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In this work, we develop model predictive control (MPC) designs, which are capable
of optimizing closed-loop performance with respect to general economic considerations
for a broad class of nonlinear process systems. Specifically, in the proposed designs, the
economic MPC optimizes a cost function, which is related directly to desired economic
considerations and is not necessarily dependent on a steady-state—unlike conventional
MPC designs. First, we consider nonlinear systems with synchronous measurement sam-
pling and uncertain variables. The proposed economic MPC is designed via Lyapunov-
based techniques and has two different operation modes. The first operation mode corre-
sponds to the period in which the cost function should be optimized (e.g., normal produc-
tion period); and in this operation mode, the MPC maintains the closed-loop system state
within a predefined stability region and optimizes the cost function to its maximum extent.
The second operation mode corresponds to operation in which the system is driven by the
economic MPC to an appropriate steady-state. In this operation mode, suitable Lyapu-
nov-based constraints are incorporated in the economic MPC design to guarantee that
the closed-loop system state is always bounded in the predefined stability region and is
ultimately bounded in a small region containing the origin. Subsequently, we extend the
results to nonlinear systems subject to asynchronous and delayed measurements and
uncertain variables. Under the assumptions that there exist an upper bound on the inter-
val between two consecutive asynchronous measurements and an upper bound on the
maximum measurement delay, an economic MPC design which takes explicitly into
account asynchronous and delayed measurements and enforces closed-loop stability is
proposed. All the proposed economic MPC designs are illustrated through a chemical
process example and their performance and robustness are evaluated through simula-
tions. VVC 2011 American Institute of Chemical Engineers AIChE J, 58: 855–870, 2012
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Introduction

Maximizing profit has been and will always be the pri-
mary purpose of optimal process operation. Within process
control, the economic optimization considerations of a plant
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are usually addressed via a real-time optimization (RTO)
system (e.g., Ref. 1 and the references therein). In general,
an RTO system includes two different layers: the upper layer
that optimizes process operation set-points taking into
account economic considerations using steady-state system
models, and the lower layer (i.e., process control layer)
whose primary objective is to employ feedback control sys-
tems to force the process to track the set-points. Model pre-
dictive control (MPC) is widely adopted in industry in the
process control layer because of its ability to deal with large
multivariable constrained control problems and to account
for optimization considerations.2,3 The key idea of a standard
MPC is to choose control actions by repeatedly solving an
online constrained optimization problem, which aims at min-
imizing a cost function that involves penalties on the state
variables and on the control actions over a finite prediction
horizon. Typically, the cost function is in quadratic form
including penalties on the deviations of the system state and
control inputs from a desired steady-state. Because of the
structure of the cost function, the control objective of a
standard MPC is to drive the state of the closed-loop system
to the desired steady-state. In MPC theory, the quadratic cost
function is also widely used as a Lyapunov function to prove
closed-loop stability (e.g., Ref. 3). Even though in the stand-
ard MPC formulations, certain economic optimization con-
siderations can be taken into account (e.g., optimal use of
control action), general economic optimization considera-
tions are usually not addressed. To account for general eco-
nomic optimization considerations, the quadratic cost func-
tion used in standard MPC should be replaced by an eco-
nomics-based cost function. Moreover, the standard MPC
should be reformulated in an appropriate way to guarantee
closed-loop stability.

Within process control, there have been several calls for
the integration of MPC and economic optimization of proc-
esses (e.g., Refs 4–6). In the literature, two-stage MPC struc-
tures,7–10 the so-called LP-MPC and QP-MPC, have been
investigated to reduce the difference between the sampling
rates of the steady-state optimization performed in the RTO
layer and the lower layer linear MPC. There are also
attempts to integrate steady-state RTO and linear MPC in a
single level.11,12 In this type of approach, the economic opti-
mization and control problems are solved simultaneously in
a single optimization problem and an additional term is
added into the MPC cost function to account for the eco-
nomic considerations. There are also attempts to utilize a
dynamic model in the RTO layer, which interacts with lower
layer linear MPC (e.g., Ref. 13). This approach uses dynami-
cal models in the RTO and recalculates the optimal set-
points for the linear MPC only if economic benefits are pos-
sible. Furthermore, there are efforts on the development of
MPC accounting for general economic considerations in the
cost function.14–16 In Ref. 14, general ideas of a combined
steady-state optimization and linear MPC scheme as well as
a case study were reported. In Ref. 15, two economically
oriented nonlinear MPC formulations were proposed for
cyclic processes and nominal stability of the closed-loop sys-
tem was established via Lyapunov techniques. In,16 MPC
schemes using an economics-based cost function were pro-
posed and the stability properties were established using a
suitable Lyapunov function. The MPC schemes in16 adopt a

terminal constraint which requires that the closed-loop sys-
tem state settles to a steady-state at the end of each optimal
input trajectory calculation (i.e., end of the prediction hori-
zon). Even though a rigorous stability analysis is included in
Ref. 16, it is difficult, in general, to characterize, a priori,
the set of initial conditions starting from where feasibility
and closed-loop stability of the proposed MPC scheme are
guaranteed.

In this work, we develop Lyapunov-based economic MPC
(LEMPC) designs which are capable of optimizing closed-
loop performance with respect to general economic consider-
ations for nonlinear systems. The design of the LEMPC is
based on uniting receding horizon control with explicit Lya-
punov-based nonlinear controller design techniques and
allows for an explicit characterization of the stability region
of the closed-loop system; such a characterization may be
conservative in certain applications and it may be possible
for the LEMPC to achieve closed-loop stability for initial
conditions outside of the estimated stability region. In the
proposed designs, the LEMPC schemes optimize a cost
function which is related directly to certain economic con-
siderations and is not necessarily dependent on a steady-
state—unlike conventional MPC designs. First, we consider
nonlinear systems with synchronous measurement sampling
and uncertain variables. The proposed LEMPC is designed
via Lyapunov-based techniques and has two different opera-
tion modes. The first operation mode corresponds to the pe-
riod in which the cost function should be optimized (e.g.,
normal production period); and in this operation mode, the
LEMPC maintains the closed-loop system state within a pre-
defined stability region and optimizes the cost function to its
maximum extent. The second operation mode corresponds to
operation in which the system is driven by the LEMPC to an
appropriate steady-state. In the LEMPC design, suitable Lya-
punov-based constraints are incorporated to guarantee that
the closed-loop system state is always bounded in the prede-
fined stability region and is ultimately bounded in a small
region containing the origin. Subsequently, we extend the
results to nonlinear systems subject to asynchronous and
delayed measurements and uncertain variables. Under the
assumptions that there exist an upper bound on the interval
between two consecutive asynchronous measurements and an
upper bound on the maximum measurement delay, an
LEMPC design which takes explicitly into account asynchro-
nous and delayed measurements and enforces closed-loop
stability is proposed. The theoretical results are illustrated
through a chemical process example.

Preliminaries

Notation

The operator |�| is used to denote Euclidean norm of a vec-
tor, and a continuous function a: [0,a) ! [0,1) is said to
belong to class K if it is strictly increasing and satisfies a(0)
¼ 0. The symbol Xr is used to denote the set Xr:¼ {x [ Rnx:
V(x) � r} where V is a scalar function, and the operator ‘/’
denotes set subtraction, that is, A/B:¼ {x [ Rnx: x [ A, x 62
B}. The symbol diag (v) denotes a matrix whose diagonal
elements are the elements of vector v and all the other ele-
ments are zeros.
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Class of nonlinear systems

We consider a class of nonlinear systems which can be
described by the following state-space model

_xðtÞ ¼ f ðxðtÞ; u1ðtÞ;…; umðtÞ;wðtÞÞ (1)

where x(t) [ Rnx denotes the vector of state variables of the
system and ui(t) [ R, i ¼ 1,…,m, and w(t) [ Rnw denote m
control (manipulated) inputs and the disturbance vector,
respectively. The m control inputs are restricted to be in m
nonempty convex sets Ui ( R , i ¼ 1,…,m, which are defined
as Ui:¼ {ui [ R: |ui|� umax

i } where umax
i , i ¼ 1,…,m, are the

magnitudes of the input constraints. The disturbance w(t) [ Rnw

is bounded, i.e., w(t) [ W where W:¼ {w [ Rnw s.t. |w| � y,y[
0}. We assume that f is a locally Lipschitz vector function and
that the origin is an equilibrium point of the unforced nominal
system (i.e., the system of Eq. 1 with ui(t) : 0, i ¼ 1,…,m and
w(t) : 0 for all times) which implies that f(0,0,…,0,0) ¼ 0.

Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
h(x) ¼ [h1(x)���hm(x)]T which renders the origin of the nomi-
nal closed-loop system asymptotically stable with ui ¼ hi(x),
i ¼ 1,…,m, while satisfying the input constraints for all the
states x inside a given stability region. We note that this
assumption is essentially equivalent to the assumption that
the system is stabilizable or that the pair (A,B) in the case of
linear systems is stabilizable. Using converse Lyapunov the-
orems,17,18 this assumption implies that there exist class K
functions ai(�),i ¼ 1,2,3,4 and a continuously differentiable

Lyapunov function V (x) for the nominal closed-loop system
that satisfy the following inequalities

a1ðjxjÞ � VðxÞ � a2ðjxjÞ
@VðxÞ
@x f ðx; h1ðxÞ;…; hmðxÞ; 0Þ � �a3ðjxjÞ

@VðxÞ
@x

���
��� � a4ðjxjÞ

hiðxÞ 2 Ui; i ¼ 1;…;m

(2)

for all x [ O ( Rnx where O is an open neighborhood of the
origin. We denote the region Xq ( O as the stability region of
the closed-loop system under the Lyapunov-based controller
h(x). Note that explicit stabilizing control laws that provide
explicitly defined regions of attraction for the closed-loop
system have been developed using Lyapunov techniques for
specific classes of nonlinear systems, particularly input-affine
nonlinear systems; the reader may refer to18–21 for results in
this area including results on the design of bounded Lyapunov-
based controllers by taking explicitly into account constraints
for broad classes of nonlinear systems.

By continuity, the local Lipschitz property assumed for
the vector field f and taking into account that the manipu-
lated inputs ui, i ¼ 1,…,m are bounded, there exists a posi-
tive constant M such that

f ðx; u1;…; um;wÞj j � M (3)

for all x [ Xq and ui [ Ui, i ¼ 1,…,m. In addition, by the
continuous differentiable property of the Lyapunov function
V(x) and the Lipschitz property assumed for the vector field
f, there exist positive constants Lx, Lw, L0x, and L0w such
that

f ðx; u1;…; um;wÞ � f ðx0; u1;…; um; 0Þj j � Lx x� x0j j þ Lw wj j
@VðxÞ
@x f ðx; u1;…; um;wÞ � @Vðx0Þ

@x f ðx0; u1;…; um; 0Þ
���

��� � L0x x� x0j j þ L0w wj j (4)

for all x,x0 [ Xq, ui [ Ui, i ¼ 1,…,m and w [ W.
Remark 1. We note that while there are currently no gen-

eral methods for constructing Lyapunov functions for gen-
eral nonlinear systems, for broad classes of nonlinear sys-
tems arising in the context of chemical process control
applications, quadratic Lyapunov functions have been widely
used and have been demonstrated to yield very good esti-
mates of closed-loop stability regions18; please see also
‘‘Application to a chemical process example’’ section.

Remark 2. Note that in the present work, we use the level
set Xq of the Lyapunov function V(x) to estimate the stability
region (i.e., domain of attraction) of the closed-loop system
under the controller h(x). Specifically, an estimate of the do-
main of attraction of the closed-loop system is computed as
follows: first, a controller (e.g., h(x)) is designed that makes
the time-derivative of a Lyapunov function, V(x), along the
closed-loop system trajectory negative definite around the
equilibrium point; then, an estimate of the set where _V is
negative is computed, and finally, a level set (ideally the
largest) of V (denoted by Xq in the present work) embedded
in the set where _V is negative, is computed. From this
approach to calculate Xq, we can conclude that the set Xq

is a guaranteed closed-loop stability set but it is possible

that the controller h(x) stabilizes the closed-loop system for
initial conditions outside of the set Xq.

Lyapunov-Based Economic MPC with
Synchronous Measurement Sampling

In this section, we design LEMPC for the system of Eq. 1
with synchronous measurement sampling. We assume that
the state x of the system is sampled synchronously and the
time instants at which we have state measurements are indi-
cated by the time sequence {tk�0} with tk ¼ t0 þ kD, k ¼
0,1,… where t0 is the initial time and D is the sampling
time.

In the proposed design, the LEMPC maximizes a cost
function which takes into account specific economic consid-
erations and it has two operation modes. In the first opera-
tion mode, the LEMPC optimizes the economic cost function
while maintaining the system state within the stability region
Xq (i.e., x(t) [ Xq); in the second operation mode, the
LEMPC drives the state of the system to a desired steady-
state. The economic MPC is designed via Lyapunov-based
MPC techniques22 to take advantage of the stability proper-
ties of the Lyapunov-based controller h(x). Specifically, we
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assume that from the initial time t0 up to a specific time t0,
the LEMPC operates in the first operation mode to maximize
the economic cost function; after the time t0, we assume that
the LEMPC operates in the second operation mode and cal-
culates the inputs in a way that the state of the closed-loop
system is driven to a neighborhood of the desired steady-
state (i.e., the origin x ¼ 0). The proposed LEMPC provides
more degrees of freedom in the economic optimal operation
of the system and can eventually regulate the system state to
a desired steady-state. For simplicity and without loss of
generality in the rest of this article, we assume that the spe-
cific time t0 is an integer multiple of the sampling time of
the MPC, D.

Implementation strategy

From the initial time t0 to t0, the LEMPC operates in the
first operation mode. In the design of the LEMPC, one im-
portant issue we need to consider is the effect of the
bounded disturbance w on the stability of the closed-loop
system. To take the disturbance w into account explicitly,
we consider a region X~q, ~q\q. Specifically, when x(tk) is
received at a sampling time tk, if x(tk) is in the region X~q,
the LEMPC maximizes the cost function within the region
X~q; if x(tk) is in the region Xq=X~q, the LEMPC first drives
the system state to the region X~q and then maximizes the
cost function within X~q. Note that the region X~q plays the
role of a ‘‘safe’’ zone in which the LEMPC can maximize
the cost function to its maximum extent while the effect of
the disturbance w on the closed-loop stability is taken into
account. Note also that the relation between ~q and q is deter-
mined by the system property (i.e., the properties of the vec-
tor function f), the upper bound on the disturbance (i.e., y)
and the sampling time of the LEMPC. This relation will be
characterized in Eq. 12 in Theorem 1.

After time t0, the system operates in the second operation
mode. In this operation mode, the LEMPC calculates the
inputs in a way that the Lyapunov function of the system
continuously decreases to steer the state of the system to a
neighborhood of the origin.

The implementation strategy of the proposed LEMPC with
synchronous measurement sampling can be summarized as
follows:

1. At a sampling time tk, the controller receives the sys-
tem state x(tk) from the sensors.

2. If tk \ t0, go to Step 3. Else, go to Step 4.
3. If xðtkÞ 2 X~q, go to Step 3.1. Else, go to Step 3.2.

3.1 The controller maximizes the economic cost func-
tion within X~q. Go to Step 5.

3.2 The controller drives the system state to the
region X~q. Go to Step 5.

4. The controller drives the system state to a small neigh-
borhood of the desired steady-state.

5. Go to Step 1 (k / k þ 1).

LEMPC formulation

The optimization problem of the proposed LEMPC for the
system of Eq. 1 with synchronous measurement sampling is
as follows

max
u1;…;um2SðDÞ

Z tkþN

tk

Lð~xðsÞ; u1ðsÞ;…; umðsÞÞds (5a)

st: _~xðtÞ ¼ f ð~xðtÞ; u1ðtÞ;…; umðtÞ; 0Þ (5b)

uiðtÞ 2 Ui; i ¼ 1;…;m (5c)

~xðtkÞ ¼ xðtkÞ (5d)

Vð~xðtÞÞ � ~q; 8t 2 ½tk; tkþNÞ; if tk � t0 andVðxðtkÞÞ � ~q

@VðxðtkÞÞ
@x

f ðxðtkÞ;u1ðtkÞ;…;umðtkÞ;0Þ
(5e)

� @VðxðtkÞÞ
@x

f ðxðtkÞ; h1ðxðtkÞÞ;…; hmðxðtkÞÞ; 0Þ;
if tk > t0 or ~q\VðxðtkÞÞ � q

(5f)

where S(D) is the family of piece-wise constant functions with
sampling period D, N is the prediction horizon of this LEMPC,
Lð~xðsÞ; u1ðsÞ;…; umðsÞÞ is the economic measure which
defines the cost function, the state ~x is the predicted trajectory
of the system with u1,…,um computed by the LEMPC and x(tk)
is the state measurement obtained at time tk. The optimal
solution to this optimization problem is denoted by u�i (t|tk), i ¼
1,…,m, which is defined for t [ [tk,tkþN).

In the optimization problem of Eq. 5, the constraint of
Eqs. 5b is the nominal model of the system of Eq. 1 (i.e.,
w(t) ¼ 0 for all t) and is used to predict the future evolution
of the closed-loop system; the constraint of Eq. 5c defines
the input constraints on all the inputs; the constraint of Eq.
5d defines the initial condition of the optimization problem;
the constraint of Eq. 5e is only active when xðtkÞ 2 X~q

in the first operation mode and is incorporated to ensure that
the predicted state evolution of the closed-loop system is
maintained in the region X~q (thus, the actual state of the
closed-loop system is in the stability region Xq); the con-
straint of Eq. 5f is only active in the second operation mode
or when ~q\ VðxðtkÞÞ � q in the first operation mode. This
constraint is used to enforce that the Lyapunov function of
the system decreases at least at the rate given by the Lyapu-
nov-based controller h(x) implemented in a sample-and-hold
fashion.

The manipulated inputs of the proposed control design
from time tk to tkþ1 (k ¼ 0,1,2,…) are defined as follows

uiðtÞ ¼ u�i ðtjtkÞ; i ¼ 1;…;m; 8t 2 ½tk; tkþ1Þ (6)

Stability analysis

In this subsection, we present the stability properties of
the proposed LEMPC of Eq. 5 for the system of Eq. 1 with
synchronous measurement sampling. To proceed, we need
the following two propositions.

Proposition 1 (c.f. Ref. 23). Consider the systems

_xaðtÞ¼ f ðxaðtÞ; u1ðtÞ;…; umðtÞ;wðtÞÞ
_xbðtÞ¼ f ðxbðtÞ; u1ðtÞ;…; umðtÞ; 0Þ (7)

with initial states xa(t0) ¼ xb(t0) [ Xq. There exists a K
function fW(�) such that
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jxaðtÞ � xbðtÞj � fWðt� t0Þ; (8)

for all xa(t),xb(t) [ Xq and all w(t) [ W with

fWðsÞ ¼ Lwh
Lx

ðeLxs � 1Þ (9)

Proposition 1 provides an upper bound on the deviation of
the state trajectory obtained using the nominal model, from
the actual system state trajectory when the same control
input trajectories are applied. Proposition 2 below bounds
the difference between the magnitudes of the Lyapunov
function of two different states in Xq.

Proposition 2. (c.f. Ref. 23). Consider the Lyapunov func-
tion V(�) of the system of Eq. 1. There exists a quadratic
function fV(�) such that

VðxÞ � Vðx̂Þ þ fVðjx� x̂jÞ (10)

for all x; x̂ 2 Xq with

fVðsÞ ¼ a4ða�1
1 ðqÞÞsþMvs

2 (11)

where Mv is a positive constant.
Theorem 1 below provides sufficient conditions under

which the LEMPC of Eq. 5 guarantees that the state of the
closed-loop system of Eq. 1 is always bounded in Xq and is
ultimately bounded in a small region containing the origin.

Theorem 1. Consider the system of Eq. 1 in closed-loop
under the LEMPC design of Eq. 5 based on a controller h(x)
that satisfies the conditions of Eq. 2. Let ew [ 0, D [ 0,
q > ~q > 0 and q[ qs [ 0 satisfy

~q � q� fVðfWðDÞÞ (12)

and

� a3ða�1
2 ðqsÞÞ þ L0xMDþ L0wh � �ew=D (13)

If x(t0) [ Xq, qs � ~q, qmin �q and N � 1 where

qmin ¼ maxfVðxðtþ DÞÞ : VðxðtÞÞ � qsg (14)

then the state x(t) of the closed-loop system is always bounded
in Xq and is ultimately bounded in Xqmin

.
Proof. The proof consists of three parts. We first prove

that the optimization problem of Eq. 5 is feasible for all
states x [ Xq. Subsequently, we prove that, in the first opera-
tion mode, under the LEMPC design of Eq. 5, the closed-
loop state of the system of Eq. 1 is always bounded in Xq.
Finally, we prove that, in the second operation mode, under
the LEMPC of Eq. 5, the closed-loop state of the system of
Eq. 1 is ultimately bounded in qmin.

Part 1: When x(t) is maintained in Xq (which will be proved
in Part 2), the feasibility of the LEMPC of Eq. 5 follows because
input trajectories ui(t), i ¼ 1,…,m, such that uiðtÞ ¼
hiðxðtkþjÞÞ; 8t 2 ½tkþj; tkþjþ1Þ with j ¼ 0,…, N � 1 are feasible
solutions to the optimization problem of Eq. 5 since such trajec-
tories satisfy the input constraint of Eq. 5c and the Lyapunov-
based constraints of Eqs. 5e and 5f. This is guaranteed by the
closed-loop stability property of the Lyapunov-based controller
h(x); the reader may refer to24 for more detailed discussion on
the stability property of the Lyapunov-based controller h(x).

Part 2: We assume that the LEMPC of Eq. 5 operates in
the first operation mode. We prove that if xðtkÞ 2 X~q, then
x(tkþ1) [ Xq; and if xðtkÞ 2 Xq=X~q, then V(x(tkþ1)) \
V(x(tk)) and in finite steps, the state converges to X~q (i.e.,
xðtkþjÞ 2 X~q where j is a finite positive integer).

When xðtkÞ 2 X~q, from the constraint of Eq. 5e, we obtain
that ~xðtkþ1Þ 2 X~q. By Propositions 1 and 2, we have that

Vðxðtkþ1ÞÞ � Vð~xðtkþ1ÞÞ þ fVðfWðDÞÞ (15)

Since Vð~xðtkþ1ÞÞ � ~q, if the condition of Eq. 12 is satis-
fied, we can conclude that

xðtkþ1Þ 2 Xq

when xðtkÞ 2 Xq=X~q, from the constraint of Eq. 5f and the
condition of Eq. 2, we can write

@VðxðtkÞÞ
@x

f ðxðtkÞ; u�1ðtkÞ;…; u�mðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; h1ðxðtkÞÞ;…; hmðxðtkÞÞ; 0Þ � �a3ðjxðtkÞjÞ
(16)

The time derivative of the Lyapunov function along the
computed optimal trajectories u�1,…,u�m for 8s 2 ½tk; tkþ1Þ can
be written as follows

_VðxðsÞÞ ¼ @VðxðsÞÞ
@x

f ðxðsÞ; u�1ðtkÞ;…; u�mðtkÞ;wðsÞÞ (17)

Adding and subtracting the term
@VðxðtkÞÞ

@x
f ðxðtkÞ; u�1ðtkÞ;…; u�mðtkÞ; 0Þ to/from the above equation and
considering Eq. 16, we have

_VðxðsÞÞ��a3ðjxðtkÞjÞþ@VðxðsÞÞ
@x

f ðxðsÞ;u�1ðtkÞ;…;u�mðtkÞ;wðsÞÞ

�@VðxðtkÞÞ
@x

f ðxðtkÞ;u�1ðtkÞ;…;u�mðtkÞ;0Þ ð18Þ

Due to the fact that the disturbance is bounded |w| � y
and the Lipschitz properties of Eq. 4, we can write

_VðxðsÞÞ � �a3ðjxðtkÞjÞ þ L0xjxðsÞ � xðtkÞj þ L0wh (19)

Taking into account Eq. 3 and the continuity of x(t), the
following bound can be written for all s [ [tk, tkþ1)

jxðsÞ � xðtkÞj � MD (20)

Since xðtkÞ 2 Xq=X~q, it can be concluded that x(tk) [ Xq/
Xqs. Thus, we can write

_VðxðsÞÞ � �a3ða�1
2 ðqsÞÞ þ L0xMDþ L0wh (21)

If the condition of Eq. 13 is satisfied, then there exists
ew [ 0 such that the following inequality holds for
xðtkÞ 2 Xq=X~q

_VðxðtÞÞ � �ew=D; 8t ¼ ½tk; tkþ1Þ
Integrating this bound on t [ [tk, tkþ1), we obtain that

AIChE Journal March 2012 Vol. 58, No. 3 Published on behalf of the AIChE DOI 10.1002/aic 859



Vðxðtkþ1ÞÞ � VðxðtkÞÞ � ew

VðxðtÞÞ � VðxðtkÞÞ; 8t 2 ½tk; tkþ1Þ (22)

for all xðtkÞ 2 Xq=X~q. Using Eq. 22 recursively, it is proved
that, if xðtkÞ 2 Xq=X~q, the state converges to X~q in a finite
number of sampling times without leaving the stability region.

Part 3: We assume that the LEMPC of Eq. 5 operates in
the second operation mode. We prove that if x(tk) [ Xq, then
V(x(tkþ1)) � V(x(tk)) and the system state is ultimately
bounded in an invariant set Xqmin

. Following similar steps as
in Part 2, we can derive that the inequality of Eq. 22 hold
for all x(tk) [ Xq/Xqs

. Using this result recursively, it is
proved that, if x(tk) [ Xq/Xqs

, the state converges to Xqs
in a

finite number of sampling times without leaving the stability
region. Once the state converges to Xqs

( Xqmin
, it remains

inside Xqmin
for all times. This statement holds because of

the definition of qmin. This proves that the closed-loop sys-
tem state under the LEMPC of Eq. 5 is ultimately bounded
in Xqmin

. n
Remark 3. Note that the set Xq (i.e., V � q) is an invari-

ant set for the nominal closed-loop system and is also an
invariant set for the closed-loop system subject to bounded
disturbances w (i.e., |w| � y) under piece-wise continuous
control action implementation when the conditions stated in
Theorem 1 (as well as Theorem 2 presented in the next sec-
tion) are satisfied. This can be interpreted as follows: _V is
negative everywhere in Xq but the origin when there are no
disturbances and the control actions are updated continu-
ously; furthermore, the further away from the origin the
more negative _V is. This implies that for sufficiently small
disturbances (i.e., y sufficiently small) and sufficiently small
sampling time (i.e., D sufficiently small) _V of the uncertain
closed-loop system will continue to be negative for all x [
Xq but in a small ball around the origin (i.e., Xqmin

).
Remark 4. Note that the term ‘‘ultimately bounded’’ for

the state of a nonlinear dynamic system (particularly of the
closed-loop system in the present work) means that after a
sufficiently large time, tq, the state of the closed-loop system
enters a compact (closed and bounded) set including the ori-
gin (i.e., Xqmin

for the closed-loop system of Eq. 1 under the
LEMPC of Eq. 5) and stays within this set for all times t �
tq (i.e., x(t) [ Xqmin

for t � tq).
Remark 5. Instead of requiring that the closed-loop sys-

tem state settles to a steady-state at the end of the prediction
horizon as in,16 in the proposed design, the LEMPC of Eq. 5
has two different operation modes. In the first operation
mode, the LEMPC optimizes the economic cost function
within the region X~q. When the proposed LEMPC is in the
second operation mode, it drives the closed-loop system state
to the steady-state. The LEMPC of Eq. 5 also possesses a
stability region which can be explicitly characterized.

Remark 6. Note that to achieve optimal performance, in
general, the prediction horizon of the LEMPC of Eq. 5
should be long enough to cover the period in which the pro-
cess operation should be optimized. However, long predic-
tion horizon may not be practical for a real-time implemen-
tation of an MPC algorithm (especially when nonlinear sys-
tems with a large number of manipulated inputs are
considered) because of the high computational burden. For
certain applications, we may overcome this issue by driving

part of the system states to certain economic optimal set-
points and operating the rest of the system states in a time-
varying manner to further maximize the economic cost func-
tion. This implies that we operate part of the system in the
second operation mode and part of the system in the first
operation mode simultaneously. Please see the example sec-
tion for an application of this approach to a chemical pro-
cess example.

Lyapunov-Based Economic MPC with
Asynchronous and Delayed Measurements

In this section, we consider the design of LEMPC for sys-
tems subject to asynchronous and delayed measurements.
Specifically, we assume that the state of the system of Eq. 1,
x(t), is available at asynchronous time instants {ta�0} which
is a random increasing sequence and the interval between
two consecutive time instants is not fixed. We also assume
that there are delays involved in the measurements. To
model delays in measurements, an auxiliary variable da is
introduced to indicate the delay corresponding to the mea-
surement received at time ta, that is, at time ta, the measure-
ment x(ta � da) is received. To study the stability properties
in a deterministic framework, we assume that there exists an
upper bound Tm on the interval between two successive
measurements (i.e., maxaftaþ1 � tag � Tm and an upper
bound D on the delays (i.e., da � D). These assumptions are
reasonable from a process control perspective. Because the
delays are time-varying, it is possible that at a time instant
ta, the controllers may receive a measurement x(ta � da)
which does not provide new information (i.e., ta � da \ ta�1

� da�1) and the maximum amount of time the system might
operate in open-loop following ta is D þ Tm � da. This
upper bound will be used in the formulation of LEMPC for
systems subject to asynchronous and delayed measurements.
The reader may refer to25 for more discussion on the model-
ing of asynchronous and delayed measurements.

LEMPC implementation strategy

At each asynchronous sampling time, when a delayed
measurement is received, we propose to take advantage of
the nominal system model of Eq. 1 and the manipulated
inputs that have been applied to the system to estimate the
current system state from the delayed measurement. Based
on the estimate of the current system state, an MPC optimi-
zation problem is solved to decide the optimal future input
trajectory that will be applied until the next new measure-
ment is received. Similar to previous section, we introduce
an LEMPC design which maximizes a cost function account-
ing for specific economic considerations. This LEMPC also
has two operation modes.

From the initial time t0 to t0, the LEMPC operates in the
first operation mode. In this operation mode, the proposed
LEMPC maximizes an economics-based cost function while
maintaining the closed-loop system state in the stability
region Xq. To account for the asynchronous and delayed
measurement as well as the disturbance, we consider another
region Xq̂ with q̂\ q. Specifically, when a delayed mea-
surement is received at a sampling time, the current system
state is estimated. If the estimated current state is in the
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region Xq̂, the LEMPC maximizes the cost function within
the region Xq̂; if the estimated current state is in the region
Xq=Xq̂, the LEMPC first drives the system state to the
region Xq̂ and then maximizes the cost function within Xq̂.
The relation between q and q̂ will be characterized in Eq. 29
in Theorem 2.

After time t0, the system operates in the second operation
mode. In this operation mode, the LEMPC calculates the
inputs in a way that the Lyapunov function of the system
continuously decreases to steer the state of the system to a
neighborhood of the origin while taking into account asyn-
chronous and delayed measurements.

The implementation strategy of the proposed LEMPC for
systems subject to asynchronous and delayed measurements
can be summarized as follows:

1. At a sampling time ta, the controller receives the sys-
tem state x(ta � da) from the sensors and estimates the
current system state, �xðtaÞ

2. If ta \ t0, go to Step 3. Else, go to Step 4.
3. If �xðtaÞ 2 Xq̂, go to Step 3.1. Else, go to Step 3.2.

3.1 The controller maximizes the economic cost func-
tion within Xq̂. Go to Step 5.

3.2 The controller drives the system state to the
region Xq̂. Go to Step 5.

4. The controller drives the system state to a small neigh-
borhood of the origin.

5. Go to Step 1 (a / a þ 1).

LEMPC formulation

At a sampling time ta, the MPC is evaluated to obtain the
future input trajectories based on the received system state
value x(ta � da). Specifically, the optimization problem of
the proposed LEMPC for systems subject to asynchronous
and delayed measurements at ta is as follows

max
u1;…;um2SðDÞ

Z taþND

ta

Lð�xðsÞ; u1ðsÞ;…; umðsÞÞds (23a)

s:t: _�xðtÞ ¼ f ð�xðtÞ; u1ðtÞ;…; umðtÞ; 0Þ (23b)

uiðtÞ ¼ u�i ðtÞ; i ¼ 1;…;m; t 2 ½ta � da; taÞ (23c)

uiðtÞ 2 Ui; i ¼ 1;…;m; t 2 ½ta; ta þ NDÞ (23d)

�xðta � daÞ ¼ xðta � daÞ (23e)

_̂xðtÞ ¼ f ðx̂ðtÞ; h1ðx̂ðta þ lDÞÞ;…; hmðx̂ðta þ lDÞÞ; 0Þ
8t 2 ½ta þ lD; ta þ ðlþ 1ÞDÞ; l ¼ 0;…;N � 1 ð23fÞ

x̂ðtaÞ ¼ �xðtaÞ (23g)

Vð�xðtÞÞ � q̂; 8t 2 ½ta; ta þ NDÞ; if ta � t0 and Vð�xðtkÞÞ � q̂

(23h)

Vð�xðtÞÞ � Vðx̂ðtÞÞ; 8t 2 ½ta; ta þ NDaDÞ;
if ta > t0 or q̂\ Vð�xðtaÞÞ � q ð23iÞ

where �x is the predicted trajectory of the system with control
inputs calculated by this LEMPC, u�i (t) with i ¼ 1,…,m
denotes the actual inputs that have been applied to the system,

x(ta � da) is the received delayed measurement, x̂ is the
predicted trajectory of the system with the control inputs
determined by h(x) implemented in a sample-and-hold fashion,
and NDa is the smallest integer that satisfies Tm þ D � da �
NDa D. The optimal solution to this optimization problem is
denoted by ua;�i (t|ta), i ¼ 1,…,m, which is defined for t [ [ta,ta
þ ND).

There are two types of calculations in the optimization
problem of Eq. 23. The first type of calculation is to esti-
mate the current state �xðtaÞ based on the delayed measure-
ment x(ta � da) and input values have been applied to the
system from ta � da to ta (constraints of Eqs. 23b, c, and e).
The second type of calculation is to evaluate the optimal
input trajectory of ui (i ¼ 1,…,m) based on �xðtaÞ while satis-
fying the input constraint of Eq. 23d and the stability con-
straints of Eqs. 23h, i. Note that the length of the constraint
NDa depends on the current delay da, and thus, it may have
different values at different time instants and has to be
updated before solving the optimization problem of Eq. 23.

The manipulated inputs of the LEMPC of Eq. 23 for sys-
tems subject to asynchronous and delayed measurements are
defined as follows

ujðtÞ ¼ ua;�j ðtjtaÞ; 8t 2 ½ta; taþiÞ (24)

for all ta such that ta � da[maxl\a tl � dl and for a given ta,
the variable i denotes the smallest integer that satisfies taþi �
daþi [ ta � da and j ¼ 1,…,m.

Stability analysis

In this subsection, we present the stability properties of
the proposed LEMPC of Eq. 23 in the presence of asynchro-
nous and delayed measurements. To proceed, we need the
following proposition.

Proposition 3 (c.f. Refs. 23 and 24). Consider the nomi-
nal sampled trajectory x̂ðtÞ of the system of Eq. 1 in closed-
loop for a controller h(x), which satisfies the condition of
Eq. 2, obtained by solving recursively

_̂xðtÞ ¼ f ðx̂ðtÞ; h1ðx̂ðtkÞÞ;…; hmðx̂ðtkÞÞ; 0Þ; t 2 ½tk; tkþ1Þ (25)

where tk ¼ t0 þ kD, k ¼ 0,1,…. Let D, es[ 0 and q[q s[ 0
satisfy

� a3 a�1
2 ðqsÞ

� �þ L0xMD � �es=D (26)

Then, if x̂ðt0Þ 2 Xq and qmin \ q where qmin is defined in
Eq. 14, the following inequality holds

Vðx̂ðtÞÞ � Vðx̂ðtkÞÞ; 8t 2 ½tk; tkþ1Þ (27)

Vðx̂ðtkÞÞ � maxfVðx̂ðt0ÞÞ � kes;qming (28)

Proposition 3 ensures that if the nominal system controlled
by the Lyapunov-based controller h(x) implemented in a
sample-and-hold fashion and with open-loop state estimation
starts in Xq, then it is ultimately bounded in Xqmin

. Theorem
2 below provides sufficient conditions under which the
LEMPC of Eq. 23 guarantees that the closed-loop system
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state is always bounded in Xq and is ultimately bounded in a
small region containing the origin.

Theorem 2. Consider the system of Eq. 1 in closed-loop
under the LEMPC design of Eq. 23 based on a controller
h(x) that satisfies the condition of Eq. 2. Let es [ 0, D [ 0,
q > q̂ > 0 and q [qs [ 0 satisfy the condition of Eq. 26
and satisfy

q̂ � q� fVðfWðNDÞÞ (29)

and

� NRes þ fVðfWðNDDÞÞ þ fVðfWðDÞÞ\ 0 (30)

where ND is the smallest integer satisfying NDD � Tm þ D and
NR is the smallest integer satisfying NRD � Tm. If N � ND,
q̂ � qs, x(t0) [ Xq, d0 ¼ 0 , then the closed-loop state x(t) of
the system of Eq. 1 is always bounded in Xq and is ultimately
bounded in Xqa

( Xq where

qa ¼ qmin þ fVðfWðNDDÞÞ þ fVðfWðDÞÞ (31)

Proof. When x(t) is maintained in the stability region Xq,
the feasibility of the optimization problem of Eq. 23 can be
proved following the same arguments as in Part 1 of the
proof of Theorem 1. In the remainder of this proof, we focus
on proving that x(t) is always bounded in Xq and is ulti-
mately bounded in Xqa

. The proof consists of two parts. In
Part 1, we prove that x(t) is always maintained in Xq in the
first operation mode; and in Part 2, we prove that x(t) is ulti-
mately bounded in Xqa

in the second operation mode.
In this proof, we assume that x(ta � da) is received at ta

and the next asynchronous measurement containing new in-
formation is received at taþi with taþi ¼ ta þ Tm and Tm ¼
ND. This corresponds to the worst case scenario from feed-
back control point of view. When x(t) is proved to be
bounded in Xq and ultimately bounded in Xqa

for this worst
case, the results are also guaranteed for the general case
(i.e., taþi � ta þ ND ).

Part 1: We assume that the LEMPC of Eq. 23 operates in
the first operation mode. We prove that if �xðtaÞ 2 Xq̂, then
x(taþi) [ Xq; and if �xðtaÞ 2 Xq=Xq̂, then V(x(taþi)) \ V
(x(ta)) and in finite steps, the state converges to Xq̂.

When �xðtaÞ 2 Xq̂, from the constraint of Eq. 23h, we
obtain that �xðtaþiÞ 2 Xq̂. When x(t) [ Xq for all times (this
point will be proved below), we can apply Propositions 1
and 2 to obtain the following inequality

VðxðtaþiÞÞ � Vð�xðtaþiÞÞ þ fVðfWðNDÞÞ (32)

Since Vð�xðtaþiÞÞ � q̂, if the condition of Eq. 29 is satis-
fied, we can conclude that

xðtaþiÞ 2 Xq (33)

when �xðtaÞ 2 Xq=Xq̂, from the condition of Eq. 23i, we can
obtain that

Vð�xðtÞÞ � Vðx̂ðtÞÞ;8t 2 ½ta; ta þ NDaDÞ (34)

By Proposition 3 and taking into account that q̂ > qs, the
following inequality can be obtained

Vðx̂ðtaþiÞÞ � maxfVðx̂ðtaÞÞ � NDaes; qming (35)

By Propositions 1 and 2, we can obtain the following
inequalities

Vð�xðtaÞÞ � VðxðtaÞÞ þ fVðfWðdaÞÞ (36)

From the inequalities of Eqs. 32, 35, and 36, we can write
that

VðxðtaþiÞÞ � maxfVðxðtaÞÞ � NDaes; qming
þfVðfWðdaÞÞ þ fVðfWðNDDÞÞ ð37Þ

Note that in the derivation of the inequality of Eq. 37, we
have taken into account that NDD � Tm þ D � da for all da.

To prove that the Lyapunov function is decreasing
between ta and taþi, the following inequality must hold

NDaes > fVðfWðNDDÞÞ þ fVðfWðdaÞÞ (38)

for all possible da � D. Taking into account that fW(�) and fV (�)
are strictly increasing functions of their arguments, that NDa is
a decreasing function of the delay da and that if da ¼ D then
NDa ¼ NR, if the condition of Eq. 30 is satisfied, then the
condition of Eq. 38 holds for all possible da and there exist ew
[ 0 such that the following inequality holds

VðxðtaþiÞÞ � maxfVðxðtaÞÞ � ew; qag (39)

which implies that if xðtaÞ 2 Xq=Xq̂, then V(x(taþi)) \ V
(x(ta)). This also implies that the state converges to Xq̂ in a
finite number of sampling times without leaving the stability
region.

Part 2: We assume that the LEMPC of Eq. 23 operates in
the second operation mode. We prove that x(t) is ultimately
bounded in Xqa

. Following similar steps as in Part 1, we can
again derive the condition of Eq. 39. Using this condition
recursively, it it proved that, if x(t0) [ Xq, then the closed-
loop trajectory of the system of Eq. 1 under the LEMPC of
Eq. 23 stay in Xq and satisfy that

lim sup
t!1

VðxðtÞÞ � qa (40)

This proves the results stated in Theorem 2. n

Application to a Chemical Process Example

Consider a well-mixed, non-isothermal continuous stirred
tank reactor (CSTR) where an irreversible second-order exo-
thermic reaction A ! B takes place.5 A is the reactant and B
is the product. The feed to the reactor consists of pure A at
flow rate F, temperature T0 and molar concentration CA0.
Due to the nonisothermal nature of the reactor, a jacket is
used to remove/provide heat to the reactor. The dynamic
equations describing the behavior of the system, obtained
through material and energy balances under standard model-
ing assumptions, are given below:
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dCA

dt
¼ F

V
ðCA0 � CAÞ � k0e

�E
RTC2

A (41a)

dT

dt
¼ F

V
ðT0 � TÞ þ �DH

rCp
k0e

�E
RTC2

A þ
Q

rCpV
(41b)

where CA denotes the concentration of the reactant A, T
denotes the temperature of the reactor, Q denotes the rate of
heat input/removal, V represents the volume of the reactor,
DH, k0, and E denote the enthalpy, pre-exponential constant
and activation energy of the reaction, respectively and Cp and
r denote the heat capacity and the density of the fluid in the
reactor, respectively. The values of the process parameters
used in the simulations are shown in Table 1. The process
model of Eq. 41 is numerically simulated using an explicit
Euler integration method with integration step hc ¼ 10�4 hr.

The process model has one unstable steady state and one
stable steady state in the operating range of interest. The
control objective is to regulate the process in a region
around the unstable steady-state (CAs, Ts) to maximize the
production rate of B. There are two manipulated inputs. One
of the inputs is the concentration of A in the inlet to the re-
actor, CA0, and the other manipulated input is the external
heat input/removal, Q. The steady-state input values associ-
ated with the steady-state are denoted by CA0s and Qs,
respectively.

The process model of Eq. 41 belongs to the following
class of nonlinear systems

_xðtÞ ¼ f ðxðtÞÞ þ g1ðxðtÞÞu1ðtÞ þ g2ðxðtÞÞu2ðtÞ þ wðtÞ

where xT ¼ [CA � CAs T � Ts] is the state, u1 ¼ CA0 � CA0s

and u2 ¼ Q � Qs are the inputs, f ¼ [f1 f2]
T and gi ¼ [gi1 gi2]

T (
i ¼ 1,2) are vector functions. The inputs are subject to
constraints as follows: |u1| � 3.5 kmol/m3 and |u2| � 5 � 105

KJ/hr. w ¼ [w1 w2]
T is the bounded disturbance vector

(Gaussian white noise with variances r1 ¼ 1 kmol/m3 and r2
¼ 40 K ) with |w1| � 1 kmol/m3 and |w2| � 40 K.

The economic measure that we consider in this example is
as follows5.

Lðx; u1; u2Þ ¼ 1

tf

Z tf

0

k0e
� E

RTðsÞC2
AðsÞds (42)

where tf ¼ 1 hr is the final time of the simulation. This
economic objective function is to maximize the average
production rate over process operation for tf ¼ 1 hr. We also
consider that there is limitation on the amount of material
which can be used over the period tf. Specifically, the control
input trajectory of u1 should satisfy the following constraint

1

tf

Z tf

0

u1ðsÞds ¼ 1 kmol=m3 (43)

This constraint means that the average amount of u1 dur-
ing one period is fixed. For the sake of simplicity and with-
out loss of generality, we will refer to Eq. 43 as the integral
constraint. It has been clarified in5 (see also Refs. 26–29)
that by periodic operation through switching between upper
and lower bound the average production rate can be
improved owing to the second-order dependence of the reac-

tion rate on reactant concentration. In other words, since the
amount of reactant material over one period of operation is
fixed and the reaction is of second-order, to get the maximum
reaction rate over one period, all of the material should be fed
at the beginning of the process operation period. Since this pol-
icy is not practically implementable given the presence of con-
straints on CA0 value, periodic operation is the best practical
choice to maximize the average production rate over one period
subject to input constraints; please see simulations below.

In the first set of simulations, we assume that the state feed-
back information is available at synchronous time instants
while in the second set of simulations we assume that the con-
troller receives asynchronous and delayed measurements.

Synchronous measurement sampling

We will design an LEMPC following Eq. 5 to manipulate
the two control inputs. We assume that the full system state
x is measured and sent to the LEMPC at synchronous time
instants tk ¼ kD, k ¼ 0,1,…, with D ¼ 0.01 hr ¼ 36 sec.
The LEMPC horizon is N ¼ 10. For the computation of the
stability region, we consider a quadratic Lyapunov function
V(x) ¼ xTPx with P ¼ diag ([716.83 1]). To estimate the sta-
bility region Xq, we evaluate _V by assuming that u1 is equally
distributed over tf (i.e., u1(s) ¼ 1, 0 � s � tf) and utilize feed-
back linearization for u2 subject to input constraint umax

2 and
bounded disturbance (|w1| � 1 kmol/m3 and |w2| � 40 K).

Since the LEMPC is evaluated at discrete-time instants
during the closed-loop simulation, the integral constraint is
enforced as follows

XM�1

i¼0

u1ðtiÞ ¼ tf
D

(44)

where M ¼ 100.
To ensure that the integral constraint is satisfied through

the period tf, at every sampling time in which the LEMPC
obtains the optimal control input trajectory, it utilizes the
previously computed inputs u1 to constrain the first step
value of the control input trajectory u1 at the current sam-
pling time. Based on the cost function formulation, for maxi-
mization purposes, it is expected that CA and T should be
increased which results in the fact that at the beginning of
the closed-loop simulation u1 should rise to its maximum
value and after a while it will go down to its lowest value to
satisfy the integral constraint. We assume that the decrease
of the Lyapunov function starts from the beginning of the
simulation (i.e., t0 ¼ 0) for part of the system state (i.e., tem-
perature). To maximize the production rate, we pick a tem-
perature set-point near the boundary of the stability region
(T ¼ 430 K), considering the constraints on the control input

Table 1. Parameter Values

T0 ¼ 300 K F ¼ 5 m3

hr

V ¼ 1.0 m3 E ¼ 5 � 104 kJ
kmol

k0 ¼ 8.46 � 106 1
hr

DH ¼ �1.15 � 104 kJ
kmol

Cp ¼ 0.231 kJ
kgK

R ¼ 8.314 kJ
kmolK

r ¼ 1000 kg
m3

CAs ¼ 2 kmol
m3

Ts ¼ 400 K CA0s ¼ 4 kmol
m3

Qs ¼ 0 KJ
hr
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Q. Due to the fact that the first differential equation (CA) in
Eq. 41 is input-to-state-stable (ISS) with respect to T, and
the contractive constraint of Eq. 45g (see Eq. 45) ensures
that the temperature converges to the set-point, the stability
of the closed-loop system is guaranteed in the operating
range of interest. To this end, we define VT(tk) ¼ (T(tk) �
430)2. The LEMPC formulation for the chemical process
example in question has the following form

max
u1;u22SðDÞ

1

ND

Z tkþN

tk

½k0e�
E

RTðsÞC2
AðsÞ�ds (45a)

_~xðtÞ ¼ f ð~xðtÞÞ þ
X2
i¼1

gið~xðtÞÞuiðtÞ (45b)

u1ðtÞ 2 gf; 8 t 2 ½tk; tkþ1Þ (45c)

~xðtkÞ ¼ xðtkÞ (45d)

~xðtÞ 2 X~q (45e)

uiðtÞ 2 Ui (45f)

dVTðtkÞ
dT

ðf2ðxðtkÞÞ þ g22ðxðtkÞÞu2ðtkÞÞ � �cVTðtkÞ (45g)

where x(tk) is the measurement of the process state at sampling
time tk, c ¼ 9.53 and the constraint of Eq. 45c implies that the
first step value of u1 should be chosen to satisfy the integral
constraint where the explicit expression of gf can be computed
based on Eq. 44 and the magnitude constraint on u1. Also, the
constraint of Eq. 45g enforces the Lyapunov function, based
on the temperature, to decrease from the beginning of the
simulation. The simulations were carried out using Java
programming language in a Pentium 3.20 GHz computer. The
optimization problems were solved using the open source
interior point optimizer Ipopt.30

The purpose of the following set of simulations is to demon-
strate that: (1) the proposed LEMPC design stabilizes the closed-
loop system for different initial conditions; (2) the proposed
LEMPC design maximizes the economic measure L(x,u1,u2); (3)
the proposed LEMPC design achieves practical closed-loop sta-
bility under different initial conditions; and (4) the proposed
LEMPC design affords a higher cost function value compared to
the steady-state operation. We consider two different scenarios in
terms of the existence of process disturbance.

Figures 1 and 2 depict the state and manipulated input
profiles, respectively, without process disturbances starting
from the initial condition ð2 kmol

m3 ; 440KÞ. Figures 3 and 4
depict the state and manipulated input profiles, respectively,
without process disturbances starting from the initial condi-
tion ð2 kmol

m3 ; 400KÞ. These simulations demonstrate that in
the absence of disturbances the LEMPC of Eq. 45 drives the
closed-loop system temperature at the desired steady-state,
430 K. Figures 5–8 show the corresponding state and manip-
ulated input profiles starting from the two initial conditions
under bounded process disturbances (Gaussian white noise
with variances r1 ¼ 1 kmol/m3 and r2 ¼ 40 K) with |w1| �
1 kmol/m3 and |w2| � 40 K. Figure 9 shows a possible real-
ization of the process disturbance. As expected, in all scenar-
ios, u1 goes up to its allowable maximum value to increase
reactant concentration as much as possible early on (given
the second-order reaction rate) and after a while it drops to
its minimum value to satisfy the integral constraint
(1tf

R tf
0
u1ðsÞds ¼ 1). On the other hand, the temperature rises

as fast as possible when the temperature initial condition is
below 430 K to maximize the reaction rate, and it decreases
as slow as possible when the initial temperature is above
430 K to maintain the maximum possible reaction rate while
satisfying the stability constraint; in both cases, the tempera-
ture finally settles at T ¼ 430 K and the LEMPC design of
Eq. 45 achieves practical stability. Figure 10 shows Xq with
q ¼ 1405 and three closed-loop system trajectories which

Figure 1. State trajectories of the process under the LEMPC design of Eq. 45 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;440KÞ without disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 2. Manipulated input trajectories under the LEMPC design of Eq. 45 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;440KÞ without disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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start at ð2 kmol
m3 ; 400KÞ (inside of Xq; solid line),

ð2 kmol
m3 ; 440KÞ (inside of Xq; dotted line) and ð1 kmol

m3 ; 500KÞ
(outside of Xq; dashed line), respectively. This set of simula-
tions demonstrates that in this case it is possible to achieve
closed-loop stability even for initial conditions outside Xq,
demonstrating that in the present example the computed Xq

estimate is a rather conservative one.
Also, we have carried out a set of simulations to con-

firm that the application of the LEMPC design with the
integral constraint on u1 improves the economic objective
function compared to the case that the system operates at

a steady-state satisfying the integral constraint. It should
be mentioned that this comparison is performed under the
case that there is no process disturbance. This steady-state
is computed by assuming that the reactant material
amount is equally distributed in the interval [0,tf]. To carry
out this comparison, we have computed the total cost of
each scenario based on the index of the following form

J ¼ 1

tM

XM
i¼0

½k0e�
E

RTðtiÞC2
AðtiÞ�

Figure 5. State trajectories of the process under the LEMPC design of Eq. 45 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;440KÞ subject to disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. Manipulated input trajectories under the LEMPC design of Eq. 45 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;440KÞ subject to disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. State trajectories of the process under the LEMPC design of Eq. 45 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;400KÞ without disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Manipulated input trajectories under the LEMPC design of Eq. 45 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;400KÞ without disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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where t0 ¼ 0 hr, tM ¼ 1 hr, and M ¼ 100. To be consistent in
comparison we set u1 to a constant value over the simulation
such that it satisfies the integral constraint while letting u2 be
computed by the controller. By comparing the cost function
values, we find that in the proposed LEMPC design via time-
varying operation (starting from ðCA; TÞ ¼ ð2 kmol

m3 ; 400KÞ), the
cost function achieves a higher value ( 19299.47 ) compared to
the case of steady-state operation (17722.07) (i.e., equal in
time distribution of the reactant). Also, by starting from
ðCA;TÞ ¼ ð2 kmol

m3 ; 440KÞ, the cost function achieves a higher
value (19459.67) compared to the case of steady-state
operation (17852.85).

Asynchronous measurements with delay

For this set of simulations, it is assumed that the state meas-
urements of the process are available asynchronously at time
instants {ta�0} with an upper bound Tm ¼ 6D on the maxi-
mum interval between two successive asynchronous state
measurements, where D is the controller and sensor sampling
time and is chosen to be D ¼ 0.01 hr ¼ 36 sec. To model the
time sequence {ta�0}, we use an upper bounded Poisson pro-
cess. The Poisson process is defined by the number of events

Figure 7. State trajectories of the process under the LEMPC design of Eq. 45 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;400KÞ subject to disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. Manipulated input trajectories under the LEMPC design of Eq. 45 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;400KÞ subject to disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. Disturbance realization for r1 5 1 kmol/m3 and r2 5 40 K with |w1|� 1 kmol/m3 and |w2|� 40 K.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 10. Estimation of Xq and three closed-loop sys-
tem trajectories for synchronous measure-
ment case with disturbances.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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Figure 11. Asynchronous measurement sampling times and their associated delay.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 12. State trajectories of the process under the LEMPC design of Eq. 46 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ; 440KÞ subject to asynchronous and delayed measurements and disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 13. Manipulated input trajectories under the LEMPC design of Eq. 46 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ; 440KÞ subject to asynchronous and delayed measurements and disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 14. State trajectories of the process under the LEMPC design of Eq. 46 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ; 400KÞ subject to asynchronous and delayed measurements and disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 15. Manipulated input trajectories under the LEMPC design of Eq. 46 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ; 400KÞ subject to asynchronous and delayed measurements and disturbances.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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per unit time W. The interval between two successive concen-
tration sampling times (events of the Poisson process) is given
by Da ¼ min{�lnv/W,Tm}, where v is a random variable with
uniform probability distribution between 0 and 1. This genera-
tion ensures that maxaftaþ1 � tag�Tm. In this example, W is
chosen to be W ¼ 25. A Gaussian random process is used to
generate the associated delay sequence {da�0} with da � D
while D ¼ 3D. Figure 11 shows the asynchronous time
instants when measurements are available and the correspond-
ing delay size associated with each measurement.

The LEMPC formulation for the chemical process exam-
ple in question subject to asynchronous and delayed state
measurements has the following form

max
u1;u22SðDÞ

1

ND

Z taþND

ta

½k0e�
E

RTðsÞC2
AðsÞ�ds (46a)

_�xðtÞ ¼ f ð�xðtÞÞ þ
X2
i¼1

gið�xðtÞÞu�i ðtÞ; 8 t 2 ½ta � da; taÞ (46b)

_�xðtÞ ¼ f ð�xðtÞÞ þ
X2
i¼1

gið�xðtÞÞuiðtÞ; 8 t 2 ½ta; ta þ NDÞ (46c)

u1ðtÞ 2 gf; 8 t 2 ½ta; ta þ NDÞ (46d)

�xðta � daÞ ¼ xðta � daÞ (46e)

�xðtÞ 2 Xq̂ (46f)

uiðtÞ 2 Ui (46g)

VTðta þ ðlþ 1ÞDÞ � bVTðta þ lDÞ l ¼ 0;…;NDa (46h)

where x(ta) is the measurement of the process state at sampling
time ta and b¼ 1/1.1 ¼ 0.909. The constraint of Eq. 46h forces
the Lyapunov function, based on the temperature, to decrease
for NDa sampling times.

Figures 12 and 13 show the state and manipulated input
profiles, respectively, starting from the initial condition
ð2 kmol

m3 ; 440KÞ under bounded process disturbances (the same
to the ones used in the case of synchronous measurement
sampling). Figures 14 and 15 show the corresponding state
and manipulated input profiles, respectively, starting from
the initial condition ð2 kmol

m3 ; 400KÞ, respectively. From these

Figure 17. State trajectories of the process under the LEMPC design of Eq. 46 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;400KÞ subject to asynchronous and delayed measurements and disturbances
under enforcing the integral constraint over a two-hour period.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 16. Estimation of Xq and three closed-loop sys-
tem trajectories for asynchronous measure-
ment case with disturbances.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 18. Manipulated input trajectories under the LEMPC design of Eq. 46 for initial condition
ðCAð0Þ;Tð0ÞÞ ¼ ð2 kmol

m3 ;400KÞ subject to asynchronous and delayed measurements and disturbances
under enforcing the integral constraint over a two-hour period.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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figures, we can see similar results as in the case of synchro-
nous measurement sampling, such as, u1 goes up to its
allowable maximum value to increase the reactant concentra-
tion as much as possible early on and the temperature rises
as fast as possible when the temperature initial condition is
below 430 K to maximize the reaction rate and it decreases
as slow as possible when the initial temperature is above
430 K to maintain the maximum possible reaction rate.
From these figures, we can also see that the practical stabil-
ity of the closed-loop system is ensured in the presence of
asynchronous and delayed measurements. This is because in
the design of the LEMPC of Eq. 46, asynchronous and
delayed measurements are taken explicitly into account. Sim-
ilar to the synchronous measurement case, Figure 16 shows
Xq with q ¼ 1405 and three closed-loop system trajectories
which start at ð2 kmol

m3 ; 400KÞ (inside of Xq; solid line),
ð2 kmol

m3 ; 440KÞ (inside of Xq; dotted line) and ð1 kmol
m3 ; 500KÞ

(outside of Xq; dashed line), respectively.
Finally, we have also carried out two sets of simulations in

which: (a) the integral constraint is enforced over a time pe-
riod of two hours and (b) the integral constraint is enforced
over two consecutive one-hour periods. Figures 17 and 18
depict the state and input trajectories of the closed-loop system
in case (a) and Figures 19 and 20 depict the state and input tra-
jectories in case (b). These figures illustrate that the periodic
operation of the plant under the proposed LEMPC can be read-
ily achieved for different operating scenarios.

Conclusions

In this work, we developed LEMPC designs which are
capable of optimizing closed-loop performance with respect
to general economic considerations for nonlinear systems.

First, we considered nonlinear systems with synchronous
measurement sampling and uncertain variables, and
designed an LEMPC via Lyapunov-based techniques. The
proposed LEMPC design has two different operation
modes. The first operation mode corresponds to the period
in which the cost function should be optimized; and in this
operation mode, the LEMPC maintains the closed-loop sys-
tem state within the stability region and optimizes the cost
function to its maximum extent. The second operation
mode corresponds to operation in which the system is
driven by the LEMPC to an appropriate steady-state. Sub-
sequently, we extended the results to nonlinear systems
subject to asynchronous and delayed measurements and
uncertain variables. In both LEMPC designs, suitable con-
straints were incorporated to guarantee that the closed-loop
system state is always bounded in the stability region and
is ultimately bounded in small regions containing the ori-
gin. The theoretical results were illustrated through a chem-
ical process example.
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