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The field of artificial intelligence (AI) strives to build rational agents, capable

of perceiving the world around them and taking actions to advance specified

goals. Put another way, AI researchers aim to construct a synthetic homo

economicus, the mythical perfectly rational agent of neoclassical economics.

We review progress towards creating this new species of machine, machina

economicus, and discuss some challenges in designing AIs that can reason ef-

fectively in economic contexts. Supposing that AI succeeds in this quest, or

at least comes close enough that it is useful to think about AIs in rationalistic

terms, we ask how to design the rules of interaction in multi-agent systems

that come to represent an economy of AIs. Theories of normative design from

economics may prove more relevant for artificial agents than human agents,

with AIs that better respect idealized assumptions of rationality than people,

interacting through novel rules and incentive systems quite distinct from those

tailored for people.
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Rationality in Economics and in AI

Economics models the behavior of people, firms, and other decision makers, as a means to un-

derstand how these decisions shape the pattern of activities that produce value and ultimately

satisfy (or fail to satisfy) human needs and desires. In this enterprise, the field classically starts

from an assumption that actors behave rationally, that is, their decisions are the best possible

given their available actions, their preferences, and their beliefs about the outcomes of these

actions. Economics is drawn to rational decision models because they directly connect choices

and values, in a mathematically precise manner. Critics argue that the field studies a mythical

species, homo economicus (“economic man”), and produces theories with limited applicabil-

ity to how real humans behave. Defenders acknowledge that rationality is an idealization, but

counter that the abstraction supports powerful analysis, which is often quite predictive of peo-

ple’s behavior (as individuals, or in aggregate). Even if not perfectly accurate representations,

rational models also allow preferences to be estimated from observed actions and build under-

standing that can usefully inform policy.

Artificial Intelligence research is likewise drawn to rationality concepts, as they provide an

ideal for the computational artifacts it seeks to create. Core to the modern conception of AI is

the idea of designing agents: entities that perceive the world and act in it (1). The quality of an

AI design is judged by how well the agent’s actions advance specified goals, conditioned on the

perceptions observed. This coherence among perceptions, actions, and goals is the essence of

rationality. If we represent goals in terms of preference over outcomes, and conceive perception

and action within the framework of decision making under uncertainty, then the AI agent’s

situation aligns squarely with the standard economic paradigm of rational choice. Thus, the AI

designer’s task is to build rational agents, or agents that best approximate rationality given the

limits of their computational resources (2–4). In other words, AI strives to construct—out of
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silicon (or whatever) and information—a synthetic homo economicus, perhaps more accurately

termed machina economicus.

The shared rationality abstraction provides a strong foundation for research that spans AI

and economics. We start this review by describing progress on the question of how to oper-

ationalize rationality, and how to construct AI agents that are able to reason about other AIs.

Supposing that AI research succeeds in developing an agent that can be usefully modeled as

rational (perhaps more so than human agents), we turn to research on the design of systems

populated by multiple AIs. These multi-agent systems will function as AI economies, with AIs

engaged in transactions with other AIs as well as with firms and people. This prospect has

spawned interest in expanding theories of normative design from economics, optimizing rules

of encounter (5) to guide multi-agent interactions. Systems populated by AIs may exhibit new

economic phenomena, and thus require a new science with which to understand the way they

function and to guide their design. For example, while human cognitive constraints limit the de-

sign of current markets, systems designed for AIs may admit more complex interfaces, impose

greater calculation burdens, and demand more stamina of attention.

At the same time, the ways in which the behavior of AIs deviate from the behavior of people

can present new challenges. We can already glimpse the future of economic AIs, with simple

AI bots pricing books for sale on Amazon and scanning for restaurant tables on Opentable for

re-sale at a profit (6). Such AIs may introduce some efficiencies, but their lack of common sense

and their designer’s failure to anticipate interactions can also lead to books priced at $23m (7).

More sophisticated AI strategies, presumably more carefully vetted, exert a large influence on

financial markets, with automated trading algorithms estimated to be responsible for more than

70% of trades on U.S. stock markets (8). Given the consequences, it is important to understand

the impact of ubiquitous automated agents on the performance of economic systems. As rea-

soning is shifted from people to AIs—designed to learn our preferences, overcome our decision
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biases, and make complex cost-benefit tradeoffs—how too should the economic institutions that

mediate everyday transactions change?

We focus in this review on some of the research directions we consider most salient for a

future synthesis of economics and AI engendered by the emergence of machina economicus.

Interesting as they are, we only briefly mention here the many exciting applications of AI to

problems in economics such as matching (9), market clearing (10) and preference modeling for

smart grids (11). Nor will we showcase the many ways in which economic theory is finding ap-

plication today within AI, for example game-theoretic approaches to multi-agent learning (12)

and voting procedures to combine the opinions of AIs (13).

Building Machina Economicus

Constructing a rational AI raises a host of technical challenges not previously addressed in the

long tradition of rationalistic modeling in the social sciences. For economics, the agent atti-

tudes (e.g., beliefs, preferences) underlying rationality are conceptual abstractions. Economists

need not explain how capabilities and preferences, for example, are encoded, nor the algorithm

by which an agent plans what actions to take conditional on its perceptions. Computation is

abstracted away in the standard economic model, and is precisely what the AI scientist must

account for in order to operationalize rationality in a realized agent.

This does not mean an AI design needs to incorporate data structures corresponding di-

rectly to rationality constructs, though many AI architectures do feature direct representations

for propositions, goals, and the like. Such representations may simplify the analysis of AI sys-

tems, for example we can ask whether an inference algorithm operating on logical expressions

possesses desirable properties such as soundness: that all conclusions follow from the premises.

Similarly, if an AI’s beliefs are encoded as probability distributions, we can ask whether it up-

dates its beliefs from observations in proper accord with Bayesian theory. However, care must
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Internal Rewards Mitigate Agent Boundedness

actions which deterministically move the agent in each
of the cardinal directions. If the intended direction is
blocked by a wall or the boundary, the action results
in no movement. There is a (worm) food source ran-
domly located in one of the three right-most locations
at the end of each corridor. The agent has an eat
action, which consumes the worm when the agent is
at the worm’s location. After the agent consumes the
worm, the agent becomes satiated for 1 time step, and
the worm disappears. Immediately, a new worm ap-
pears randomly in one of the other two potential worm
locations. At all other time steps, the agent is hungry.
The agent observes the entire state: the agent’s loca-
tion, whether it is hungry, and the worm’s location.

The designer’s goal is to maximize worms eaten. Thus,
the objective reward function RE provides a reward of
1.0 when the agent eats a worm (i.e., is satiated) in
the current observation, and a reward of 0 otherwise.
We use the infinite-horizon average return function.

The agent and its bounds. Let Gd (short for
G(RI , d)) denote a depth-d planning model-based

learning agent—an agent that acts greedily with
respect to the d-step action-value function Qd(s, a) =P

s02S T̂ (s0|s, a)[RI(s, a, s0) + �maxa0
Qd�1(s0, a0)]

where Q0(s, a)
def
= 0. (The agents use � = 0.99 unless

noted otherwise.) If the values of multiple actions are
equivalent, the agent selects randomly among them.
The transition-dynamics estimates, T̂ , come from an
estimated MDP transition model (updated after every
action) based on the empirical transition probabilities
between assumed-Markov observations. Specifically,
let ns,a be the number of times that action a was
taken in state s. Let ns,a,s0 be the number of times
that s

0 was reached after taking action a in state s.
The agent models the probability of reaching s

0 after
taking a in state s as T̂ (s0|s, a) = ns,a,s0

ns,a
.2

Thus, agent Gd is a simple example of a computation-
bounded agent in which the depth d is a parameter
controlling the degree of boundedness. More specif-
ically, agent G0 is a random agent, because its Q-
function is a constant 0; agent G1 acts greedily with
respect to its reward, and agent G1 is an unbounded-
depth planning agent, computing the optimal value
function with respect to its current model and inter-
nal reward function. In experiment 1’s environment,
the largest (over all states) look-ahead needed to ob-
tain objective reward is 8. Thus we explore agents
with planning depths between 0 and 9, where G8,9 are
equivalent to G1. Crucially, it is the inability of agent

2Before an observation-action pair is experienced (i.e.,
when ns,a = 0) the transition model is initialized to the
identity function: T̂ (s0|s, a) = 1 i↵ s0 = s.
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Figure 1. (a) Foraging domain used in Experiments 1 and
2. (b) Results from Experiment 1 on limited-depth plan-
ning, showing performance gains from using optimal inter-
nal rewards as a function of planning depth bound.

Gd<8 to encounter a confounded reward during plan-
ning from some states that we wish to mitigate via
internal rewards.

Internal reward space. The general form of
the rewards in all the experiments is RI(s, a, s0) =
�

T
�(s, a, s0, h,G), where � is a parameter vector, and

� is a vector of features that may depend on states s

and s

0, the action a, features of history h, and in some
cases on internal variables specific to the agent G.

Our choice of features for this domain is driven by
the following intuition. If an agent Gd<8 is more than
d steps away from the worm, what action should it
take? The agent could take random actions to ex-
plore randomly to achieve a state that is within d steps
from the worm, but this will be ine�cient. A good re-
ward function would lead to some kind of systematic
and persistent exploration and would thus be far more
e�cient. Specifically, we consider the reward space
RI(s, a) = �E�E(s) + �c�c(s, a, h), where �E and �c

are the two parameters, feature �E(s) is 1 when the
agent is satiated in state s and 0 otherwise, and fea-
ture �c(s, a, h) = 1 � 1

c(s,a,h) , where c(s, a, h) is the
number of time steps since the agent previously exe-
cuted action a in state s within history h. Feature �c

captures recency; the feature’s value is high when the
agent has not taken the indicated state-action pair re-
cently. When �c is positive, the agent is rewarded for
taking actions that it has not taken recently from the
current state. Note that when �E = 1 and �c = 0, the
internal reward is the confounded reward function.

Results. At each depth d 2 {0, 1, · · · , 9}, we sepa-
rately optimized the internal reward function as mea-
sured by the mean objective return obtained during
a 10,000 step horizon. We then evaluated the con-
founded reward function RE and the approximate best
internal reward R̂

⇤
Id at each depth d for 200,000 steps,

averaged over 200 trials, to estimate the expected
asymptotic objective return of each reward function.

As can be seen in Figure 1(b), the internal reward func-

Figure 1: A bounded reinforcement learning agent performs better by pursuing a designed
reward function different from the objective reward: its actual fitness evaluation. Results (right)
from a gridworld foraging domain (left), for various limits on the agent’s planning horizon (16).
Unless the agent is perfectly rational (i.e., no horizon limit)—not typically feasible in realistic
applications—the designer can often achieve better fitness by directing the agent to optimize an
alternative measure.

be taken in understanding an agent’s attitudes solely in terms of its internal data structures.

Imperfections in decision making may mean that the beliefs held and objectives pursued by a

computational agent, in effect, vary systematically from those directly encoded.

As an example illustrating this distinction, machine learning researchers adapted from ani-

mal learning the concept of reward shaping (14). In reinforcement learning, the agent derives

a policy (mapping from perception sequences to actions) based on rewards representing instan-

taneous value associated with a state and action. A designer specifying the input reward can

often train the agent more efficiently by shaping the reward signal over the learning process, to

facilitate convergence to behavior optimizing the designer’s objective. The framework of opti-

mal rewards (15) provides a general treatment distinguishing reward specifications and designer

goals. As shown in Fig. 1, the optimal reward input to the agent does not generally correspond

to the designer’s ideal reward. This perspective helps explain the role of intrinsic motivations

(e.g., curiosity) in a flexible learning agent.
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Though the mantle of designing machina economicus may not be adopted (particularly in

such explicit terms) by all AI researchers, many AI advances over the last few decades can be

characterized as progress in operationalizing rationality. For instance, probabilistic reasoning

was largely eschewed by AI thirty years ago, but now pervades the field, thanks to developments

in representation and inference using Bayesian networks and related graphical formalisms. Ex-

pressing uncertainty about general relationships, beyond mere propositions, is routinely sup-

ported in probabilistic modeling languages (17). Statistical approaches now dominate machine

learning and natural language processing [cite review article in this issue]. Likewise prefer-

ence handling (including methods for eliciting preferences from the designer of an AI agent,

compactly representing preferences over complex domains, and enabling inference about pref-

erences) is regarded as a necessary AI facility. Planning, the AI subfield concerned with action

over time, now conventionally frames its problem as one of optimization, subject to resource

constraints, multiple objectives, and probabilistic effects of actions.

Will AI succeed in developing the ideal rational agent? As much as we strive to create

machina economicus, absolutely perfect rationality is unachievable with finite computational

resources. A more salient question is whether AI agents will be sufficiently close to the ideal as

to merit thinking about them and interacting with them in rationalistic terms. Such is already

the case, at least in a limited sense. Whenever we anthropomorphize our machines, we are

essentially treating them as rational beings, responding to them in terms of our models of their

knowledge, goals, and intentions. A more refined version of the question is whether our formal

rationality theories will fit well the behavior of AI agents, in absolute terms, or compared to

how well the theories work for people. Without offering any judgment on the question of how

well rationality theories capture essential human behavior, we note the irony in the prospect that

social science theories may turn out to apply with greater fidelity to non-human agent behavior.
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Reasoning about other Agents

The issue of agent theorizing is not merely academic. If we can build one AI agent, then we will

build many, and these AIs will need to reason about each other, as well as about people. For AIs

designed to approximate machina economicus, it stands to reason they should treat each other

as rational, at least as a baseline assumption. These AIs would adopt a game-theoretic view of

the world, where agents rationally respond to each others’ behavior, presumed (recursively) to

be rational as well. A consequence is that agents would expect their joint decisions to be in

some form of equilibrium, as in standard economic thinking.

That AIs (or AI-human combinations) are reasonably modeled as approximately rational is

the premise of a growing body of AI research applying economic equilibrium models to sce-

narios involving multiple agents (18). The approach has achieved notable successes, providing

evidence for the premise, at least in particular circumstances. Just as single-agent rationality

does not require literal expected-utility calculations, applicability of an equilibrium model does

not require that agents themselves be explicitly engaged in equilibrium reasoning. For exam-

ple, the literature on learning in games (19) has identified numerous conditions where simple

adaptive strategies converge to strategic equilibria. We can evaluate the effectiveness of eco-

nomic modeling by examining agents built by AI designers for specified tasks. For instance,

in a study of AI trading agents competing in a shopping game (20), an agent using standard

price equilibrium models from economics (specifically, Walrasian equilibrium) achieved com-

parable prediction accuracy to sophisticated machine learning approaches, without using any

data—even though none of the other agents employed equilibrium reasoning.

In the rest of this section, we describe further examples where economic modeling, in the

form of game-theoretic algorithms, has provided an effective way for AIs to reason about other

agents.
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The first example is computer poker. Although poker is an artificial game, many humans

have invested a great deal of time and money to develop their playing skills. More impor-

tantly, poker’s uncertainty and complexity have made it a compelling challenge problem for AI

techniques. Early approaches aimed to capture the knowledge of expert human players (21),

but over the last decade, game-theoretic algorithms have predominated. Technically, poker is

a game of imperfect information, where each player knows elements of history (cards dealt to

them) that are secret from others. As uncertainty gets partially resolved over time, through card

turns and betting, players must update their beliefs, about both card outcomes and the beliefs of

others.

A major milestone in computer poker was achieved in 2014, with the effective solution of

heads up limit hold’em (HULHE), which is a standard two-player version of the most popular

poker game (22). HULHE is the largest game of imperfect information ever solved (over 1013

information sets, after removing symmetries), and the first imperfect-information game widely

played by humans to be solved. The solution was the culmination of two decades of effort by a

series of researchers (See Fig. 2), beginning with exact solution of simplified poker games, and

proceeding to approximate solution of abstracted versions of the full game (23). Computing the

approximate Nash equilibrium of the full game required massive computation and new methods

for equilibrium search based on regret-matching techniques from machine learning. The result

is a strategy against which even a perfect opponent cannot earn a detectable profit.

In general, the optimal strategy against perfect opponents may not be the ideal strategy

against the more typical fallible kind. Despite considerable effort, however, researchers have

not found poker algorithms that perform considerably better than game-theoretic solutions, even

against natural distributions of opponents. It has also turned out that game-theoretic approaches

have been more successful than alternatives, even for poker variants that are far from being

exactly solved, such as no-limit (where bets are unrestricted) (24), or games with three or more
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Figure 2: Researchers produced steady exponential progress on solving games of imperfect
information from 1995 to the present. Up to 2007 (left), game size was generally reported in
terms of nodes in the game tree. Based on methods introduced around that time, it became more
meaningful (right) to report size in terms of the number of information sets (each many nodes),
which represent distinct situations as perceived from the perspective of a player. The circled
data points correspond to the same milestone; combining the two graphs thus demonstrates the
continual exponential improvement.

players (25).

Much of the interest in game-theoretic reasoning for AI is driven by its applicability to

real-world problems. The most prominent area of application in recent years and our second

example is that of security games, based on a pioneering series of systems developed by Tambe

et al. (26). In these systems, an agent decides how to defend facilities (e.g., airport security

through placement of checkpoints) by solving a game where an attacker is presumed to ratio-

nally plan in response to the defender’s decision. This approach has been successfully deployed

in a variety of domains, including airport and airline security and coast guard patrols.

As for any game-theoretic approach, the recommendations from these systems are sensi-

tive to assumptions made about the other agents (here, attackers): their respective preferences,

beliefs, capabilities, and level of rationality. Representational approaches from AI provide flexi-

bility, allowing the assumptions made in the strict versions typically employed by game theorists
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to be relaxed (27). The field of behavioral game theory has developed detailed predictive mod-

els based on how humans have been observed to deviate from game-theoretic rationality (28).

Such predictive models can be readily incorporated in existing game-theoretic reasoning algo-

rithms, as has been demonstrated in the context of modeling attackers in security games (29).

An interesting open question is whether the kinds of behavioral models that best explain human

decision making (see Wright and Leyton-Brown (30) for a meta-study) will also prove effective

in capturing the bounded rationality of computational agents.

Designing Multi-Agent Systems

At the multi-agent level, a designer cannot directly program behavior of the AIs, but rather

defines the rules and incentives that govern interactions among AIs. The idea is to change

the “rules of the game” (e.g., rewards associated with actions and outcomes) in order to effect

change in agent behavior and achieve system-wide goals. System goals might include, for

instance, promoting an allocation of resources to maximize total value, coordinating behavior

in order to complete a project on time, or pooling decentralized information to form an accurate

prediction about a future event. The power to change the interaction environment is special,

and distinguishes this level of design from the standard AI design problem of performing well

in the world as given.

An interesting middle ground is to take the world as given, but employ reliable entities—

mediators—that can interact with AIs and perform actions on their behalf (31). Introducing

mediating entities is relatively straightforward in the new AI economy. To see how this can be

powerful, consider a mediated extension of the classic Prisoner’s dilemma game (Fig. 3). If

both AIs grant the mediator the authority to play on their behalf (i.e., proxy right), it performs

Cooperate on behalf of both agents. However, if only one AI grants the mediator proxy, it

performs Defect on behalf of that agent. In equilibrium, both AIs grant proxy, and the effect
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Cooperate Defect
Cooperate 4,4 0,6

Defect 6,0 1,1
(a)

Mediator Cooperate Defect
Mediator 4,4 6,0 1,1
Cooperate 0,6 4,4 0,6

Defect 1,1 6,0 1,1
(b)

Figure 3: Each entry gives the utility to (row player, column player). (a) Prisoner’s dilemma.
The dominant strategy equilibrium is (Defect, Defect). (b) Mediated Prisoner’s dilemma. The
dominant strategy equilibrium is (Mediator, Mediator).

is to change the outcome from (Defect,Defect) to (Cooperate,Cooperate), increasing utility to

both participants.

For the more general specification of rules of interaction for rational agents, economics has a

well-developed mathematical theory of mechanism design (32). The framework of mechanism

design has been fruitfully applied for example to the design of matching markets (33) and

auctions (34). Mechanism design is a kind of inverse game theory, with the rules inducing a

game, and the quality of the system evaluated in an equilibrium. In the standard model, design

goals are specified in terms of agent preferences on outcomes, but these preferences are private

and agents self-interested. A mechanism is a trusted entity, able to receive messages from

agents that make claims (perhaps untruthfully) about preferences, and select an outcome (e.g.,

an allocation of resources, a plan of behavior) on the basis of these messages. The challenge is

to align incentives and promote truthful reports.

Varian (35) has argued that the theory of mechanism design may actually prove more rele-

vant for artificial agents than human agents, as AIs may better respect the idealized assumptions

of rationality made in this framework. For example, one desirable property of a mechanism is

incentive compatibility, which stipulates that truthful reports constitute an equilibrium. Some-

times it is even possible to make truthful reporting a dominant strategy (optimal whatever others

do), achieving the strong property of strategy-proofness (36). But it seems that people do not

reliably understand this property; evidence from medical matching markets, and also from lab
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experiments, suggests that some participants in strategy-proof matching mechanisms try to mis-

represent their preferences even though it provides no advantage (37, 38).

For artificial systems, in comparison, we might expect AIs to be truthful where this is op-

timal, and to avoid spending computation reasoning about the behavior of others where this is

not useful (5). More generally, mechanism designs for AI systems need not be simple because

they need not be understandable to people. On the contrary, AI techniques such as preference

representation, preference elicitation, and search algorithms can be used to turn the mathemati-

cal formalisms of mechanism design into concrete computational methods (39–41). The design

problem itself can also be usefully formulated as a computational problem, with optimization

and machine learning used to find solutions to design problems for which analytical solutions

are unavailable (42–45).

The prospect of an economy of AIs has also inspired expansions to new mechanism design

settings. Researchers have developed incentive-compatible multi-period mechanisms, consid-

ering such factors as uncertainty about the future and changes to agent preferences because of

changes in local context (46–48). Another direction considers new kinds of private inputs be-

yond preference information (49, 50). For example, in a team formation setting, each AI might

misreport information about the capabilities of other AIs in order to get itself selected for the

team (51). Similarly, AIs seeking to maximize task assignments might provide false reports

of experience in task performance in order to mislead a learning mechanism constructing an

automatic task classifier (52). Systems of AIs can also create new challenges for mechanism

design. One such challenge is false-name bidding, where an AI exploits its ability to manage

multiple identities. For example, it may gain resources more cheaply by dividing a request into

a set of smaller requests, each placed from a different identity under its control. In response,

researchers have developed mechanisms that are robust to this new kind of attack (53).

The important role of mechanism design in an economy of AIs can be observed in practice.
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Search engines run auctions to allocate ads to positions alongside search queries. Advertisers

bid for their ads to appear in response to specific queries (e.g., “personal injury lawyer”). Ads

are ranked according to bid amount (as well as other factors such as ad quality), with higher

ranked ads receiving a higher position on the search results page. Early auction mechanisms

employed first-price rules, charging an advertiser its bid amount when its ad receives a click.

Recognizing this, advertisers employed AIs to monitor queries of interest, ordered to bid as little

as possible to hold onto the current position. This practice led to cascades of responses in the

form of bidding wars, amounting to a waste of computation and market inefficiency (54). To

combat this, search engines introduced second-price auction mechanisms (36), which charge

advertisers based on the next highest bid price rather than their own price. This approach (a

standard idea of mechanism design) removed the need to continually monitor the bidding to get

the best price for position, thereby ending bidding wars (55).

In recent years, search engine auctions have supported richer, goal-based bidding languages.

For example, an advertiser can ask to maximize clicks over a weighted set of queries subject

to a budget constraint (56, 57). Search engines provide proxy agents that then bid on behalf

of advertisers to achieve the stated goal (58). This introduction of proxy agents and the earlier

switch from first price to second price can be interpreted as a computational application of

a fundamental concept in mechanism design—the revelation principle (59–61). Briefly, this

states that if the rules of a mechanism and the equilibrium strategies in that mechanism are

replaced by a new mechanism that is functionally equivalent to the composition of these rules

and strategies, then the new mechanism will be incentive compatible. Although neither redesign

provides incentive compatibility in a formal sense, both second-pricing and proxy bidding can

be interpreted as accomplishing on behalf of advertisers what they were doing (through AIs)

in an earlier design. See Fig. 4. Still other ad platform designs are using a strategy-proof

mechanism (the Vickrey-Clarke-Groves mechanism (36, 62, 63)) to make decisions about the
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Figure 4: Two generations of sponsored search mechanisms. Early designs were first price (FP)
and advertisers (ADV) used AIs (AI-POS) to maintain a position on the list of search results at
the lowest possible price. Second price (SP) auction mechanisms were introduced, designed to
replace the combination of FP and AI-POS. Advertisers adopted new AIs (AI-GOAL) to achieve
higher-level goals such as maximize profit or maximize the number of clicks. The second price
auction was extended to include proxy agents (SP+Proxy), designed to replace the combination
of SP and AI-GOAL.

space to allocate to ads, which ads to allocate, and which (non-sponsored) content to display to

a user (64).

The tangle between automated agents and the design of rules of interaction also features

prominently in today’s financial markets, where the dominance of computerized traders has, by

most accounts, qualitatively shaped the behavior of these markets. Although details of imple-

mentation are closely held secrets, it is well understood that techniques from AI and machine

learning are widely employed in the design and analysis of algorithmic traders (65). Algorith-

mic trading has enabled the deployment of strategies that exploit speed advantages, and has

led in turn to a costly arms race of measures to respond to market information with minimum

latency. A proposed design response would replace continuous-time auctions with periodic

auctions that clear on the order of once per second, thus negating the advantage of tiny speed

improvements (66, 67).

We describe two additional examples of the design of multi-agent systems for an economy

of AIs.

The first example system aggregates information held by multiple AIs. The rules of a system
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that achieves this goal can be engineered purposefully through the design of a prediction mar-

ket (68). Popular versions of prediction markets feature questions such as who will be elected

U.S. President (e.g., Betfair offers many such markets). The basic idea of a prediction market

is to facilitate trade in securities contracts (e.g., a possible contract will pay $1 if Hilary Clinton

elected). The price that balances supply and demand is then interpreted as a market prediction

(e.g., price $0.60 reflects probability 0.6 for the payoff event).

Consider a domain with a large number of interrelated random variables, for example “flight

BA214 delayed by more than 1 hour”, “snowstorm in Boston”, “de-icing machine fail”, “incom-

ing flight BA215 delayed by more than 1 hour”, and “security alert in London”. In a combinato-

rial prediction market (69), a large bet on the contract “de-icing machine fail” would affect the

price of “flight BA214 delayed by more than 1 hour”, and all other connected events. A chal-

lenge is that the number of conceivable events is exponential in the number of random variables.

Among other properties, a good market design should allow bets on all events about which AIs

have information (e.g., “de-icing machine fail AND all subsequent flights from Boston delayed

by more than 1 hour”.) A good design should also align incentives, for example making it

utility-maximizing to trade immediately on current information until the market price reflects

an agents belief. Progress in scaling up combinatorial markets has been made by relating the

problem of pricing bets to well-understood problems in statistical inference and convex opti-

mization (70, 71). Related research advances are being made by allowing AIs to transact in

hypotheses that are acquired through machine learning as well as trade directly in information

signals rather than beliefs (72–74).

The second example is the management of information concerning the trustworthiness of

agents within an economy of AIs. Trust that a counterparty will complete a transaction or invest

effort or resources is crucial for any well-functioning economic system. A standard approach

is to associate participants with a reputation, which can serve to align incentives in the present
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under the threat of a damaged reputation and lost opportunities in the future. In addition to

this problem of moral hazard (i.e., will agents behave cooperatively when completing economic

transactions), reputation systems can address the problem of adverse selection (i.e., will high

quality agents choose to enter a market in the first place) (75, 76).

A special challenge in an economy of AIs arises because of the fluidity of identity, and the

ease with which agents can be replaced. This raises, for example, the spectre of whitewashing

attacks, where an AI repeatedly runs down its reputation before re-entering anew with a differ-

ent identity. Without the possibility of enforcing strong identities that cannot be changed, this

suggests a social cost of fluid identities, where it becomes necessary to impose a penalty on all

new participants and make them build up reputation from an assumption of being untrustwor-

thy (77).

We should also consider that machina economicus will be strategic in sharing feedback on

other AIs. For example, in eBay’s original reputation system, buyers were often reluctant to

leave negative feedback about deadbeat sellers, because the sellers could retaliate with negative

feedback about the buyer. In response, eBay introduced an additional feedback mechanism that

was one-directional from the buyer to the seller and could not be easily traced to a particular

buyer. The change resulted in a greater amount of negative feedback (78).

The economy of AIs also offers positive opportunities for promoting trust through book-

keeping, collecting feedback, and for tracking the provenance of feedback in novel reputation

mechanisms (see Fig. 5). AI researchers are designing reputation systems that align incentives

with making truthful reports, while provably satisfying axiomatic properties such as symme-

try: two agents that are in an equivalent position from the perspective of reports made and

received should have the same trust score (79,80). Another example is the design of accounting

systems that elicit truthful reports about the resources contributed or work performed by other

AIs, and enable the design of systems to mitigate free-riding and promote fair contributions to
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Figure 5: In a reputation system for a multi-agent AI, each agent chooses an action, and the
combined effect of these actions generates rewards (i.e., utility). Based on the actions taken
and rewards received, agent i can submit a report, xi to the reputation system. The reputation
system aggregates this feedback, for example providing a ranked list to reflect the estimated
trustworthiness of agents. Each agent observes this ranked list, and this information may influ-
ence future actions.

an economic system (81). Still, the extent to which effective, multi-agent AIs can be devel-

oped entirely through computational infrastructure such as reputation mechanisms and without

recourse to legal systems remains an interesting open question.

Closing Comments

Whatever one’s thoughts about when or whether AI will transcend human-level performance,

the rapidly advancing capabilities of AI are fueling significant optimism and investment in AI

research. AI has surpassed or will likely soon surpass humans in narrow domains such as

playing chess, controlling a jumbo jet during cruise, making product recommendations, pricing
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millions of products on an eCommerce platform, reasoning about whether a patient is likely

to be re-admitted to a hospital, and detecting signals from a massive volume of financial news

stories.

Certainly, many fundamental challenges remain, including how to design reasoning and in-

ference methods that effectively balance the benefit of additional computation with the costs

that may arise from additional delay to acting in the world, and how to design AI systems that

can learn and generalize from reward signals in unconstrained domains. But given that decision

problems related to economic transactions are often relatively well structured, it seems likely

to us that AI will continue to make especially rapid inroads in economically significant appli-

cations. This in turn will ensure continued effort on methods for rational, economic reasoning,

toward the broader goal of developing machina economicus.

We should not leave the impression that AI researchers unanimously embrace economic

perspectives on single- or multi-agent AI. For some, multi-agent economic models are still

seen as a distraction. After all, a centralized perspective allows focusing on overall goals with-

out worrying about the incentives of individual parts of the system. Others conduct research

into multi-agent systems comprised of agents under the control of the designer, so that they

can be programmed in any way desired. Just as with centralized solutions, these so-called “co-

operative” multi-agent systems allow design without concern for the self-interest of individual

agents, albeit often with decomposition or communication constraints. But cooperative versus

self-interested is really a difference in assumptions on the power of a system designer, rather

than a technical dispute. The viewpoint that we ascribe to is that a large number of AI sys-

tems will, given the existing structure of human economic systems, be populated by AIs that

are designed, deployed, owned and operated by a myriad of different parties each with possibly

misaligned goals. Finally, some may object to the economic approach on the basis that AIs

are and will remain far from perfectly rational, simply by virtue of physical and computational
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limits. More direct models of the AIs’ computational behavior, in terms of the automata they

are, could in principle be more accurate. The analytical utility of a rationality abstraction for

AIs is ultimately an empirical question to be resolved as AI progresses.

Among those adopting an economic approach, there persist some disagreements on specific

techniques, for example on the role of equilibrium reasoning. Even if agents can be viewed

as rational, some question whether it is plausible that they reach equilibrium configurations,

particularly in situations where multiple equilibria exist. As Shoham (82) argues, game theory

lacks a well-accepted pragmatic account of how it should be deployed in concrete reasoning

contexts. A positive view is that AI researchers, in their efforts to operationalize economic

reasoning, are developing exactly this needed body of pragmatics.

Some may object that mechanism design is too idealized even for systems of AIs, for exam-

ple in its insistence on design under equilibrium behavior, its assumption that rules of interaction

can be designed from scratch, and its lack of attention to the details of the human and legal con-

texts in which designed systems will operate. A positive view is that AI systems are precisely

the kinds of environments where we can build tabula rasa new rules of interaction since these

rules will be realized through the Internet and as programs running on computer servers. That

rules of interaction can come into existence is as much a matter of science and engineering as it

is of public policy.

As AI advances, we are confident that economic reasoning will continue to have an im-

portant role in the design of single-agent and multi-agent AIs, and we have argued that as

economies of AIs continue to emerge there will need to be a new science to understand how to

design these systems. These AIs will no doubt exert strong forces on the economy and broader

society; understanding the effect and extent of this will shape the research agendas of both AI

and economics in years to come.
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