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remedy this initial failure, the government re-
opened the fishery but divided the coastal area
into more than 50 sectors, assigned transferable
quotas, and required that all ships have neutral
observers onboard to record all catches (32).

Furthermore, the long-term sustainability of
rules devised at a focal SES level depends on
monitoring and enforcement as well their not
being overruled by larger government policies. The
long-term effectiveness of rules has been shown
in recent studies of forests inmultiple countries to
depend on users’ willingness to monitor one an-
other’s harvesting practices (15, 31, 33, 34). Larger-
scale governance systems may either facilitate
or destroy governance systems at a focal SES level.
The colonial powers in Africa, Asia, and Latin
America, for example, did not recognize local
resource institutions that had been developed
over centuries and imposed their own rules, which
frequently led to overuse if not destruction (3, 7, 23).

Efforts are currently under way to revise and
further develop the SES framework presented
here with the goal of establishing comparable
databases to enhance the gathering of research
findings about processes affecting the sustain-
ability of forests, pastures, coastal zones, and water
systems around the world. Research across dis-
ciplines and questions will thus cumulate more
rapidly and increase the knowledge needed to
enhance the sustainability of complex SESs.
Quantitative and qualitative data about the core

set of SES variables across resource systems are
needed to enable scholars to build and test
theoretical models of heterogeneous costs and
benefits between governments, communities, and
individuals and to lead to improved policies.
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PERSPECTIVE

Economic Networks:
The New Challenges
Frank Schweitzer,1* Giorgio Fagiolo,2 Didier Sornette,1,3 Fernando Vega-Redondo,4,5
Alessandro Vespignani,6,7 Douglas R. White8

The current economic crisis illustrates a critical need for new and fundamental understanding of the
structure and dynamics of economic networks. Economic systems are increasingly built on
interdependencies, implemented through trans-national credit and investment networks, trade relations, or
supply chains that have proven difficult to predict and control. We need, therefore, an approach that
stresses the systemic complexity of economic networks and that can be used to revise and extend
established paradigms in economic theory. This will facilitate the design of policies that reduce conflicts
between individual interests and global efficiency, as well as reduce the risk of global failure by making
economic networks more robust.

The economy, as any other complex sys-
tem, reflects a dynamic interaction of a
large number of different agents, not just

a few key players. The resulting systemic be-
havior, observable on the aggregate level, often
shows consequences that are hard to predict, as
illustrated by the current crisis, which cannot be
simply explained by the failure of a few major
agents. Thus, we need a more fundamental in-
sight into the system’s dynamics and how they

can be traced back to the structural properties
of the underlying interaction network.

Research examining economic networks has
been studied from two perspectives; one view
comes from economics and sociology; the other
originated in research on complex systems in
physics and computer science. In both, nodes
represent the different individual agents, which
can represent firms, banks, or even countries, and
where links between the nodes represent their

mutual interactions, be it trade, ownership, R&D
alliances, or credit-debt relationships. Different
agents may have different behaviors under the
same conditions and have strategic interactions
(1). These evolving interactions can be represented
by network dynamics that are bound in space and
time and can change with the environment and
coevolvewith the agents (2). Networks are formed
or devolve on the basis of the addition or deletion
of either agents or the links between them.

The socioeconomic perspective has empha-
sized understanding how the strategic behavior
of the interacting agents is influenced by—and
reciprocally shapes—relatively simple network
architectures. One common example is that of a
star-spoke network, like a very centralized or-

1ETH Zurich, D-MTEC, Kreuzplatz 5, 8032 Zurich, Switzerland.
2Laboratorio di Economia e Management (LEM), Scuola Superiore
Sant’Anna, PiazzaMartiri della Liberta 33, 56127 Pisa, Italy. 3Swiss
Finance Institute, c/o University of Geneva, 40 Boulevard Du Pont
d’Arve, 1211 Geneva 4, Switzerland. 4Economics Department,
European University Institute, Via della Piazzuola 43, 50133
Firenze, Italy. 5InstitutoValencianode Investigaciones Economicas,
Calle Guardia Civil, 22 esc. 2 no1, 46020Valencia, Spain. 6School
of Informatics and Pervasive Technology Institute, Indiana
University, 919 East 10th Street, Bloomington, IN 47408, USA.
7Institute for Scientific Interchange, 10133 Torino, Italy. 8Institute
of Mathematical Behavioral Sciences, University of California,
3151 Social Science Plaza, Irvine, CA 92697, USA.

*To whom correspondence should be addressed. E-mail:
fschweitzer@ethz.ch

24 JULY 2009 VOL 325 SCIENCE www.sciencemag.org422

Pushing Networks to the Limit

 o
n 

Ju
ly

 2
4,

 2
00

9 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

https://ive.sssup.it/,DanaInfo=www.sciencemag.org+


ganization, in which a central “hub” channels all
communication among agents. In this “micro”
perspective we focus on the individual system
elements and their detailed network of rela-
tions. In contrast, for large setups, one adopts a
“macro” perspective that focuses on the statis-
tical regularities of the network as a whole. Each
approach has its advantages and disadvantages.
Previous work on the micro perspective was
strongly rooted in oversimplifying assumptions
on both the structure of the network and on
agents’ behaviors (3). For example, the micro ap-
proach may have emphasized agent incentives
in the development of informal links within firms
and may have failed to successfully predict real-
istic dynamic outcomes. The macro approach
better accounts for the large-scale system proper-
ties, but fails in linking these to the economic
motivation of individual agents (4).

In recent micro approaches, economic networks
were often viewed as the result of a network-
formation game among competing and cooper-
ating agents. In this regard, agents include firms
that collaborate in joint R&D projects (5) or
workers who share information on job oppor-
tunities (6); their links are added or deleted as
the consequence of purposeful decisions attempt-
ing to maximize their payoffs. In this context,
agents must rely on (and be able to) anticipate
what others may do (in a generally imperfect and
asymmetric manner); use information about their
environment (which may be limited); frame the
problem within some necessarily bounded time
horizon; and learn from the past, which
may create a biased experience if sim-
ilar situations are encountered later.

These considerations tended to re-
sult in a dramatically large number of
options that agents must choose from
on the basis of limited information.
The micro analysis of economic net-
works relies on game theory, which
aims at identifying Nash equilibria (i.e.,
situations that are strategically stable in
the sense that no agent has an incentive
to deviate). It can also rely on opera-
tions research, where algorithms for
searching and optimizing have been
developed. As the number of nodes
and possible links scales up, however,
such problems become very difficult
to solve, and classical approaches are
unsatisfactory.

The game-theoretic literature has
highlighted the crucial role of incen-
tives in the endogenous and induced
behavior of socioeconomic networks
(3, 7, 8). However, this micro approach
has not typically been integrated with
macro approaches that can identify the
complex systemic forces at work. With-
out this information, we cannot fully
understand important issues, such as the

conflict between individual incentives and aggre-
gate welfare, or their impact on the overall ef-
ficiency in the performance of the network at
large. Furthermore, this problem is exacerbated if
the underlying environment is subject to persistent
volatility, which may, for example, be due to the
intrinsic ephemerality of innovation (9), and if
agents are out of equilibrium, as in most real-
world situations. If this is the case, it is reasonable
to posit that agents follow simple bounded-
rational rules that are modified in light of their
experiences. However, under such conditions,
agents are unable to attain efficient configura-
tions, despite their continuous efforts to adapt to
an ever-changing situation. Additionally, even
small changes in environmental volatility can
have drastic consequences in the overall configu-
ration of the system [e.g., (Fig. 1)].

The inability of previous approaches to re-
produce statistical regularities that have been ob-
served empirically in network structures justifies
our pursuit of a complex-systems approach that
may provide predictions for large-scale networks.
These predictions are made from the testing of
stochastic rules that affect link formation and
that take into account, in addition to some sort
of randomness, the characteristic features of the
agents, such as their degree of connectivity (num-
ber of links) or their centrality, as measured on the
basis of the importance of a node—which, in
turn, can be affected by its links to other nodes.

However, the complex-systems approach pos-
tulates rules exogenously and does not explicitly

examine how these rules might be grounded
on the basis of the economic incentives of the
agents. Thus, instead of focusing on understand-
ing the endogenous behavior of individual agents,
the complex-systems approach centers on under-
standing how the network-formation rules sys-
tematically affect the emerging link structure (4).

Networks generated with different stochastic
algorithms, such as random, scale-free or small-
world networks, have been compared with real
complex networks including those in biology,
i.e., metabolic and genetic networks; infrastruc-
ture, i.e., road networks and power grids; com-
munication, i.e., internet and mobile phone; and
social interaction, i.e., collaborations (1, 2, 10).
Comparing network structures across these dif-
ferent disciplines suggests that economic net-
works may also reflect a similar universality (11).
Indeed, the connections of banks in an interbank
network (12, 13), show the fat tail, characteristic
of a scale-free system, that indicates that only a
few banks interact with many others. In this ex-
ample, banks with similar investment behavior
will cluster in the network. Similar regularities also
can be traced for many examples including the
international trade network (ITN) (14, 15) and
regional investment or ownership networks (16).

In the complex-network context, “links” are
not binary (existing or not existing), but are
weighted according to the economic interaction
under consideration [for example, in a network
of major financial institutions worldwide shown
in (Fig. 2)]. Furthermore, links represent traded

volumes, invested capital, and so on,
and their weight can change over time.
Distinguishing networks at different
levels where we consider directed or
undirected and weighted or unweighted
links helps illuminate the evolution of
their topological properties.

When the foreign direct invest-
ments (FDI) among European firms
are presented as a directed network,
power-law scaling is observed. This
scaling depends on the number of em-
ployees in both the investing and the
firm invested in, and on the number of
incoming and outgoing investments of
both firms (16) This allows single time-
point predictions about the investments
that regions will receive or make, on
the basis of the activity and connec-
tivity of their firms.

Similar structural transitions can
also be detected in the ITN. By weight-
ing a country’s centrality in terms of
the likelihood that any given additional
dollar traded in the world reaches that
country by following existing links
with a probability proportional to its
weight, the relative changes in central-
ity over time show trends for different
countries that predict divergence in
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Fig. 1. The structure and efficiency of an equilibrium network strongly
depend on the conditions under which myopic agents can form links. We
show computer simulations that assume that agents prefer to connect to
the neighbors of their neighbors that have a higher centrality, which
creates local shortcuts. Network efficiency is measured on the basis of
the aggregate centrality of agents. Environmental volatility measures the
risk that if any single agent is exposed to an exogeneous shock, it will
force the deletion of one link. If the loss of links pushes the network
efficiency down and environmental volatility up past some critical level,
the strongly homogeneous network structure will break down into a
sparse, hierarchical structure, similar to a core-periphery structure and is
accompanied with a breakdown in network efficiency.
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regional integration within the global economy
and do so better than traditional international trade
and macroeconomic statistics (17). This is also
because the latter do not account for the entire
network topology but only consider bilateral di-
rect trade links. For example, between 1980 and
2005 East Asian countries experienced huge in-
creases in their centrality scores, but the centrality
ranking of most Latin American countries fell. The
trade statistics of these regions, however, displayed
similar patterns. In other words, these astonish-
ingly different development records were not well
tracked by international trade and macroeconom-
ics statistics. Thus, network-based approaches may
provide a more powerful way to manage, monitor,
and govern complex economics systems.

However, a focus on centrality or other such
properties of networks can only provide a first-
order classification that emphasizes the role of
fluctuations and randomness and cannot predict
the underlying dynamics of the agents, whether
they are firms or countries. We anticipate that the
next generation of research will be able to mea-
sure any deviations from universality and will
allow us to identify the idiosyncrasies associated
with individual agent dynamics and their decision-
making processes. This new wave of research
should begin to merge the description of indi-
vidual agents strategies with their coevolving

networks of interactions. We should then be able
to predict and propose economic policies that
favor networks structures that are more robust to
economic shocks and that can facilitate integra-
tion or trade. Below, we briefly describe what is
needed to tackle this endeavor.

Massive data analysis. Our ability to obtain
more and better quality data will foster the tran-
sition from a qualitative to a quantitative and
evidence-based science. As computational power
increases, large-scale network data can be gath-
ered for different levels of the economy (e.g.,
firms, industries, and countries), and models can
be tested through the generation of large, syn-
thetic, data sets. New processing methods should
open a wide range of business data and internet
communication that can be exploited. It will then
be possible to gather individualized data on spe-
cific interactions over time such as employee flows,
R&D collaborations, and so on within a business
or firm-bank credit market interactions. These large
data streams require more powerful tools to digest
and manipulate the huge scale of available infor-
mation reflecting agent interactions and network
properties. Databases containing this information
may therefore complement both theoretical eco-
nomic network experiments (18, 19) and empirical
economic network studies (20, 21) and provide
large-scale observations in real-time (22).

Time and space. By allowing a time-dependent
resolution of the properties of economic net-
works, we will be able to move beyond a single-
snapshot approach. This will allow the researcher
to identify the evolutionary path of networks
through the combination of complementary infor-
mation sources. A good illustration of this is pro-
vided by the R&D networks in the field of human
biotechnology (20), which follow a predictable
life cycle related to the timing of the exchange
and integration of knowledge.

Structure identification. Extracting network
topology from reported data, in particular for ag-
gregated economic data, is very difficult. This is
particularly true for the banking sector, where
detailed accounts of debt-credit relations are not
publicly available, although theoretical decom-
positions of aggregated data have been studied
(13). Even then, analyses may resemble reading
tea leaves and reveal only previously known or
predicted information. Statistical regularities in eco-
nomic networks can be identified through large-
scale data sets, but difficulties in assessing the
relevance of the various measures remain. In an
evolving economic network, we require informa-
tion about agents’ roles, their function and their
influence (23). New methods are needed to iden-
tify patterns, and new concepts are needed to
quantify both direct and indirect influence (e.g.,
through ownership). The identification in the ITN
of such roles based on similar positions in the net-
work suggests that promising steps have begun to
identify functional roles played by interactive agents
that relate to specific patterns in the link structure
of their multirelational interaction network (24).
Mapping a large network as a homologous small
one, with statistically optimal sets of distinctive roles,
gives a statistical correspondence in the case of the
ITN world alignments for New World–Afro–East
Asian versusNorth andCentral Eurasia alignments
by cross-cutting each of their interconnected cores,
semiperipheries, and peripheries, as in world sys-
tem models, but with much greater precision.

Beyond simplicity. All economic networks are
heterogeneouswith respect to both their agents and
interaction strength and can also strongly vary in
time (25). Previous studies of efficient (i.e., not
wasteful) and equilibrium (or strategically stable)
networks assumed homogeneity. However, as the
differences between weighted and unweighted
network properties indicate for the ITN case (14),
any prediction of phase transitions may fail under
these simplified assumptions. In fact, heterogene-
ities of agents can turn out to prevent phase tran-
sitions, i.e., become a source of stability.

Systemic feedbacks. Simple amplification
mechanisms (such as herding) can dominate the
network dynamics at large, despite the best in-
tentions of the agents. Economic networks are
subject to amplifications that may result from the
redistribution of the load if one node fails (e.g.,
electricity in a power grid or credit debt in a bank-
ing network). If a single node fails, it may force
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Fig. 2. A sample of the international financial network, where the nodes represent major financial
institutions and the links are both directed and weighted and represent the strongest existing relations
among them. Node colors express different geographical areas: European Union members (red), North
America (blue), other countries (green). Even with the reduced number of links displayed in the figure,
relative to the true world economy, the network shows a high connectivity among the financial in-
stitutions that have mutual share-holdings and closed loops involving several nodes. This indicates that
the financial sector is strongly interdependent, which may affect market competition and systemic risk
and make the network vulnerable to instability.
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other nodes to fail as well, which may eventually
lead to failure cascades and the breakdown of the
system, denoted as systemic risk. This applies in
particular to financial networks where links
represent standing debts and claims between
connected financial institutions. However, it is
not well understood how the structure of a
financial network affects the probability of a
systemic failure. Although a topical subject, most
theoretical and empirical methods are not suited
to predicting cascading network effects. The
mainstream view assumes that a denser network
allows for a better diversification of the individ-
ual failure risk (26). However, systemic risk has
been shown to increase, depending on the cou-
pling strength between nodes (27). Furthermore,
most stable dynamic network models account
for only the addition or removal of a single agent
to or from the network at each instance of time.
However, the addition or removal of whole groups
of agents to or from the network (e.g., as part of
a systemic failure) may result in a larger, less
predictable, and less stable system.

In summary, we anticipate a challenging re-
search agenda in economic networks, built upon
a methodology that strives to capture the rich pro-
cess resulting from the interplay between agents’
behavior and the dynamic interactions among
them. To be effective, however, empirical studies
providing insights into economic networks from
massive data analysis, theory encompassing the

appropriate description of economic agents and
their interactions, and a systemic perspective be-
stowing a new understanding of global effects as
coming from varying network interactions are
needed. We predict that such studies will create a
more unified field of economic networks that ad-
vances our understanding and leads to further insight.
We are still far from a satisfactory identification
and integration of the many components, but the
recent advances outlined suggest a promising start.
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PERSPECTIVE

Predicting the Behavior of
Techno-Social Systems
Alessandro Vespignani

We live in an increasingly interconnected world of techno-social systems, in which infrastructures
composed of different technological layers are interoperating within the social component that drives their
use and development. Examples are provided by the Internet, the World Wide Web, WiFi communication
technologies, and transportation and mobility infrastructures. The multiscale nature and complexity of
these networks are crucial features in understanding and managing the networks. The accessibility of new
data and the advances in the theory and modeling of complex networks are providing an integrated
framework that brings us closer to achieving true predictive power of the behavior of techno-social systems.

Modern techno-social systems consist of
large-scale physical infrastructures (such
as transportation systems and power

distribution grids) embedded in a dense web of
communication and computing infrastructures
whose dynamics and evolution are defined and

driven by human behavior. To predict the be-
havior of such systems, it is necessary to start
with themathematical description of patterns found
in real-world data. These descriptions form the
basis of models that can be used to anticipate
trends, evaluate risks, and eventually manage fu-
ture events. If fedwith the right data, computational
modeling approaches can provide the requested
level of predictability in very complex settings.
The most successful example is weather forecast-
ing, in which sophisticated supercomputer infra-
structures are used to integrate current data and

huge libraries of historical meteorological patterns
into large-scale computational simulations. Al-
though we often complain about the accuracy of
daily weather forecasts, we must remember that
numerical weather models and predictions allow
us to project the path and intensity of hurricanes,
storms, and other severemeteorological occurrences
and, in many cases, to save thousand of lives by
anticipating and preparing for these events.

Given the success that has been achieved in
weather forecasting for decades, why haven’t we
achieved the same success in the quantitative pre-
diction of the next pandemic spatio-temporal pat-
tern or the effects over the next decade of connecting
billions of people from China and India on Internet
growth and stability? The basic difference is that
forecasting phenomena in techno-social systems
starts with our limited knowledge of society and
human behavior rather than with the physical laws
governing fluid and gas masses. In other words,
though it is possible to produce satellite images of
atmospheric turbulence, we do not yet have large-
scale worldwide, quantitative knowledge of human
mobility, the progression of risk perception in a
population, or the tendency to adopt certain social
behaviors. In recent years, however, tremendous
progress has been made in data gathering, the dev-
elopment of new informatics tools, and increases in
computational power. A huge flow of quantitative
data that combine the demographic and behavioral
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