o n s problems " , Bio I og i ca I 
Cybernetics, vo1.52, pp.141-152, 1985. 

em erg en t co I le c t  ive co m pu t a t iona I 

~01.79, pp.2554-2558, 1982. 

i n opt i miza t i o n 

1101 J.J.Hopfield and D.W.Tank, "Collective computation 
with continuous variables", in  Distorted System and 
Biological organization, E. Bienstock, F.Fogelman, and 
G.Weisbuch Eds. Berlin Germany : Springer Verlag 
1985. 

11 11 David W.Tank and J.J.Hopfield, "Simple 'neural' 
optimization networks : an A/D converter, signal 
decision circuit, and a linear programming circuit", IEEE 
vol. CAS-33, no.5. May, pp.533-541, 1986. 

[121 Y.P.Simon Foo and Y.Takefuji, "Stocastic neural 
networks for solving Job-shop scheduling part. 1, 
problem representation", IEEE ICNN, v01.2, pp.275-282, 
1988. 

1131 S.Matuda and Y.Akimoto, "The representation of large 
numbers in neural networks and i ts application t o  
ecomonical load dispatching of electric power", ICNN, 
vol.1, June, pp.587-592, 1989. 

1141 M.H.Sendaula, S.K.Biswas, A.Elton, C.Parter and 
W.Kazibwe, "Application of artificial neural networks to  
unit commitment", Proc. 1st Int. Forum on Applications 
of Neural Networks to  Power Systems, Seattle, WA, 

11 51 Y.Fukuyama and Y.Ueki, "An application of artificial 
neural network to  dynamic economic load dispatching", 
Proc. 1st Int. Forum on Applications of Neural 
Networks t o  Power Systems, Seattle, WA, July 23-26, 

161 Shigeo Abe, "Theories of the Hopfield neural 
networks", ICNN,vol. 1, pp.557-564, 1988. 

171 J.J.Hopfield and D.W.Tank, "Neural computation of 
de si cion s in optimization problems " , Bi o I o g i ca I 
Cybernetics, vo1.52, pp.141-152, 1985. 

181 F.J.Tyefny and K.Y.Lee, "Economic fuel dispatch", 
IEEE Trans. on Power Apparatus and Systems, 

[19] C.E.Lin and G.L.Viviani, "Hierarchical Econimic 
Dispatch for Piecewise Quadratic Cost Functions", IEEE 
Trans. on PAS, vol.PAS-103, no.6, June, 1984. 

[201 A.J. Wood and B.F. Wollenberg, Pover Generation, 
Operation and Control, John Wiley & Sons, 1984, 

July 23-26, pp.256-260, 1991. 

pp.261-265, 1991. 

vol.PAS-100, July/August, pp.3468-3477, 1981. 

pp.23-110. 

Biographies 

Yo0 Shin Kim received the B.S. degree in 
the Dept. of Electronic Engineering from 
Seoul National University in 1974. He 
worked wi th  Korea Atomic Energy 
Research Institute in the field of 
Instrumentation and Control System from 
1974 t o  1978. He received the M.S. 
degree in the Dept. of Electrical 
Engineering from U.C.Berkely in  1980. 
From 1980 to  1983 he studied in Ph.D. 
program at Stanford University. 

He was a visiting scholar at Cornell University from 1989 to  
1990. Presently, he is an associate professor of the Dept. of 
Electronic Engineering at Pusan National University, Korea. His 
research interests are neural networks, VLSI, optimization and 
fuzzy systems. 

June Ho Park was born in Masan, Korea, 
September 17, 1955. He received the B.S., 
M.S. and Ph.D. degrees in Electrical 
Engineering from Seoul National University, 
Seoul, Korea, in 1978, 1980 and 1987, 
respectively. From 1978 to  1981, he was a 
researcher at Korea Electrotechnology 
Research Institute. He was on the faculty of 
Chung-Nam National Universityfrom 198 1 t o  
1984. 

He was a visiting scholar at Pennsylvania State University 
from 1989 t o  1990. He is an Associate Professor of 
Electrical Engineering at Pusan National University, Pusan, 
Korea. His areas of interest are power system control, 
operation, planning and neural network applications t o  
power systems.Dr. Park has been a member of IEEE Power 
Engineers Society, Control System Society. and Systems 
Man and Cybernetics Society. 

I1 Kyu Eom was born in Pusan, Korea, 
October 16, 1966. He received the B.S. 
degree f r c x  Pusan National University in 
1990. He is presently working towards 
the M.S. degree in the Dept. of 
Electronic Engineering at Pusan National 
University. His research interests are 
neural networks, parallel processing and 
optimization. 

Kwang Y. Lee was born in Pusan, Korea, March 6, 1942. 
He received the B.S. degree in Electrical Engineering from 
Seoul National University, Seoul, Korea, in  1964, the M.S. 
degree in Electrical Engineering from North Dakota State 
University, Fargo, in 1968, and the Ph.D. degree in System 
Science from Michigan State University, East Lansing, in 
1971. he has been on the faculties of Michigan State 
University, the University of Houston and Pennsylvania 
State University, where he is a professor of Electrical 
Engineering. His areas of interest are system theory and i ts 
application t o  large scale systems, and power systems. Dr. 
Lee has been a senior member of IEEE Control System 
Society, Power Engineers Society, and Systems Man and 
Cybernetics Society. He is also a registered Professional 
Engineer. 



Discussion 

M. E. El-Hawary (Technical University of Nova Scotia, Halifax, 
N.S., Canada): The authors are to be commended for an inter- 
esting paper, highlighting experience with using the Hopfield 
network model as a tool to solve a simple economic dispatch 
problem. The main contribution of the paper is to point out the 
feasibility of using the Hopfield model for this class of problems. 
The authors’ response to the following points would be appreci- 
ated: 

- The optimal power flow (OPF) problem is a more complex 
problem than that treated by the authors of the papers. The 
authors contention in the introduction that OPF problems 
were treated using Hopfield model, is strictly speaking inac- 
curate. References [13-151 did not address the OPF problem 
but rather dealt with simple economic dispatch and unit 
commitment problems. 

- The use of a penalty factor A to account for the power 
balance constraint is one way of dealing with this issue. Note 
that the minimum of E takes place at the same solution 
point as that for E/B, assuming that B is positive. As a 
result, the introduction of the factor B unnecessarily compli- 
cates the procedure, since it can be set to one without loss of 
generality. This in turn will affect the values of T,,. 

- The role of the transformation (16) in treating the simple 
inequality constraints of the form (ll), needs more elabora- 
tion. How would the authors proceed in the case of func- 
tional inequality constraints? 

- It is obvious that the present formulation cannot directly 
handle the quadratic loss formula (lo), since the penalty 
factor approach adopted by the authors leads to fourth order 
form. Two points must be pondered. It appears that a linear 
loss formula can be easily treated using the authors formula- 
tion. The second is that if we used the Lagrangian approach, 
with a value of system lambda determined beforehand, then 
quadratic loss formula can be easily dealt with. Did the 
authors consider these options, and if so, what were their 
conclusions? 

~ The paper’s title mentions the piece-wise quadratic cost 
curves, but the paper’s text does not cover this aspect ade- 
quately. It would be interesting, and would enhance the 
utility of the paper if the authors would expand on this issue. 

Manuscript received August 3, 1992 

D . P .  K o t h a r i ,  P . R .  B i j w e  ( I n d i a n  I n s t i t u t e  
o f  T e c h n o l o g y ,  D e l h i ,  I n d i a )  a n d  L.D. A r y a ,  
R . S .  T a r e  ( S h .  G o v i n d r a m  S e k s a r i a  I n s t i t u t e  
o f  T e c h n o l o g y  a n d  S c i e n c e ,  I n d o r e ,  I n d i a ) :  
W e  w i s h  t o  commend the  a u t h o r s  f o r  t h e i r  
v a l u a b l e  c o n t r i b u t i o n  i n  p r o v i d i n g  a new 
m e t h o d  t o  s o l v e  t h e  p r o b l e m  o f  e c o n o m i c  
p o w e r  d i s p a t c h  w i t h  p i e c e w i s e  q u a d r a t i c  
c o s t  f u n c t i o n  u s i n g  t h e  H o p f i e l d  n e u r a l  
n e t w o r k .  H o w e v e r ,  we w o u l d  l i k e  t o  seek 
t h e  a u t h o r s ’  c l a r i f i c a t i o n  o n  t h e  f o l l o w i n g  
p o i n t s .  

1.  Would  the  a u t h o r s  t h r o w  some l i g h t  o n  
t h e  m e t h o d  o f  s e l e c t i o n  o f  w e i g h t i n g  
f a c t o r s  A a n d  B ? Are t h e y  d e p e n d e n t  
o n  t h e  s y s t e m  a n d  t h e  i n i t i a l  s o l u t i o n  
? 

2 .  How d o e s  thq  p e r f o r m a n c e  a n d  a c c u r a c y  

3 .  

4 .  
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o f  t h e  m e t h o d  g e t  a f f e c t e d  i f  t h e  
c o m p l e t e  c o s t  c u r v e  i s  a p p r o x i m a t e d  b y  
a s i n g l e  q u a d r a t i c  f u n c t i o n  a s  i s  
n o r m a l l y  d o n e  ? 

I n  t h e  s i m u l a t i o n  m e t h o d  why h a v e  t h e  
m u t u a l  l o s s  c o e f f i c i e n t s  t e r m s  n o t  
b e e n  c o n s i d e r e d  ? 

One o f  t h e  m a i n  a d v a n t a g e s  o f  t h e  
p r o p o s e d  m e t h o d  i s  t h e  a b s e n c e  o f  t h e  
n e e d  o f  t h e  c a l c u l a t i o n  o f  i n c r e m e n t a l  
f u e l  c o s t  a n d  i n c r e m e n t a l  t r a n s m i s s i o n  
l o s s e s .  B u t  t h i s  d o e s  n o t  seem t o  be 

ED s o l u t i o n  w i t h  a m a j o r  p r o b l e m  i n  
q u a d r a t i c  c o s t  f u n c t  
c o e f f i c i e n t s .  

O n c e  a g a i n  we c o n g r a  
f o r  t h e i r  v e r y  u s e f u l  
p a p e r .  

Manuscript rece ived  August 11, 

o n  a n d  u s u a l  l o s s  

u l a t e  t h e  a u t h o r s  
a n d  i n t e r e s t i n g  

1992. 

J. H. Park, Y. S .  Kim, I. K. Eom, and K. Y. Lee : The 
authors are appreciative of the interest in the paper 
and thank the discussers for their comments.  

References11 3-1 51 only addressed the economic 
load dispatch and unit commitment problems a s  
professor El-Hawary pointed out.  The paper dealing 
with the OPF problem using the Hopfield neural 
network w a s  presented by professor Mori in Meiji 
University, Japan.  I  have a copy of professor Mori’s 
paper, which is written in Japanese,  therefore I have 
not referred t o  it in this paper. 

The discusser pointed out  that  t he  factor B is 
unnecessary. However, If the  discusser observes the  
parameters of the network proposed by Hopfield and 
Tank t o  solve the  Traveling Salesman Problem (see 
ref. 1171 in this paper), the  discusser will find that  the 
characteristics of optimization technique using the  
Hopfield network are different from those of 
conventional optimization techniques. Two parameters 
have t o  be properly chosen in these problems and 
carefully tuned for t he  network t o  operate 
satisfactorily. If t he  parameter set t ings are not 
correct, t he  network may not even converge t o  a 
feasible solution, let alone an  optimal one. The 
problem of selecting the  parameters for a Hopfield 
and Tank network implemented t o  solve TSP for 
moderately large problem sizes has been studied by 
Wilson and Pawley111. 

Modified sigmoidal function of t he  equat ion(l6)  
was  defined such that  the maximum and minimum 
value of the neuron output Vi are Pi and E, 
respectively. Thus,  the solutions of Hopfield network 
always satisfy inequality constraints of the f o r m ( l 1 ) .  
Other methods must be suggested in the case lof 
functional inequality constraints. 

For the  asymptotical stability in the Hopfield 
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network, an energy function must be positive definite. 
Since an equality constraint may have a positive or 
negative value, the Lagrangian approach does not 
satisfy the positive definite condition. 

I agree with the discusser's comment on the 
paper's title in some respects. However, the 
algorithm was expressed as a general formulation to 
cover the ELD problems with both a quadratic cost 
function and piecewise quadratic cost functions, since 
the simulations were performed for both cases. In the 
case of ELD problems with piecewise quadratic cost 
functions, equation(l7) is substituted for equation(8) 
and cost coefficients in equation( 14) are replaced by 
cost coefficients of relevant fuel type. The paper's 
t i t le  mentioned the piecewise quadratic cost function 
because authors would like to  stress the merit of 
neural network in ELD problems with piecewise 
quadratic cost functions particularly. 

The authors did not find a systematic rule for 
selecting the weighting factors. However, two 
parameters were easily found in our simulations. They 
are dependent on the system, but we have not done 
a number of simulations to  study the interrelation 
between initial solution and weighting factors. 

The authors don't understand exactly the key point 
of professor Kothari's the second question. The 
performance and accuracy of the neural network 

method have been shown in the first simulations, 
which refer to the same cases as the complete cost 
curve is approximated by a single quadratic function. 

The ELD problems chosen to  compare with 
numerical methods are in referenceI201, in which 
mutual loss coefficient terms have not been given. It 
is also expected that there are no problems in such 
cases. 

The authors don't insist that the absence of the 
need of the incremental fuel cost calculation is the 
advantage of the proposed method. It is only one of 
the characteristics of the neural network method. 

The authors would like to express their gratitude to  
Korea Electric Power Corporation and the Korea 
Science & Engineering Foundation for their support 
during the research work reported in this paper. ' 
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