
Economic Perspectives in Test Automation: Balancing
Automated and Manual Testing with Opportunity Cost

Rudolf Ramler and Klaus Wolfmaier

Software Competence Center Hagenberg GmbH
Hauptstrasse 99

A-4232 Hagenberg, Austria
+43 7236 3343-872

{rudolf.ramler | klaus.wolfmaier}@scch.at

ABSTRACT
Testing is a major cost factor in software development. Test
automation has been proposed as one solution to reduce these
costs. Test automation tools promise to increase the number of
tests they run and the frequency at which they run them. So why
not automate every test? In this paper we discuss the question
“When should a test be automated?” and the trade-off between
automated and manual testing. We reveal problems in the overly
simplistic cost models commonly used to make decisions about
automating testing. We introduce an alternative model based on
opportunity cost and present influencing factors on the decision
of whether or not to invest in test automation. Our aim is to
stimulate discussion about these factors as well as their influ-
ence on the benefits and costs of automated testing in order to
support researchers and practitioners reflecting on proposed
automation approaches.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Testing and Debugging. D.2.9
[Software Engineering]: Management - Software quality assur-
ance (SQA).

General Terms
Management, Economics, Verification.

Keywords
Manual testing, automated testing, testing economics, benefits
and costs of automation.

1. INTRODUCTION
Quality assurance measures, such as testing, are a major cost
factor in software development projects. Studies have shown that
testing accounts for 50 percent and more of total project costs. At

the same time, growing international competition, shrinking
schedules and budgets, and a fast-paced development process all
put additional pressure on software testing.
Test automation has been proposed as one solution to reduce
testing costs [9]. Furthermore, test tool vendors advertise: “Auto-
mating test script execution enables firms to increase the number
of tests they run and the frequency at which they run them by
many orders of magnitude. So why not automate every test?”
However, practitioners frequently report disastrous failures in the
attempt to reduce costs by automating software tests, particularly
at the level of system testing. Similarly, the authors have encoun-
tered several cases of failed endeavors of test automation when
providing consulting and support to industrial projects. Our ex-
perience is supported by narrative evidence of practitioners and
researchers on test automation (e.g., [18], [19]).
In most cases, reasons for failed projects include a gross underes-
timation of the effort required to develop and maintain automated
tests. Managers and engineers are often surprised about the sub-
stantial investment of money and time necessary to automate
tests in order to realize the promised benefits. As [12] states,
“Like all testing activities, behind the decision to automate some
tests is a cost and benefit analysis. If you get the analysis wrong,
you’ll allocate your resources inappropriately.” So for any sig-
nificant project, investments to test automation have to be ana-
lyzed primarily from an economic perspective, taking into ac-
count costs and benefits as well as the potential return on in-
vestment.
The objective of this paper is to discuss the question “When
should a test be automated?” and the trade-off between auto-
mated and manual testing. Therefore, this paper is structured as
follows: In Section 2 we summarize a common, simplistic ap-
proach and the involved problems of modeling the decision of
automating testing. In Section 3 we describe the concept of op-
portunity cost in the context of test automation. An alternative
model applying opportunity costs to balance automated and man-
ual testing is presented in Section 4. Section 5 elaborates on
additional influencing factors for test automation not yet consid-
ered in the proposed model. Finally, Section 6 discusses the ap-
plicability of the model and sums up the work presented in this
paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

85

2. A CRITIQUE ON OVERLY SIMPLISITC
COST MODELS FOR AUTOMATED
SOFTWARE TESTING
Accurate estimates of the return on investment of test automation
require the analysis of costs and benefits involved. However,
since the benefits of test automation are particularly hard to
quantify, many estimates conducted in industrial projects are
limited to considerations of cost only. In many cases the investi-
gated costs include: the costs for the testing tool or framework,
the labor costs associated with automating the tests, and the labor
costs associated with maintaining the automated tests. These
costs can be divided into fixed and variable costs. Fixed costs are
the upfront costs involved in test automation. Variable costs in-
crease with the number of automated test executions.
In [7], a case study originally published by Linz and Daigl [16] is
presented, which details the costs for test automation as follows:

V := Expenditure for test specification and implementation

D := Expenditure for single test execution

Accordingly, the costs for a single automated test (Aa) can be
calculated as:

Aa := Va + n * Da

whereby Va is the expenditure for specifying and automating the
test case, Da is the expenditure for executing the test case one
time, and n is the number of automated test executions.
Following this model, in order to calculate the break-even point
for test automation, the cost for manual test execution of a single
test case (Am) is calculated similarly as

Am := Vm + n * Dm

whereby Vm is the expenditure for specifying the test case, Dm is
the expenditure for executing the test case and n is the number of
manual test executions.
The break-even point for test automation can then be calculated
by comparing the cost for automated testing (Aa) to the cost of
manual testing (Am) as:

E(n) := Aa / Am = (Va + n * Da)/ (Vm + n * Dm)
According to this model, the benefit of test automation seems
clear: “From an economic standpoint, it makes sense to automate
a given test only when the cost of automation is less than the cost
of manually executing the test the same number of times that the
automated test script would be executed over its lifetime.” [24]
Figure 1 depicts this interrelation. The x-axis shows the number
of test runs, while the y-axis shows the cost incurred in testing.
The two curves illustrate how the costs increase with every test
run. While the curve for manual testing costs is steeply rising,
automated test execution costs increase only moderately. How-
ever, automated testing requires a much higher initial investment
than manual test execution does. According to this model, the
break-even point for test automation is reached at the intersection
point of the two curves.
This “universal formula” for test automation costs has been fre-
quently cited in software testing literature (e.g. [7], [8], [15]) and
studies (e.g., [24], [16]) to argue in favor for test automation.

Figure 1: Break-even point for automated testing

Depending on the author, the quoted number of test runs re-
quired to reach the break-even point varies from 2 to 20.
The logic of this formula is appealing and – in a narrow context –
correct. “As a simple approximation of costs, these formulas are
fair enough. They capture the common observation that auto-
mated testing typically has higher upfront costs while providing
reduced execution costs.” [12] For estimating the investment in
test automation, however, it is flawed for the following reasons:

• Only costs are analyzed – The underlying model compares
the costs incurred in testing but excludes the benefits. Costs
and benefits are both required for an accurate analysis, es-
pecially when the analyzed alternatives have different out-
comes. This is true for test automation, since manual testing
and automated testing follow different approaches and pur-
sue different objectives (e.g., exploring new functionality
versus regression testing of existing functionality).

• Manual testing and automated testing are incomparable –
Bach [2] argues that “… hand testing and automated testing
are really two different processes, rather than two different
ways to execute the same process. Their dynamics are dif-
ferent, and the bugs they tend to reveal are different. There-
fore, direct comparison of them in terms of dollar cost or
number of bugs found is meaningless.”

• All test cases and test executions are considered equally
important – Boehm criticizes in his agenda on value-based
software engineering [4]: “Much of current software engi-
neering practice and research is done in a value-neutral set-
ting, in which every requirement, use case, object, test case,
and defect is equally important.” In a real-world project,
however, different test cases and different test executions
have different priorities based on their probability to detect
a defect and on the impact which a potential defect has on
the system under test.

• Project context is not considered – The decision about
whether or not to automate testing is restricted to a single,
independent test case. Nevertheless, the investment decision
has to be made in context of the particular project situation,
which involves the total set of test cases planned and the
budget and resources allocated for testing.

• Additional cost factors are missing – A vast number of ad-
ditional factors influencing costs and benefits are not con-

Test runs

break-
even

n

Va

manual
testing (Am)

automated
testing (Aa)

Cost of
testing

Vm

86

sidered in the overly simplistic model [11]. Examples are
costs of abandoning automated tests after changes in the
functionality, costs incurred by the increased risk of false
positives, or total cost of ownership of testing tools includ-
ing training and adapting workflows.

3. OPPORTUNITY COST IN TEST
AUTOMATION
In this section we present a fictitious example to illustrate the
problems listed in the previous section. Please note that this ex-
ample simplifies a complex model to highlight and clarify some
basic ideas. We discuss and expand the model in sections 4 and 5
where we add further details and propose influencing factors
typically found in real-world projects.
The example describes a small system under test. The effort for
running a test manually is assumed to be 0.25 hours on average.
For the sake of simplicity, we assume no initial costs for specifi-
cation and preparation. Automating a test should cost 1 hour on
average, including the expenditures for adapting and maintaining
the automated tests upon changes. Therefore, in our example,
running a test automatically can be done without any further
effort once it has been automated. According to the model pre-
sented in the previous section, the break-even point for a single
test is reached when the test case has been run four times (cp.
Figure 2).

Figure 2: Break-even point for a single test case

Furthermore, for our example let us assume that 100 test cases
are required to accomplish 100 percent requirements coverage.
Thus it takes 25 hours of manual testing or 100 hours of auto-
mated testing to achieve full coverage. Comparing these figures,
the time necessary to automate all test cases is sufficient to exe-
cute all test cases four times manually.
If we further assume that the project follows an iterative (e.g.
[14]) or agile (e.g. [10]) development approach, we may have to
test several consecutive releases. To keep the example simple,
we assume that there are 8 releases to be tested and each release
requires the same test cases to be run. Consequently, completely
testing all 8 releases requires 200 hours of manual testing (8
complete test runs of 25 hours each) or 100 hours to automate the
tests (and running these tests “infinitely” often without addi-
tional costs).

Taken from the authors’ experience, the average time budget
available for testing in many industrial projects is typically far
less – about 75 percent at most – than the initially estimated test
effort. In our example we therefore assume a budget of 75 hours
for testing. Of course, one could argue that a complete test is not
possible under these limitations. Yet many real-world projects
have to cope with similar restrictions; fierce time-to-market con-
straints, strict deadlines, and a limited budget are some of the
typical reasons. These projects can only survive the challenge of
producing tested quality products by combining and balancing
automated and manual testing.
Testing in the example project with a budget of 75 hours would
neither allow to completely test all releases manually nor to com-
pletely automate all test cases. A trade-off between completely
testing only some of the releases and automating only a part of
the test cases is required. In economics, this trade-off is known
as the “production possibilities frontier” [17]. Figure 3 shows the
combinations of automated and manual test cases that testing can
possibly accomplish, given the available budget and the choice
between automated and manual testing. Any combination on or
inside the frontier is possible. Points outside the frontier are not
feasible because of the restricted budget. Efficient testing will
choose only points on rather than inside the production possibili-
ties frontier to make best use of the scarce budget available.

Figure 3: Production possibilities frontier for an exemplary

test budget of 75 hours

The production possibilities frontier shows the trade-off that
testing faces. Once the efficient points on the frontier have been
reached, the only way of getting more automated test cases is to
reduce manual testing. Consequently Marick [18] raises the fol-
lowing question: “If I automate this test, what manual tests will I
lose?” When moving from point A to point B, for instance, more
test cases are automated but at the expense of fewer manual test
executions. In this sense, the production possibilities frontier
shows the opportunity cost of test automation as measured in
terms of manual test executions. In order to move from point A to
point B, 100 manual test executions have to be abandoned. In
other words, automating one test case incurs opportunity costs of
4 manual test executions.

Test runs

break-
even

4

1h

manual
testing (Am)

automated
testing (Aa)

Cost of
testing

75

manual tests 300 100

B
50

25

200

A

automated
tests

87

4. A COST MODEL BASED ON
OPPORTUNITY COST
Building on the example from the previous section, we propose
an alternative cost model drawing from linear optimization. The
model uses the concept of opportunity cost to balance automated
and manual testing. The opportunity cost incurred in automating
a test case is estimated on basis of the lost benefit of not being
able to run alternative manual test cases. Hence, in contrast to
the simplified model presented in Section 2, which focuses on a
single test case, our model takes all potential test cases of a pro-
ject into consideration. Henceforth, it optimizes the investment in
automated testing in a given project context by maximizing the
benefit of testing rather than by minimizing the costs of testing.

4.1 Fixed Budget
First of all, the restriction of a fixed budget has to be introduced
to our model. This restriction corresponds to the production pos-
sibilities frontier described in the previous section.

R1: na * Va + nm * Dm ≤ B

na := number of automated test cases
nm := number of manual test executions
Va := expenditure for test automation
Dm := expenditure for a manual test execution
B := fixed budget
Note that this restriction does not include any fixed expenditures
(e.g., test case design and preparation) manual testing. Further-
more, with the intention of keeping the model simple, we assume
that the effort for running an automated test case is zero or negli-
gibly low for the present. This and other influence factors (e.g.,
the effort for maintaining and adapting automated tests) will be
discussed in the next section.
This simplification, however, reveals an important difference
between automated and manual testing. While in automated test-
ing the costs are mainly influenced by the number of test cases
(na), manual testing costs are determined by the number of test
executions (nm). Thus, in manual testing, it does not make a dif-
ference whether we execute the same test twice or whether we
run two different tests. This is consistent with manual testing in
practice – each manual test execution usually runs a variation of
the same test case [2].

4.2 Benefits and Objectives of Automated and
Manual Testing
Second, in order to compare two alternatives based on opportu-
nity costs, we have to valuate the benefit of each alternative, i.e.,
automated test case or manual test execution. The benefit of exe-
cuting a test case is usually determined by the information this
test case provides. The typical information is the indication of a
defect. Still, there are additional information objectives for a test
case (e.g., to assess the conformance to the specification). All
information objectives are relevant to support informed decision-
making and risk mitigation. A comprehensive discussion about
what factors constitute a good test case is given in [13].
In our model we simply assume that the benefit of a test case is
equivalent to its potential to contribute to risk mitigation,
whereby automated and manual testing may address different
types of risk. One common distinction is based on the finding

that automated testing best addresses the regression risk, i.e.
defects in modified but previously working functionality are
quickly detected, while manual testing is suitable for exploring
new ways in how to break functionality. Accordingly, the objec-
tives of automated and manual testing are usually different.
Therefore we estimate the contribution to risk mitigation for both
automated testing (Ra) and manual testing (Rm) separately.
We suggest approximating the contribution to risk mitigation by
calculating the risk exposure [3] of the tested requirement or
system component. In general the risk exposure is defined as the
probability of loss times the size of loss and it varies between
requirements and system components. For our general model, we
suppose that the contribution to risk mitigation for n test cases is
calculated by the function Ra(n) or Rm(n) respectively. Note:
Since the contribution to risk mitigation varies between test
cases, ordering the test cases according to their contribution
makes sure that the most beneficial test cases are run first [23].

Although a number n equal to the total number of test cases
would be preferable, the restricted budget does not allow for
complete testing. However, test and project planning have to set
a minimum level of testing – sometimes referred to as “quality
bar” – to make sure the information provided by testing is a rep-
resentative source for risk mitigation and decision-making. We
consider this minimum testing requirements for automated and
manual testing based on na and nm as additional restrictions in
the optimization model.

R2: na ≥ mina

R3: nm ≥ minm

mina := minimum number of automated test cases
minm := minimum number of manual test executions
This approach is in line with requirements- and risk-based test-
ing (see e.g. [22], [1]) and is supported by commercial test man-
agement tools [6]. A simple technique to estimate the risk expo-
sure based on the Pareto principle is described in [20] and will
be used in the following example.

4.3 Maximizing the Benefit
Third, to maximize the overall benefit yielded by testing, the
following target function has to be added to the model.

T: Ra(na) + Rm(nm) max
Maximizing the target function ensures that the combination of
automated and manual testing will result in an optimal point on
the production possibilities frontier defined by restriction R1.
Thus, it makes sure the available budget is entirely and optimally
utilized.

4.4 Example
To illustrate our approach we extend the example used in Section
3. For this example the restriction R1 is defined as follows.

R1: na * 1 + nm * 0.25 ≤ 75
To estimate benefit of automated testing based on the risk expo-
sure of the tested object, we refer to the findings published by
Boehm and Basili [5]: “Studies from different environments over
many years have shown, with amazing consistency, that between
60 and 90 percent of the defects arise from 20 percent of the
modules, with a median of about 80 percent. With equal consis-

88

tency, nearly all defects cluster in about half the modules pro-
duced.” Accordingly we categorize and prioritize the test cases
into 20 percent highly beneficial, 30 percent medium beneficial,
and 50 percent low beneficial and model following alternative
restrictions to be used in alternative scenarios.

R2.1: na ≥ 20

R2.2: na ≥ 50
To estimate the benefit of manual testing we propose, for this
example, to maximize the test coverage. Thus, we assume an
evenly distributed risk exposure over all test cases, but we calcu-
late the benefit of manual testing based on the number of com-
pletely tested releases. Accordingly we categorize and prioritize
the test executions into one and two or more completely tested
releases. We model following alternative restrictions for alterna-
tive scenarios.

R3.1: nm ≥ 100

R3.2: nm ≥ 200
Based on this example we illustrate three possible scenarios in
balancing automated and manual testing. Figures 4a, 4b and 4c
depict the example scenarios graphically.

• Scenario A – The testing objectives in this scenario are, on
the one hand, to test at least one release completely and, on
the other hand, to test the most critical 50 percent of the sys-
tem for all releases. These objectives correspond to the re-
strictions R3.1 and R2.2 in our example model. As shown in
Figure 4a the optimal solution is point S1 (na = 50, nm =
100) on the production possibilities frontier defined by R1.
Thus, the 50 test cases referring to the most critical 50 per-
cent of the system should be automated and all test cases
should be run manually once.
Note: In this example we assume that – as discussed in Sec-
tion 2 – running the same test automatically and manually
may detect different types of failures. Therefore, an auto-
mated test case should be executed manually too.

• Scenario B – The testing objectives in this scenario are, on
the one hand, to test at least one release completely and, on
the other hand, to test the most critical 20 percent of the sys-
tem for all releases. These objectives correspond to the re-
strictions R3.1 and R2.1 in our example model. As shown in
Figure 4b any point within the shaded area fulfills these re-
strictions. The target function, however, will make sure that
the optimal solution will be a point between S1 (na = 50, nm
= 100) and S2 (na = 20, nm = 220) on the production possi-
bilities frontier defined by R1.
Note: While all points on R1 between the S1 and S2 satisfy
the objectives of this scenario, the point representing the op-
timal solution depends on the definition of the contribution
to risk mitigation of automated and manual testing, Ra(na)
and Rm(nm). While the optimization model may be solved
mathematically once these functions have been defined, the
effort of doing so has to be weighted against the pragmatic
approach of approximating the optimal solution by stepwise
refining the restrictions to narrow the solution space.

• Scenario C – The testing objectives in this scenario are, on
the one hand, to test at least two releases completely and, on
the other hand, to test the most critical 50 percent of the sys-

tem for all releases. These objectives correspond to the re-
strictions R3.2 and R2.2 in our example model. As shown in
Figure 4c a solution that satisfies both restrictions cannot be
found. This scenario depicts an unsatisfactory situation
which falls short of meeting the testing objectives and, as a
result, the quality target.
Note: A situation like this is a strong indicator for an inap-
propriate test budget, and renegotiation of the budget and
objectives of testing is required before an investment in
automated and manual testing is made.

Figure 4a: Example scenario A

Figure 4b: Example scenario B

Figure 4c: Example scenario C

75

manual tests 300 100

50

20

200

automated
tests

75

manual tests 300 100

S1
50

20

220

S2

automated
tests

75

manual tests 300 100

S1
50

20

200

automated
tests

89

5. ADDITIONAL INFLUENCE FACTORS
The model presented in the previous section has been simplified
to facilitate comprehension and discussion. Thus, in order to
support decision-making in realistic real-world scenarios, the
model has to be extended by including additional influencing
factors. In this section we describe typical factors distilled from
literature and the authors’ experience in test automation.

• Tests that rely on automation – The production possibilities
frontier shown in Figure 3 usually is not linear but bowed
outward. The curve flattens when most of the budget is used
to either do automated or manual testing, because some test
cases are more amenable to be automated and others are
best run manually. Consider for example performance and
stress testing with 100 concurrent transactions accessing the
same data. These types of testing require automation as it is
impossible (or only at an unreasonable expense) to simulate
such a scenario by hand. In contrast, manual testing is pref-
erable to assess “intangible” requirements such as the aes-
thetic appearance and attractiveness of a user interface or
Web site.

• Productivity changes over time – The production possibili-
ties frontier shows the trade-off between automated and
manual testing at a given time, but this trade-off can change
as productivity changes over time. This is especially the
case in projects introducing test automation. The authors
have observed cases where the productivity of automating a
test case had approximately doubled after a reusable test li-
brary containing basic routines had been developed and the
engineers had advanced on the learning-curve.

• Growing test effort in iterative development – Iterative de-
velopment approaches do not produce complete systems
with every release. The first releases are typically used to
construct the basic building blocks and the core functional-
ity of the system. Less valuable features are deferred to later
releases. Therefore, in the beginning, the effort for testing
may be low and narrowly focused. As the system grows the
effort for testing increases and has to be expanded to a
wider range of requirements and system components.

• Maintenance costs for automated tests – Iterative develop-
ment not only adds new functionality with every release but
also changes existing functionality. Kaner [12] points out
that “testers invest in regression automation with the expec-
tation that the investment will pay off in due time. Sadly,
they often find that the tests stop working sooner than ex-
pected. The tests are out of sync with the product. They de-
mand repair. They’re no longer helping finding bugs. Test-
ers reasonably respond by updating the tests. But this can be
harder than expected. Many automators have found them-
selves spending too much time diagnosing test failures and
repairing decayed tests.”

• Early/late return on investment – “An immediate impact of
many automation projects is to delay testing and delay bug
finding. This concern is also an argument for using upfront
automation techniques that let you prepare automated tests
before the software is ready for testing. For example, a data-
driven strategy might let you define test inputs early. In this
case, test automation might help you accelerate testing and
bug finding.” [12]

• Defect detection capability – The capability of a test to re-
veal a defect if there actually is a defect may vary. Not every
test case has the same power to reveal a defect since not all
defects will result in a failure or an observable behavior of
the tested system, and not all test cases are able to indicate
the occurrence of a failure [25]. This is particularly true for
automated testing relying on partial oracles, for instance
random “monkey” testing, driving the system under test
with random input provoking major system failures such as
crashes.

6. DISCUSSION AND CONCLUSION
In this paper we discussed cost models to support decision-
making in the trade-off between automated and manual testing.
We summarized typical problems and shortcomings of overly
simplistic cost models for automated testing frequently found in
literature and commonly applied in practice:

• Only costs are evaluated and benefits are ignored
• Incomparable aspects of manual testing and automated test-

ing are compared
• All test cases and test executions are considered equally

important
• The project context, especially the available budget for test-

ing, is not taken into account
• Additional cost factors are missing in the analysis
We address these problems by introducing an alternative model
using opportunity cost. The concept of opportunity cost allows us
to include the benefit and, thus, to make the analysis more ra-
tional. Instead of minimizing the overall costs of testing, the
benefits of testing are maximized. We suggest determining the
benefit of a test case by estimating its contribution to risk mitiga-
tion for the tested requirement or system component. This ap-
proach is in line with requirements-based testing and risk-based
testing [21]. Building on the potential benefit of a test case,
which we consider to be different for automated or manual test-
ing, allows a realistic comparison between these two alternatives.
Furthermore, it avoids considering all test cases and test execu-
tions equally important. By representing the available budget for
testing as production possibilities frontier according to economic
theory, we include the specific project context and the resulting
restrictions in our model.
We simplified the complex model to highlight and clarify some
basic ideas and to facilitate comprehension and discussion. For
the sake of simplicity, some typical factors influencing the trade-
off between automated and manual testing have been omitted
from the model as well as from the example in Section 4. There-
fore the model, as described in Section 4, has to be extended to
represent real-world scenarios more realistically. We have de-
scribed influencing factors commonly found in literature or
which have emerged in practice in Section 5 for further consid-
eration.
On the one hand, adding further influencing factors to the model
increases the usefulness for decision-making. On the other hand,
however, additional influencing factors increase the model’s
complexity and limit the applicability in practice due to the high
effort required for collecting the data and for solving the model.
Identifying and incorporating the most important influencing

90

factors is therefore crucial. Thus, future plans include identifying
and adding further factors influencing decision-making to make
the model more realistic. As a first step, the authors appreciate
the opportunity to discuss the model and further influencing fac-
tors in the workshop. Our aim is to compare the underlying as-
sumptions of the model to the automation approaches presented
by the workshop participants to derive and discuss appropriate
influencing factors.
At the same time, the model’s preciseness and completeness has
to be evaluated from a value-based perspective. With every addi-
tional influencing factor, adjustment parameter and restriction
introduced to the model, its complexity increases and its practical
value decreases. The balance between keeping the model simple
but not too simple to draw valid conclusions has to be found. So
far the model has proven a highly valuable tool to foster discus-
sion about the opportunities and pitfalls of automated testing, to
draw the attention on the importance of balancing automated and
manual testing, and to support test planning by quickly sketching
and evaluating alternative scenarios. In these cases the model
was not at all intended to be implemented and solved.

7. ACKNOWLEDGEMENTS
The authors gratefully acknowledge support by the Austrian
Government, the State of Upper Austria, and the Johannes Ke-
pler University Linz in the framework of the Kplus Competence
Center Program.

8. REFERENCES
[1] Amland, S., Risk Based Testing and Metrics. 5th Int. Soft-

ware Testing Analysis & Review Conference (Euro-
STAR’99), Barcelona, Spain, Nov. 1999

[2] Bach, J., Test Automation Snake Oil, 14th International
Conference and Exposition on Testing Computer Software,
Washington, DC, 1999

[3] Boehm B.: Software Risk Management: Principles and
Practices. IEEE Software, pp. 32-41, Jan. 1991

[4] Boehm, B., Value-Based Software Engineering: Overview
and Agenda. In: Biffl S. et al.: Value-Based Software Engi-
neering. Springer, 2005

[5] Boehm, B., Basili, V.R., Software Defect Reduction Top 10
List, IEEE Computer, pp. 135-137, January 2001

[6] Compuware QADirector, Advanced risk-based test man-
agement. Compuware 2006
(www.compuware.com/products/qacenter/qadirector.htm)

[7] Dustin, E. et. al., Automated Software Testing, Addison-
Wesley, 1999

[8] Fewster, M., Graham, D., Software Test Automation: Ef-
fective Use of Text Execution Tool, Addison-Wesley, 1999

[9] Harrold, M.J.: Testing: A Roadmap. In: The Future of Soft-
ware Engineering, ed by Finkelstein, A., 22th International

Conference on Software Engineering, Limerick, Ireland,
June 2000

[10] Highsmith, J., Agile Software Development Ecosystems,
Addison-Wesley, 2002

[11] Hoffman, D., Cost Benefits Analysis of Test Automation,
Software Testing Analysis & Review Conference (STAR
East). Orlando, FL, May 1999

[12] Kaner, C., Bach, J., and Pettichord, B., Lessons Learned in
Software Testing, Wiley, 2002

[13] Kaner, C., What is a Good Test Case, Software Testing
Analysis & Review Conference (STAR East). May 2003

[14] Kruchten, P., The Rational Unified Process: An Introduc-
tion, 3rd Ed., Addison-Wesley, 2003

[15] Link, J., Unit Testing in Java: How Tests Drive the Code,
Morgan Kaufmann, 2003

[16] Linz, T., Daigl, M., GUI Testing Made Painless. Imple-
mentation and results of the ESSI Project Number 24306,
1998. In: Dustin, et. al., Automated Software Testing, Ad-
dison-Wesley, 1999, pp. 52

[17] Mankiw G.W., Principles of Economics, 2nd Ed. Hartcourt
College Publishers, 1998

[18] Marick, B., When Should a Test Be Automated, Software
Testing Analysis & Review Conference (STAR East). Or-
lando, FL, May 1999

[19] Persson, C., Yilmaztürk, N., Establishment of Automated
Regression Testing at ABB: Industiral Experience Report
on Avoiding the Pitfalls, 19th IEEE International Confer-
ence on Automated Software Engineering (ASE’04), Linz,
Austria, 2004

[20] Ramler R., Weippl E., Winterer M., Schwinger W., and
Altmann J., A Quality-Driven Approach to Web-Testing.
2nd Conf. on Web Engineering (ICWE'02), Santa Fe, Ar-
gentina, Sept. 2002

[21] Ramler R., Biffl S., Grünbacher P., Value-based Manage-
ment of Software Testing. In: Biffl S. et al.: Value-Based
Software Engineering. Springer, 2005

[22] Redmill, F., Exploring risk-based testing and its implica-
tions. Software Testing, Verification and Reliability. 14, 3-
15 (2004)

[23] Rothermel, G., Elbaum, S., Putting Your Best Tests For-
ward. IEEE Software, 20(5), pp. 74-77, Sept/Oct 2003

[24] Schwaber, C., Gilpin, M., Evaluating Automated Func-
tional Testing Tools, Forrester Research, February 2005

[25] Voas, J.M., Morell, L.J., and Miller, K.W., Predicting
where faults can hide from testing. IEEE Software, 8(2),
pp. 41-48, March 1991

91

