
����������
�������

Citation: Ali, Z.M.; Aleem, S.H.E.A.;

Omar, A.I.; Mahmoud, B.S.

Economical-Environmental-Technical

Operation of Power Networks with

High Penetration of Renewable

Energy Systems Using Multi-

Objective Coronavirus Herd

Immunity Algorithm. Mathematics

2022, 10, 1201. https://doi.org/

10.3390/math10071201

Academic Editors: Ioannis G. Tsoulos

and Chuangyin Dang

Received: 20 January 2022

Accepted: 31 March 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Economical-Environmental-Technical Operation of Power
Networks with High Penetration of Renewable Energy Systems
Using Multi-Objective Coronavirus Herd Immunity Algorithm
Ziad M. Ali 1,2,* , Shady H. E. Abdel Aleem 3 , Ahmed I. Omar 4 and Bahaa Saad Mahmoud 4

1 Electrical Engineering Department, College of Engineering, Prince Sattam bin Abdulaziz University,
Wadi Addawaser 11991, Saudi Arabia

2 Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan 81542, Egypt
3 Department of Electrical Engineering, Valley High Institute of Engineering and Technology,

Science Valley Academy, Qalyubia 44971, Egypt; engyshady@ieee.org
4 Electrical Power and Machines Engineering Department, The Higher Institute of Engineering at

El-Shorouk City, El-Shorouk Academy, Cairo 11837, Egypt; a.omar@sha.edu.eg (A.I.O.);
b.saad@sha.edu.eg (B.S.M.)

* Correspondence: dr.ziad.elhalwany@aswu.edu.eg

Abstract: This paper proposes an economical-environmental-technical dispatch (EETD) model for ad-
justed IEEE 30-bus and IEEE 57-bus systems, including thermal and high penetration of renewable en-
ergy sources (RESs). Total fuel costs, emissions level, power losses, voltage deviation, and voltage sta-
bility are the five objectives addressed in this work. A large set of equality and inequality constraints
are included in the problem formulation. Metaheuristic optimization approaches—Coronavirus
herd immunity optimizer (CHIO), salp swarm algorithm (SSA), and ant lion optimizer (ALO)—are
used to identify the optimal cost of generation, emissions, voltage deviation, losses, and voltage
stability solutions. Several scenarios are reviewed to validate the problem-solving competency of
the defined optimisation model. Numerous scenarios are studied to verify the proficiency of the
optimisation model in problem-solving. The multi-objective problem is converted into a normalized
one-objective issue through a weighted sum-approach utilizing the analytical hierarchy process
(AHP). Additionally, the technique for order preference by similarity to ideal solution (TOPSIS) is
presented for identifying the optimal value of Pareto alternatives. Ultimately, the results achieved
reveal that the proposed CHIO performs the other approaches in the EETD problem-solving.

Keywords: analytical hierarchy process (AHP); economical-environmental-technical dispatch;
Coronavirus herd immunity optimizer (CHIO); renewable energy sources (RESs); TOPSIS

MSC: 39B12

1. Introduction

Using renewable energy sources (RESs) in conventional power grids is difficult since
renewables have a stochastic nature. The expansion of the use of RES technologies has also
shown that conventional thermal production plants face technoeconomic challenges. These
challenges are of major significance if we are to overcome the complexities of renewable
energy planning and facilitate seamless renewable integration of electricity grids that
integrates the stochastic nature of photovoltaics, wind, and hydropower. To justify the
investments in RES technologies, the grid must operate economically with a high level
of dependability. In the sense of the climate [1], thermal stations emit many pollutants,
including nitrogen oxides, carbon oxides, sulphur dioxides, and others [2]. Moreover,
reduced network capacity losses, improved energy efficiency [3], voltage support, and
investments will improve the power system operations. The formulation of the economical-
environmental-technical dispatch (EETD) model will address this problem.
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In the literature, the conventional economic, environmental, and technical dispatch
problem was addressed by many traditional techniques, which were used to address opti-
mization techniques, such as linear and quadratic iterative techniques [4], lambda iterating
approaches [5], and gradient methods [6]. Since it is challenging to identify global solutions
at a sufficient estimation period (computation time) because of the EETD problem’s intri-
cacy, most of these initiatives encountered challenges [7]. The researchers, therefore, sought
to implement updated formulations of influential mathematical optimization approaches,
such as mixed-integer linear (MIL) and quadratic (MIQ) programming type [8], nonlinear
(NL) programming [9], and dynamics programming (DP) [10,11], to address the EETD issue.
Many traditional mathematical optimization methods offered significant challenges when
dealing with large-scale generation-incorporated power systems. They were frequently
tipped into local minima because their preference coefficients appeared to vary through the
optimization processes, which enhanced the estimation period considerably.

Recently, various metaheuristic optimization methods have been used in the literature,
with and without the inclusion of the RESs for coping with the above-stated deficiencies
of single objective (SO) and multi-objective (MO) functions [12,13]. Several evolutionary
and metaheuristic optimisation methods have been used to effectively address the EETD
problem, for instance: particle swarm optimization (PSO) through time-varying acceler-
ating constant so-named TVAC-PSO [14]; accelerating PSO (APSO) [14]; modified MO
moth-flame optimizer (MFO) [15]; modified whale optimization algorithm (MWOA) [16];
the internal search algorithm (ISA) [17]; criss-cross optimizer (CCO) [18]; a mixture of
salp swarm optimizer (SSA) and PSO [19]; MO differential evolutionary based on sum-
mation (SMODE) [20]; enhanced SSA (ESSA) [21,22]; artificial bee colony (ABC) based on
dynamic population, so-named ABC-DP [23], ABC [24]; MO population exterior optimizer
(MOPEO) [25]; MO cross-entropy optimizer built on decomposition (MOCEO/D) [26]; and
symbiotic organisms search (SOS) optimizer [27], as seen in Table 1.

Some have considered RESs, and some have not considered them while solving their
problem of optimizations. Table 1 lists many recent research studies that have explored the
role of RESs in the classical issue of EETD. Duman et al. [27] proposed the SOS technique to
minimize cost functions, real power losses, voltage deviation, enhancement of contingency
circumstances, and voltage stability. That approach was examined through IEEE 30-bus
and IEEE 118-bus through incorporating RESs of wind, solar, and tidal energies. However,
some constraints, such as prohibited operating zones (POZs) and valve point impacts,
were not involved in the problem. Chen et al. [25] proposed the MOPEO technique for
reducing costs and emissions for the IEEE 30-bus scheme and the inclusion of thermal,
wind, and solar generating modules. The paper [28] proposed the NSGA-II with the
reinforcement learning process, known as NSGA-RL, used to solve the MOEETD problems.
The formulas for optimizing fuel costs and emissions were presented to include six thermal
units incorporating the wind-power units. The results revealed that the NSGA-RL technique
is successful in solving multi-objective EETD problems. However, it could be preferable
to utilize more than one RES, such as solar or tidal power. The paper [20] introduced
MOEA/D and SMODE techniques to minimize emission and cost functions in the IEEE 30-
bus scheme, including the uncertainties of wind-, solar-, and tidal-power-producing units
to address the MOEETD issue with a restricted number of thermal units. The paper [29]
presented the thermal-, wind-, solar-, and tidal-power systems with a complex day-ahead
stochastic scheduling, but only the cost of the fuel was involved in the optimization process.
Elattar [30] proposed an enhanced shuffled-frog leaping-optimizer (ESFLO) to lessen fuel
costs and emissions for MOEETD in combined power and heat units, with regard to
the attendance of wind and solar power. Chinnadurrai and Victoire [18] presented a
multi-objective CCO technique to minimize cost and emission functions with uncertain
wind-energy units. That approach employed conventional multi-objective test functions
and then ordinary complex EETD issues concerned with various wind-power integration
ratios. The paper [31] proposed an enhanced sine cosine optimizer (ESCO) to solve different
issues of EETD problems, such as costs, voltage profile, and power losses as a SO function.
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Li et al. [32] presented the MOCHIO approach for solving dynamic EETD of hybrid RESs
built on green certifications, although some limits increasing power flow were not explored
in the problem. Table 1 lists some of the most recent studies on the presence and absence
of RESs.

Table 1. Review of single and multi-objective EETD of thermal units in the presence and absence
of RESs.

System Ref.

IEEE System

Algorithms

Objective Functions Decision-Making
Tools

30-
Bus

57-
Bus

118-
Bus

Economical Environmental Technical

Cost Emission Ploss VD L-Index AHP TOPSIS

IEEE
without

RESs

[26] 3 - 3 MOCE/D 3 3 - - - - -
[31] 3 - 3 ESCA 3 - 3 3 - - -
[33] 3 - - MOFA-CPA 3 3 - - - - -
[34] 3 - - MOMICA 3 3 3 3 - - -
[35] 3 3 3 I-NSGA-III 3 3 3 3 3 - -
[36] 3 - - ECHT 3 - - 3 - - -
[37] 3 3 - DA-PSO 3 3 3 - - - -
[38] 3 - - SPEA 3 - 3 - 3 - -
[39] 3 - 3 TLBO 3 3 3 - 3 - -
[40] 3 3 3 KHA 3 - - 3 3 - -
[41] - 3 - PSO 3 3 3 - 3 - -
[42] 3 3 3 MSA 3 3 3 3 3 - -

IEEE
integrated
with RESs

[13] 3 - - MOHHO 3 3 - - - - -
[20] 3 - - MOEA/D & SMODE 3 3 - - - - -
[25] 3 - - MOPEO 3 3 - - - - -
[28] 3 - - NSGA-RL 3 3 - - - 3 -
[43] 3 - - GSA 3 3 - - - - -
[44] 3 - - FFA & MGA 3 3 - - - - -
[45] 3 - - SMODE 3 3 - - - - -
[46] 3 - - MOEA/D 3 3 - - - - -
[47] 3 - - PBO 3 - - - - - -
[48] 3 - - NSGA-II 3 3 - - - - -
[49] 3 - - PSO 3 3 - - - - -
[50] 3 3 - EFPA & BFPA 3 3 - - - - -
[51] 3 - - GABC 3 3 - - - - -
[52] 3 - - SSA & IGWO 3 3 3 - - 3 -

Proposed 3 3 - CHIO & ALO & SSA 3 3 3 3 3 3 3

In this study, the IEEE 30-bus and IEEE 57-bus schemes are amended for integrat-
ing photovoltaic (PV), wind power (WP), and tidal power (TP) plants with a constrained
number of thermal generations. The PV, WP, and TP uncertainties are discussed in-depth,
utilizing suitable probability density functions (PDFs)—lognormal, Weibull, and Gumbel,
respectively. The cost models presented in this study discuss the volatility and intermittent
nature of the RESs, including underestimation of the penalty cost (UPC) and overesti-
mation of the reservation cost (ORC). A Coronavirus herd immunity optimizer (CHIO),
a salp swarm algorithm (SSA) [53], and an ant lion optimizer (ALO) [54] are employed
as multi-objective and SO optimization approaches to identify the production cost as an
economic benefit, emissions as an environmental benefit, losses (Ploss), voltage deviation
(VD), and stability index (L-index) as a technical benefit. Various conditions are examined to
demonstrate the suggested mode’s potential to meet this challenge. Moreover, a weighting
sum policy utilizing the analytical hierarchy process (AHP) can be utilized for converting
the MOEETD issue into a normalised SOEETD. In addition, as a single solution may be
supported by the decision maker, the technique for order preference by similarity to the
ideal solution (TOPSIS) classification tool was used to find a single alternative from the
non-dominated solutions group of problems under survey. In the calculation process, the
benefits of a TOPSIS measuring tool are consistency, simplicity, and understandability.

This article’s contributions are summarized as follows:

• Expression of the SOEETD and MOEETD problem considering thermal, PV, WP, and
PVTP plants (integration of high penetration of various RESs) is investigated.

• Stochastic study of high penetration of RESs addressed has been accessible utilizing
the appropriate PDFs.

• Various system restrictions including security, equality, inequality, and POZs con-
straints are investigated in the presented EETD problem.
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• Various optimization approaches, such as the CHIO, the ALO, and the SSA, with a
comprehensive study of the solutions are used to solve the EETD problem.

• The AHP is utilized to convert MOEETD into the SOEETD problem.
• The TOPSIS is applied for obtaining the optimum alternative for the MOEETD issue.

The rest of the paper is structured as follows: The formation of the systems of SOEETD
and MOEETD is demonstrated in Section 2. Section 3 describes the mathematical model of
the high penetration of RESs, the formulation of SO and MO objectives, and the conception
of limitations. Section 4 presents the recommended optimization strategies. The results
are examined and discussed in Section 5. Lastly, Section 6 presents conclusions and
future works.

2. Systems Investigated and Scenarios Studies

The first phase of this study is the development of ideal location buses for RESs. The
design criteria to find the best location of RESs is corresponding to the optimum EETD issue
when the PV, WP, and PVTP are inserted on all buses one by one. The optimal power flow
(OPF) is used to add PV panels one by one, starting with bus two and working through all
the buses in each system. The bus with the lowest cost for 24 h is the best candidate for PV
panels. The OPF is also used to optimize the site of WP and PVTP using the same method as
the PV panel optimal sitting as long as the PV panels are installed on the previously selected
buses. The capacities of these plants are selected to be consistent with the test systems’
maximum demands. The simulation results of this phase, which are the ideal location for
the RESs for each of IEEE 30-bus and IEEE 57-bus testing schemes, are presented in Table 2.
These locations of RESs are employed in the EETD problem, and the next step of this study
is the uncertainties of RESs and are given in detail in the next section.

Table 2. Optimal location of the RESs in the IEEE 30-bus and IEEE 57-bus schemes.

Systems IEEE30-Bus IEEE57-Bus

Photovoltaic (PV) Bus 11 Bus 3
Wind (WP) Bus 5 Bus 2

PV + Tidal power (PVTP) Bus 13 Bus 9

This work integrates both traditional thermal stations and non-conventional RESs
that address the IEEE 30-bus and IEEE 57-bus schemes. As depicted in Figure 1, various
significant RESs of PVs, wind, and hybrid PVs and tidal power (PVTP) schemes for the
IEEE 30-bus are tied on buses 11, 5, and 13, respectively. In addition, the RESs of PVs wind
and PVTP for the IEEE 57-bus are tied on buses 3, 2, and 9, respectively. The IEEE 30-bus
system also includes three thermal power generations (TPGs) tied on buses 1, 2, and 8. In
addition, the IEEE 57-bus scheme includes four TPGs tied on buses 1, 6, 8, and 12. The
necessary system’s specifications are described in Table 3.

Table 3. Parameters of the IEEE30-bus and IEEE57-bus systems [55].

IEEE30-Bus IEEE57-Bus

Elements Quantity Parameters Quantity Parameters

Generators 6 3 TPGs and 3 RESs 7 4 TPGs and 3 RESs
TPGs 3 Buses 1(swing), 2, and 8 4 Buses 1 (swing), 6, 8, and 12

RESs
PV 25 Bus 11, 75 MW 75 Bus 3, 175 MW
WP 1 Bus 5, 50 MW 1 Bus 2, 90 MW

PVTP 1 Bus 13, 45 + 5 MW 1 Bus 9, 75 + 15 MW

Static VAR compensator 9 Buses 10, 12, 15, 17, 20, 21,
23, 24, and 29 3 Buses 18, 25, and 53

Load connected (P and Q) - 283.40 MW and 126.20 MVAr - 1250.80 MW and 336.40 MVAr
Number of PQ buses 24 24 buses 50 50 buses

Load voltage permissible range (pu) - 0.950–1.10 - 0.950–1.10
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The second phase of this work has 16 scenarios, and their descriptions are seen
in Table 4. These scenarios are classified by test procedure and each system’s number
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of objectives. The first scheme will present 13 case studies: the IEEE 30-bus system.
In scenarios 14 to 16, the second scheme of the IEEE 57-bus will be introduced. These
scenarios represent one and MOs that indicate different economic, environmental, and
technical issues.

Table 4. Description of SOEETD and MOEETD formulation.

Test
System

EETD Formulation Economical Environmental Technical

No. of Objective Functions Scenario Fuel Costs Emissions VD Ploss L-Max

IEEE-30

1

1 3

2 3

3 3

4 3

5 3

2
6 3 3

7 3 3

8 3 3

3
9 3 3 3

10 3 3 3

11 3 3 3

4 12 3 3 3 3

5 13 3 3 3 3 3

IEEE-57
1 14 3

2
15 3 3

16 3 3

3. Formulation of the Optimization Problems

The EETD issue is implemented by simultaneously minimizing numerous computing
objectives—fuel costs, emissions, voltage deviation, power losses, and enhancement of line
index (L-index)—taking into account various constraints. In general, the EETD issue can be
outlined as the following:

Jobj = min
Nobj

∑
i=1

Ji(x, υ) (1)

Subject to
gk(x, υ) = 0 k = 0, 1, . . . , G (2)

hl(x, υ) ≤ 0 l = 0, 1, . . . , L (3)

where Jobj represents the objectives to be minimized. J1, J2, J3, J4, and J5 represent the
quanta-objectives to be minimized. They represent the fuel costs, emissions, voltage
deviation, losses, and L-index, respectively. x signifies the state (dependent) variables, and
υ represents the control variables. gk(x, υ) and hl(x, υ) represent the kth equality constraints
and the lth inequality constraints, respectively.

3.1. Total Fuel Costs

The total costs of the produced powers are the sum of costs of the TPGs and RESs, as
expressed in Equation (4).

J1(x, υ) = Ctot(PTPGs) + Ctot(PRESs) (4)

where Ctot(PTPGs) denotes the total TPGs cost, and Ctot(PRESs) denotes the total RESs cost.

3.1.1. Fuel-Cost Study of TPG Units

The costs of TPGs in $/MWh depend more on the blades’ steam flow of the turbine
and the unpredicted fluctuations in a valve’s position. In such plants, a series of valves
push steam through a scattered set of nozzles that are used to deliver good output in full
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production [39]. The valves are sequentially opened for compulsory output, resulting in
the interruption costs curve, as seen in Figure 2. Equation (5) provides the cost formulation
of TPGs [30].

Ctot(PTPGs) =
NTPG

∑
i=1

aTPGi + bTPGi PTPGi + cTPGi P
2
TPGi

+
∣∣∣disin

(
ei

(
Pmin

TPGi
− PTPGi

))∣∣∣ (5)

where NTPG denotes the number of thermal generator units. aTPGi , bTPGi , and cTPGi denote
the cost coefficients of the ith thermal generator unit (PTPGi ). The two coefficients di and ei
denote the impact’s valve point. Pmin

TPGi
denotes the minimum powers of PTPGi through the

generator operations. These parameters are described in Table 5.
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Table 5. Emission and cost coefficients for IEEE 30-bus and IEEE 57-bus of the TPGs [30].

Emission coefficients

Generators Bus ϕTPG (t/h) ψTPG
(t/pu·MWh)

ωTPG
(t/pu·MW2h)

τTPG
(t/h) ξTPG

(
pu·MW−1

)
IEEE 30-bus

TPG1 1 0.04092 −0.05553 0.0649 0.0003 6.668
TPG2 2 0.02543 −0.06048 0.05639 0.0006 3.334
TPG3 8 0.05327 −0.0356 0.0339 0.003 2

IEEE 57-bus
TPG1 1 4.091 −5.554 6.49 0.0002 0.286
TPG2 6 2.543 −6.047 5.638 0.0005 0.333
TPG3 8 6.131 −5.55 5.151 0.0001 0.667
TPG4 12 3.491 −5.754 6.39 0.0003 0.266

Cost coefficients

Generators Bus aTPG
($/h)

bTPG
($/MWh)

cTPG
($/MW2h)

dTPG
($/h)

eTPG
(MW−1)

IEEE 30-bus

TPG1 1 30 2 0.00377 18 0.038
TPG2 2 25 1.76 0.0176 16 0.039
TPG3 8 20 3.26 0.00833 12 0.046

IEEE 57-bus
TPG1 1 0 20 0.0775795 18 0.037
TPG2 6 0 40 0.01 16 0.038
TPG3 8 0 20 0.02222 13.5 0.041
TPG4 12 0 20 0.03226 18 0.037
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3.1.2. Fuel-Cost Study of the RESs

The cost’s RESs are the sum of the overall costs of WPs (Ctot(PWP)), PVs (Ctot(PPV)),
and hybrid PV and PVTP (Ctot(PPVTP)), which can be expressed as shown in Equation (6):

Ctot(PRESs) = Ctot(PWP) + Ctot(PPV) + Ctot(PPVTP) (6)

However, there is a cost feature for each renewable source. The sum of energy that is
undersupplied or oversupplied may also be estimated relying on the PDFs of each source.
First, standby power-generating (SPG) units may be mounted to meet the intermittent
nature of the RESs while the produced power is lower than the power scheduled. Second,
energy storage (ES) could be mounted to store the additional power produced [56].

In accordance with random wind speed, solar irradiance, and tidal unit flow rate
results, Weibull, lognormal, and Gumbel distributions are used to convey the cost terms as
seen as follows.

Cost estimation of WPs (Ctot(PWP)) : Ctot(PWP) is described by merging the invest-
ment costs

(
CdWP(PWPsch)

)
directly besides storage units’ costs and the SPGs. CdWP(PWPsch)

denotes the costs of operation and maintenance as follows:

CdWP(PWPsch) = KdWP PWPsch (7)

where KdWP signifies the direct cost coefficient, and PWPsch signifies the WPs’ power sched-
uled. The scheme also could involve possible standby elements to conserve the demand
desires, and this reserve cost capacity (CrWP) can be expressed as follows:

CrWP(PWPsch − PWPact) = KrWP(PWPsch − PWPact) = KrWP

∫ PWPact

0
(PWPsch − pWP) fWP(pWP)dpWP (8)

KrWP signifies the cost coefficient of the standby elements, and PWPact signifies the real
WPs’ power delivered. fWP(pWP) denotes the wind PDF. pWP represents the WGs’ supplied
power. Similarly, if PWPsch < PWPact ; also, the ES’ cost (CsWP), described in (9), should be
appended to the WP cost. The cost factors of WPs can be expressed in Appendix A.

CsWP(PWPact − PWPsch) = KsWP(PWPact − PWPsch) = KsWP

∫ PWPr

PWPsch

(pWP − PWPsch) fWP(pWP)dpWP (9)

where KsWP and PWPr denote the penalty cost factor and the rated wind power, respectively.
The standby powers and storage units can be dependent on fWP(pWP). Weibull fitting (WF)
is commonly used to fit the random frequency of each v measure [57,58]. Figure 3a shows
the WF-based PDF of v data spreading over 8000 Monte-Carlo runs. The scale (α) and the
shape (β) coefficients of the WF-based PDF are considered as nine and two, respectively.
The probability ( fv(v)) of v is shown in (10):

fv(v) =
(

β

α

)( v
α

)(β−1)
e−(

v
α )

β

for 0 < v < ∞ (10)

The WGs’ supplied power that be dependent on v is expressed as follows:

pWP =


0 vout ≤ v ≤ vin

PWPr

(
v−vin
vr−vin

)
vin ≤ v ≤ vr

PWPr vr ≤ v ≤ vout

(11)

where vin, vout, vr correspond to the WPs’ cut-in, cut-out, and rated speeds, respectively.
The probability’s WP ( fWP(pwP)) is given in (12).

fWP(pWP) =
β(vr − vin)

αβPW r

[
vin +

pWP
PWPr

(vr − vin)

]β−1
exp

−(vin +
pWP
PWPr

(vr − vin)

α

)β
 (12)
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To sum up, Ctot(PWP) is expressed in (13).

Ctot(PWP) = CdWP(PWPsch) + CrWP

(
PWPsch − PWPact

)
+ CsWP(PWPact − PWPsch) (13)

Cost estimation of the PV (Ctot(PPV)): As well, the WPs’ cost function, the direct cost
CdPV (PPV sch) of PVs signifies the costs of operation and maintenance and can be described
as follows:

CdPV (PPV sch) = KdPV PPV sch (14)

where KdPV denotes the direct cost parameter, and PPV sch signifies the scheduled power
of PV.

Once PPV sch is superior to the PV system’s real power (PPV act), it is crucial to calculate
SPGs, as clarified previously. The PV’s cost reserve capacity (CrPV ) can be expressed
as follows:

CrPV (PPV sch − PPVact) = KrPV (PPV sch − PPVact) = KrPV (PPV sch − pPV) fPV(pPV) (15)

KrPV signifies the cost coefficient of the SPGs. fPV(pPV) denotes the PV-PDF. pPV
represents the PVs’ supplied power. Moreover, the cost of storage units (CsPV ) may appear
if PPV sch < PPVact , and this is expressed in (16).

CsPV (PPVact − PPV sch) = KsPV (PPVact − PPV sch) = KsPV (pPV − PPV sch) fPV(pPV) (16)

The cost parameters of PV can be additionally offered in Appendix A. The power pro-
vided from the backup and ES units depends on the solar irradiance (G) PDF, represented
as fPV(G). Lognormal fitting (LF) [59,60] can be frequently utilized to obtain fPV(G), as
depicted in Figure 3b for 8000 Monte-Carlo turns at lognormal fit parameters: µ = 5.6 and
σ = 0.6. Consequently, fPV(G) is expressed as follows:

fPV(G) =
1

Gσ
√

2π
exp

{
−
(
ln G− µ2)

2σ2

}
, ∀G > 0 (17)

The attainable PV’s power (pPV(G)) can be assessed as follows

pPV(G) =


PPVr

(
G2

Gstd

)
, 0 < G < Rc

PPVr

(
G

Gstd

)
, G ≥ Rc

(18)

where Gstd signifies the traditional solar irradiance, and Rc signifies the operation irradiance,
wherein Gstd = 1000 W/m2, and Rc = 120 W/m2. PPVr signifies the PVs rated power
output. To summarize, CtotPV can be described as follows:

Ctot(PPV) = CdPV (PPV sch) + CsPV (PPVact − PPV sch) + CrPV (PPV sch − PPVact) (19)

Cost estimation of the PVTP plant (Ctot(PPVTP)): Gumbel fitting (GF) [61] is employed
in the river flow’s fitting of (Qw) statistics, as displayed in Figure 3c, wherein fQ(Qw) traces
the GD through coefficients λ and γ as the following:

fQ(Qw) =
1
γ

exp
(

Qw − λ

γ

)
exp
[
−exp

(
Qw − λ

γ

)]
(20)

The yield power from the tidal power plant PT(Qw) relies on Qw as expressed in (19):

PT(Qw) = ηwρwgwQw Hw (21)

where ηw, gw, ρw, and Hw signify the tidal efficiency turbines’, the gravity acceleration, the
density’s water, and the operational head pressure, respectively [62], wherein ηw = 0.86;
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ρw = 1000 kg/m3; gw = 9.81 m/s2; and Hw = 26 m. At this bus, the TP unit is incorporat-
ing through a PV unit to enhance the TP station operation. To summarize, CtotPVTP can be
illustrated as follows:

Ctot(PPVTP) = CdPVTP(PPVTPsch) + CrPVTP(PPVTPsch − PPVTPact) + CsPVTP(PPVTPact − PPVTPsch) (22)

where PPVTPsch and PPVTPact signify the hybrid PVTP’s scheduled and real powers, respec-
tively. CdPVTP(PPVTP) signifies the PVTP direct cost. The PVTP’s cost reserve capacity
can be denoted as (CrPVTP). The storage units cost of the PVTP system can be denoted as
(CsPVTP). The cost parameters of PVTP can be described in Appendix A.

Furthermore, the whole cost of the arrangement can be described as follows:

J1(x, υ) =
NTPG

∑
i=1

aTPGi+bTPGi PTPGi + cTPGi P
2
TPGi

+
∣∣∣disin

(
ei

(
Pmin

TPGi
− PTPGi

))∣∣∣+ CdWP(PWPsch)

+CrWP(PWPsch − PWPact) + CsWP(PWPact − PWPsch) + CdPV (PPV sch) + CrPV (PPV sch − PPVact)

+CsPV (PPVact − PPV sch) + CdPVTP(PPVTPsch)

+CrPVTP(PPVTPsch − PPVTPact) + CsPVTP(PPVTPact − PPVTPsch)

(23)
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3.2. Emission Levels

Only the emission levels of TPGs (Etot) are addressed because the RESs have few to no
pollutant gases, as given in (24):

J2(x, υ) = Etot =
NTPG

∑
i=1

[ϕTPGi + ψ TPGi
PTPGi + ωTPGi P

2
TPGi

+ τTPGi e
ξTPGi PTPGi ] (24)

where Etot signifies the overall emissions of the ith TPG. ϕTPGi , ψTPGi , ωTPGi , τTPGi , and
ξTPGi are the coefficients of pollutant emissions related to the ith TPGs and are tabulated in
Table 5.

3.3. Voltage Deviation

The fourth goal is to minimize the voltage deviations (∆V) that could be described
as follows:

J3(x, υ) = ∆V =
Nbus

∑
i=1
|Vi − 1| (25)

where Vi and Nbus indicate ith bus voltages and the number of buses, respectively.

3.4. Power Losses

The third goal is to lessen the real losses (Ploss) of the electric utility that can be
described as follows:

J4(x, υ) = Ploss =
NG

∑
i=1

[
Vi

2 + Vj
2 − 2ViVjcos

(
δij
)]

(26)

where NG denotes the number of generator buses. Vi and Vj correspond to i and j bus voltages,
respectively. δij = δi − δj signifies the voltage phase shift variation between i and j buses.

3.5. Voltage Stability Metric

To improve system’s voltage stability, it intends to lessen the maximum voltage
stability index (L-index) that is described by Equations (27) and (28):

J5(x, υ) = L− index =

∣∣∣∣∣1− NG

∑
i=1

Fij
Vi
Vj

∠
(
θij + δi − δj

)∣∣∣∣∣ (27)

Fij = −|YLL|−1|YLG| (28)

3.6. Constraints

The limitations judged while implementing the OP can be summarized as the following.

3.6.1. Power Balance

The restrictions to stabilize the real and reactive powers through the total load powers
consumed and the losses of the power can be expressed as the following:

PTPG = PLi + PLossi (29)

QTPG = QLi + QLossi (30)

3.6.2. Limits of the Active and Reactive Powers

The operation limits for active and reactive powers of the TPGs, WPs, PVs, and PVTP
are expressed as follows:

Pmin
TPGi

≤ PTPGi ≤ Pmax
TPGi

∀ i ∈ NTPG (31)
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Pmin
WP ≤ PWP ≤ Pmax

WP (32)

Pmin
PV ≤ PPV ≤ Pmax

PV (33)

Pmin
PVTP ≤ PPVTP ≤ Pmax

PVTP (34)

Qmin
TPGi

≤ QTPGi ≤ Qmax
TPGi

∀ i ∈ NTPG (35)

Qmin
WP ≤ QWP ≤ Qmax

WP (36)

Qmin
PV ≤ QPV ≤ Qmax

PV (37)

Qmin
PVTP ≤ QPVTP ≤ Qmax

PVTP (38)

3.6.3. Limits of POZs

POZs, the aim for cutting off in the process of the TPGs, can be described in (39):

PminPOZ,j
TPGi

≤ POZj
TPGi

≤ PmaxPOZ,j
TPGi

(39)

where PminPOZ,j
TPGi

and PmaxPOZ,j
TPGi

signify the minimum and maximum boundaries (MW) of
the jth POZ of the ith TPG.

3.6.4. Security Restrictions

The generators and voltage at load buses’ boundaries can be described in (40) and (41),
respectively. In addition, the thermal limits can be considered as follows:

Vmin
Gi
≤ VGi ≤ Vmax

Gi
∀ i ∈ NG (40)

Vmin
Lj
≤ VLj ≤ Vmax

Lj
∀ j ∈ NL (41)

SLj ≤ Smax
Lj

∀ j ∈ nl (42)

where VGi , VLj denote the ith’s generator bus voltage and the jth’s load bus voltage, respec-
tively. NG, NL, and nl indicate the generator buses, load buses, and branches numbers, re-
spectively.

Multi-objective problems may be subjected to linear, nonlinear, equality, and inequality
constraints. The inequality constraints of other variables are included in the objective
functions using a death penalty factor (P) by adding an extremely high value to the
objective functions to avoid infeasible solutions (when a solution violates a constraint, it
will be rejected). P is set to 108 in the optimization problem investigated.

4. Coronavirus Herd Immunity Optimizer (CHIO)

Mathematically, the notion of herd protection can be modeled to build the funda-
mental CHIO technique [63]. The methodological approach depends on the notion that
humanity protects against infection by changing the majority of the non-infected vulnerable
to immune [64]. Consequently, the protected population will no longer propagate this
virus; even those vulnerable instances would not be harmed. The populations of people
with herd protection could be categorized into resistant, susceptible, and infectious. The
CHIO formulation is built on the population of the herd protection as shown in Figure 4.
The improvement technique is derived from susceptible, contaminated, and immunized
persons in the execution method of the CHIO technique. With the CHIO algorithm, the
definition of societal distance is achieved by splitting the individual from the community
that may be vulnerable, diseased, or protected between the present individual and a partic-
ular individual. The method to herd protection is based on the CHIO methodology. The
algorithm is developed in six main phases. The technique for implementation is as follows.
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𝑥𝑖
𝑗(𝑡 + 1) =

{
 
 

 
 𝑥𝑖

𝑗(𝑡), 𝑟 ≥ 𝐵𝑅𝑟

𝐶 (𝑥𝑖
𝑗(𝑡)) , 𝑟 < 0.333 × 𝐵𝑅𝑟  (Infected)

𝑁 (𝑥𝑖
𝑗(𝑡)) , 𝑟 < 0.667 × 𝐵𝑅𝑟  (Susceptible)

𝑅 (𝑥𝑖
𝑗(𝑡)) , 𝑟 < 𝐵𝑅𝑟  (Immuned)
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Rule #1: Set CHIO parameter—The CHIO objective function is:

min
x

f (x), x ∈ [lb, ub] (43)

where for all the individuals, the objective function is created, in which the variable of
decision is xi, and indexed with “i”, and the gene number in everyone is indicated as n. The
CHIO approach needs dual control factors, such as maximum diseased cases age (MaxAge)
and fundamental reproduction rate (BRr), and four algorithmic factors, such as C0 (=1),
Max_Itr represents maximum iteration number, HIS represents the size of herd immunity,
and n indicates size.
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Rule #2: Generate herd immunity populations (HIP)—Originally, the CHIO gener-
ates heuristically a number of persons such as HIS. As a bidimensional matrix, the created
individuals are kept in the HIP as follows:

HIP =

 x1
1 . . . x1

n
...

. . .
...

xHIS
1 . . . xHIS

n

 (44)

For each person, the best solution is derived using Equation (44). The status trajectory
(S) is also determined by either zero or one for all individuals in the HIP. Please note that S
numbers are randomly begun up to C0.

Rule #3: Herd immunity evolution—It is the principal upgrade loop of CHIO. The
individual gene gives the same or publicly differentiated influence, according to the BRr,
by using three principles:

xj
i(t + 1) =



xj
i(t), r ≥ BRr

C
(

xj
i(t)
)

, r < 0.333× BRr (Infected)

N
(

xj
i(t)
)

, r < 0.667× BRr (Susceptible)

R
(

xj
i(t)
)

, r < BRr (Immuned)

(45)

where r signifies an arbitrary number from [0, 1]. The diseased situation is in the range of 0
to 0.333× BRr. The importance of the latest gene can be diminished by societal distance
and can be obtained by the differences among the genes from the diseased situation and
the present gene as the following.

xj
i(t + 1) = C

(
xj

i(t)
)

(46)

C
(

xj
i(t)
)
= xj

i(t) + r×
(

xj
i(t)− xc

i (t)
)

(47)

Similarly, the susceptible case can be in the range of 0.333× BRr to 0.667× BRr. In
addition, the safe case is in the range of 0.667× BRr to BRr.

Rule #4: Population update—The protection rate can be computed for each produced
instance, but the existing alternative will only be replaced through the produced issue
if f
(

xj(t + 1)
)
< f

(
xj(t)

)
. If the status vector Sj is equally one, the age vector (Aj) is

incremented to one. The values of Sj are changed by the following equation throughout
each cycle, according to the herd immunologic threshold.

Sj =


1, f
(
xj(t + 1)

)
<

f (xj (t+1))
∆ f (x) ∧ Sj = 0 ∧ is_Corona

(
xj(t + 1)

)
2, f
(

xj(t + 1)
)
<

f (xj (t+1))
∆ f (x) ∧ Sj = 1

(48)

where is_Corona
(

xj(t + 1)
)

is equally one, that is a binary quantity when a new situation
has taken advantage of infected cases.

Rule #5: Casualty cases—If the protection rate of the present afflicted case might not
arise for the required iteration, as provided in the MaxAge parameter, then this process

is deemed dead. It is then regenerated from the scratched utilizing xj
i(t + 1) = lbi +

(ubi − lbi)×U(0, 1). In addition, the values of Sj and Sj are set to be zero. It could help the
current population to increase and hence avoid optimal local alternatives.

Rule #6: Stopping rank—The CHIO is implemented in Rules 3 to 5 until the stop
requirement has been fulfilled, usually in accordance with the maximum number of it-
erations (Max_Itr). The total amount of protected and susceptible cases in this condition
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dominates the population. The infected case will also be eliminated. The CHIO algorithm’s
flow diagram is shown in Figure 5.
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4.1. Implementation Procedure of Multi-Objective CHIO

The implementation of the presented CHIO approach can be provided as follows.

1. Set the CHIO parameters; Max_Itr = 300; MaxAge = 100; popsize (HIS) = 50; C0 = 1;
BRr = 0.05; lb and ub are given in each table in results.

2. Assess the immunological position of herd X using the Pareto sorting algorithm.
3. Obtain the non-dominated solution of the objective function as given in

Equations (23), (25)–(28) together or individually, according to the implemented scenario.
4. Collect them in the Pareto archive and determine the crowding space for every

archive member.
5. The Pareto sorting system is utilized for assessing the best person (non-dominated

solution alone) in the archive, removing dominated alternatives from the archive.
6. The population located in the CHIO method is modernized with Equation (49).
7. Modernize the iteration cycle t to t = t + 1.
8. Return to Rule #2 if t is less than Max_Itr. The actual positions will be assessed and

the ideal Pareto front SX
I will be returned.

9. Find the best solutions for the Pareto sorting system.
10. Using a TOPSIS to obtain the one alternative that might be preferred through with

the decision maker to speed up and integrate several possibilities as illustrated in the
next Section 4.3.

11. In addition, we can use the AHP to obtain the weighting factors with the CHIO
technique to transform MO into SO function 4.2.

4.2. Analytical Hierarchy Process

Once the variety of difficulties of engineering rises, because of the trade-offs, the
single objective inquiry is no longer an excellent solution. Increasing the objective value
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of a design may impair the performance of other objectives if several choices are offered.
It can be utilized for multi-objective issues and techniques. However, several optimum
spots on the Pareto graph that suit the criteria of decision makers three or four objectives,
are not enough. This means that the decision maker might occasionally obtain one of
Pareto’s most obvious questions to repeatedly look at all problems of interest. The AHP
becomes one of the most often utilized techniques in decision making as well as provides
numerous advantages among the multiple processes with various dimensions and features:
simplicity, adjustability, and transparency that permit comparison and assessment of
distinct possibilities. In the majority of cases, the main strategy to implementation of a
priority setting is to discover the most viable solution [65].

The standard AHP procedure is summed up in [52]—building the model of hierarchal
ranking; forming the judgment matrix; evaluating the maximum value of your own (λmax),
and the corresponding judgmental vector in which the elements of the vector reflect the
relative factor weights and the “hierarchical ranking” and confirm the precision of the AHP
with the consistency indices (CI) that should be less than 10%.

M =


1 ψ12 ψ13 ψ14

1/ψ12 1 ψ23 ψ24
1/ψ13 1/ψ23 1 ψ34
1/ψ14 1/ψ24 1/ψ34 1

, ∀ m, n ∈ N (49)

where, ψmn ∈ {1, 3, 5, 7, 9}. N represents the number of the sub-objectives.
The consistency indices (CI) can be evaluated as follows:

CI =
λmax − Nj

Nj − 1
(50)

It can also evaluate the consistency ratio (CR), as the following:

CR =
CI
RI

(51)

Nj and RI signify the judgment matrix dimension and the average random index,
respectively. For further information about the AHP, please see [66–68].

The objectives are set corresponding to their relevance for the decision maker in this
circumstance. In Egypt, the quality of the voltage is the priority based on the perspective
of the energy suppliers and should meet national regulations. The main aim for network
operators is to reduce fuel costs in the present period. The secondary objective is active
power loss minimization. They are the third priority, notwithstanding the significance of
reducing pollution levels.

The objective functions cannot be immediately merged into the solution due to their
differing dimensions. As a result, the objective functions were normalized as follows:

min
x

(
w1

J1(x)
J10

+ w2
J2(x)

J20
+ w3

J3(x)

J30
+ w4

J4(x)
J40

+ w5
J5(x)

J50

)
(52)

where J10, J20, J30, J40, and J50 represent the designer threshold values of the objective
functions (maximum values). w1, w2, w3, w4, and w5 are the weighting factors of fuel costs,
emissions, VD, Ploss, and L-index, respectively. Then, the weights are calculated as follows:

ϕm =
NF

∑
n=1

ψmn, ∀ m, n = 1, 2, 3, 4 (53)

wm =
ϕm

∑N
n=1 ϕn

(54)
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In this work, the objective functions for Scenarios from 6 to 13 in the IEEE 30-bus
system and for Scenarios 15 and 16 in the IEEE 57-bus are implemented using the AHP.
Table 6 illustrates the judgment matrix and the weights of the EETD problem.

Table 6. The judgment matrix and the weights.

System Scenario Judgment Matrix (M) Weights

IEEE 30-bus

6 M =

[
1 2

0.5 1

] w1 = 0.6667
w2 = 0.3333

7 M =

[
1 2

0.5 1

] w1 = 0.6667
w3 = 0.3333

8 M =

[
1 2

0.5 1

] w1 = 0.6667
w5 = 0.3333

9 M =

 1 2 2
0.5 1 1
0.5 1 1

 w1 = 0.5
w3 = 0.25
w4 = 0.25

10 M =

 1 2 2
0.5 1 3
0.5 0.33 1

 w1 = 0.44118
w2 = 0.39706
w4 = 0.16176

11 M =

 1 2 2
0.5 1 3
0.5 0.33 1

 w1 = 0.44118
w2 = 0.39706
w3 = 0.16176

12
M =


1 2 2 2

0.5 1 1 3
0.5 1 1 3
0.5 0.3 0.3 1


w1 = 0.34711
w2 = 0.27273
w3 = 0.27273
w4 = 0.10744

13
M =


1 2 2 2 2

0.5 1 1 1 3
0.5 1 1 1 3
0.5 1 1 1 3
0.5 0.3 0.3 0.3 1

,

w1 = 0.29032
w2 = 0.20968
w3 = 0.20968
w4 = 0.20968

w5 = 0.080642

IEEE 57-bus

15 M =

[
1 2

0.5 1

] w1 = 0.6667
w3 = 0.3333

16 M =

[
1 2

0.5 1

] w1 = 0.6667
w2 = 0.3333

In progression, the judgment matrix and the weights are identified in this study, as
illustrated in Table 6.

4.3. A Technique for Order Preference by Similarity to Ideal Solution

To compare Pareto with the optimization methods, just one alternative might be pre-
ferred through the decision maker to speed up and integrate several possibilities. Ranking
or classification processes can be utilized to provide several non-dominant solutions. This
work uses a classified approach called TOPSIS to resolve this variance in decision making
with multi-attributes decision making (MADM) [69].

A TOPSIS manages to realize the best alternative that should include the quickest time
from the positive–ideal alternative and the farthest time from the negative–ideal alternative.
The major purpose of using a TOPSIS is to make computations coherent, understandable,
and straightforward. The positive solution from all the best attributes and the negative
alternative from all the worst attributes are generated by this procedure. A TOPSIS works
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based on euclidean space computation to the ideal alternative [13]. The TOPSIS approach
was used to classify the specific Pareto solutions achieved by the optimizations utilized.
The primary premise of a TOPSIS is to discover an alternative that should be the smallest
possible length from the ideal positive solution (H+) and the longest from the ideal negative
alternative (H−).

In this study, the most important and smallest index change is the positive ideal
solution (H+

ij ), while the opposite solution is the negative ideal solution (H−ij ). The TOPSIS
method is synthesized in these steps:

Rule #1: Define a decision matrix X. The value Fij denotes a hint for the performing
ranking of the ith choice regarding the jth function. Let, S = (s1, s2) be the relative weighted
trajectory of the objectives, fulfilling ∑n

j=1 sj = 1.
Rule #2: Define the normalized value Zij by employing Equation (55):

Zij =
Fij√

∑n
i=2 F2

ij

∀ i = 1, 2, . . . , n & j = 1, 2 (55)

Rule #3: Determine Mij applying Equation (56) that signifies the weighted normalized
decision matrix.

Mij = sj × Zij ∀ i = 1, 2, . . . , n & j = 1, 2 (56)

Rule #4: ObtainH+
ij andH−ij using Equations (57) and (58):

H+
ij = {min(M11, . . . Mn1), min(M12, . . . Mn2)} (57)

H−ij = {max(M11, . . . Mn1), max(M12, . . . Mn2)} (58)

Rule #5: Utilizing the n-dimensional euclidean space, define the split procedures
through Equations (59) and (60):

S+
ij =

√
n

∑
i=2

(
Mij −H+

ij

)2
∀ i = 1, 2, . . . , n & j = 1, 2 (59)

S−ij =

√
n

∑
i=2

(
Mij −H−ij

)2
∀ i = 1, 2, . . . , n & j = 1, 2 (60)

Rule #6: Evaluate the relative closeness (RC) to the ideal solution, which can be
expressed as in Equation (61):

RCij =
S−ij

S+
ij + S−ij

∀ i = 1, 2, . . . , n & j = 1, 2 (61)

Rule #7: The preference order is to be rated so that the best compromise alternative
can be considered as the alternative with the ultimate RC to the ideal alternative. Figure 6
shows the AHP implementation flowchart.

4.4. Implementation Procedure of EETD Problem

The implementation of the presented algorithms, including the AHP and the TOPSIS,
can be summarized as follows:

1. Set the input data of TPGs and RESs; WP, PV, and PVTP as given in Table 3 in addition
to the parameters of RESs.

2. Load the test systems of IEEE 30-bus and IEEE 57-bus from MATPOWER in Matlab.
3. Formulate the objective functions for SOEETD and MOEETD problems.
4. The AHP is employed with the MOEETD problem to obtain the weighting factors.
5. Set the algorithm’s parameters—maximum number of iterations, search agents, . . . etc.



Mathematics 2022, 10, 1201 19 of 43

6. Assess the decision variables; the active powers and voltage profiles buses, as illus-
trated in Tables A3 and A4.

7. Set the system constraints, as illustrated in Section 3.6.
8. Obtain the non-dominated solutions of the OFs.
9. Use a TOPSIS to obtain the best solution from the Pareto sorting system.
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The implementation of the presented algorithms, including the AHP and the TOPSIS,
are depicted in Figure 7.
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5. Results and Discussion
5.1. Results of IEEE 30-Bus Scheme

For SO and MO scenarios for this test scheme, the simulation findings are stated
as follows:

5.1.1. Single Objective Scenarios

Tables 7 and 8 outline the details of the EETD simulation of Scenarios 1–5 with the
three competitive optimization techniques: the CHIO, the ALO, and the SSA. It can be
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noted, as shown in Table 7, that the lower and upper bounds are presented in the third
and fourth columns. For instance, control variables are scheduled for Scenarios 1–3. The
primary SOEETD utilizing three mentioned optimization approaches (in bold for each case)
and the remaining objectives are described in Table 8.

Table 7. Lists of control variables for Scenarios 1–3 for IEEE 30-bus test scheme.

Variables and
Parameters

Bounds Scenario #1 Scenario #2 Scenario #3

Min Max CHIO ALO SSA CHIO ALO SSA CHIO ALO SSA

Active
power
(MW)

PTPG2 20 80 37.445 38.257 37.622 46.634 46.634 46.634 80 53.655 60.324
PTPG5 10 60 38.714 38.588 37.862 60 58.316 59.684 60 56.919 57.537
PTPG8 10 35 10 10 10 35 35 35 35 28.991 34.084
PTPG11 10 60 40.571 38.336 41.687 56.043 59.536 59.257 29.748 57.191 55.194
PTPG13 10 60 31.952 32.236 32.339 48.609 47.19 47.433 10 17.146 10.21

Reactive
power
(MVAr)

Q2 −20 60 10.108 21.867 −20 60 −6.6963 −20 −20 −20 −20
Q5 −30 35 35 26.714 35 −30 35 −1.7046 35 35 35
Q8 −15 40 40 40 40 40 −15 −5.0345 40 40 40
Q11 −25 30 18.137 18.382 21.412 −6.3482 2.2441 7.1202 36.844 39.512 39.207
Q13 −20 25 22.986 22.671 21.227 10.918 25 25 47.752 46.565 47.449

Bus
voltage

(pu)

V1 0.96 1.10 1.1 1.1 1.1 1.1 1.0905 1.0729 1.0489 1.0438 0.99822
V2 0.96 1.10 1.09 1.0918 0.99286 1.1 1.0567 0.95162 0.95 1.0384 0.99455
V5 0.96 1.10 1.1 1.0722 1.0994 0.95 1.0876 0.96103 1.1 1.0993 1.093
V8 0.96 1.10 1.1 1.097 1.0971 1.0918 0.95844 0.96006 1.0877 1.0927 1.0904
V11 0.96 1.10 1.1 1.1 1.0991 0.96502 0.9741 0.95096 1.1 1.1 1.1
V13 0.96 1.10 1.1 1.0986 1.0872 1.0163 1.0434 1.0124 1.1 1.0973 1.098

Wgencost

Not applicable

115.61 115.21 112.91 194.56 187.67 193.26 194.56 182.03 184.52
PVgencost 109.11 102.45 112.92 164.93 179.01 177.89 80.349 169.75 162.67

PVTPgencost 96.688 97.618 97.898 156.65 151.05 152.23 48.433 59.953 49.051
Fuelvlvcost 447.542 454.04 445.92 332.75 332.76 332.75 543.67 414.62 456.16

Fuel costs ($/h) 768.95 769.32 769.64 848.89 850.48 856.14 867.01 826.36 852.4
VD (pu) 1.1341 1.1054 0.90473 0.74422 0.83431 1.5518 0.36824 0.3779 0.3717

Ploss (MW) 5.54 5.6165 5.6392 4.2397 4.6292 5.9627 4.4902 3.9095 4.0356
L-index 0.11186 0.11316 0.12337 0.18187 0.19684 0.2305 0.07990 0.0799 0.0789

Emissions (ton/h) 0.15187 0.15363 0.15086 0.09055 0.09055 0.09055 0.10619 0.0987 0.0988
Computation time (s) 367.206 346.553 417.9415 361.393 413.8874 378.9375 538.9653 55.1077 465.364

Table 8. Results of SOEETD problem using three optimization techniques for IEEE 30-bus
(Scenarios 1–5).

Scenarios Optimizations Fuel costs ($/h) Emissions (ton/h) VD (pu) Ploss (MW) L-Index

Scenario #1
CHIO 768.95 0.15187 1.1341 5.54 0.11186
ALO 769.32 0.15363 1.1054 5.6165 0.11316
SSA 769.64 0.15086 0.90473 5.6392 0.12337

Scenario #2
CHIO 848.89 0.09055 0.74422 4.2397 0.18187
ALO 850.48 0.09055 0.83431 4.6292 0.19684
SSA 856.14 0.09055 1.5518 5.9627 0.2305

Scenario #3
CHIO 867.01 0.10619 0.36824 4.4902 0.07990
ALO 826.36 0.0987 0.3779 3.9095 0.0799
SSA 852.4 0.0988 0.3717 4.0356 0.0789

Scenario #4
CHIO 895.88 0.10281 1.3265 2.0661 0.1013
ALO 911.08 0.10922 1.3251 2.0724 0.10073
SSA 872.76 0.095233 1.322 2.0848 0.10155

Scenario #5
CHIO 911.81 0.10833 0.4257 2.6828 0.071587
ALO 913.04 0.10822 0.42521 2.6832 0.071614
SSA 911.05 0.10792 0.42566 2.667 0.071596

In Scenario 1, minimization of the fuel costs is the major objective function (OF). The
proposed CHIO technique offers the lowest cost (USD 768.95/h) compared with USD
769.32/h, USD 769.64/h obtained by ALO and SSA, respectively. In Scenario 2, minimiza-
tion of the emission levels is the main OF. The proposed techniques: the CHIO, the ALO,
and the SSA have achieved the minimum emission levels (0.09055 ton/h) that comply with
environmental aspects. In Scenario 3, minimization of the VD is the main OF. The proposed
CHIO technique has the least voltage deviation (0.36824 pu). In comparison to ALO and
SSA techniques, the presented CHIO offers an improved voltage profile. In Scenario 4,
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minimization of the Ploss is the main OF. The power losses are decreased by the presented
approaches, the CHIO, the ALO, and the SSA, and their estimates become 2.0661 MW,
2.0724 MW, and 2.0848 MW, respectively. In Scenario 5, the L-index is minimized for improv-
ing the system stability. The quantities of L-index of the presented optimization approaches,
the CHIO, the ALO, and the SSA equal 0.071587, 0.071614, and 0.071596, respectively.

Notably, the proposed CHIO indicates the best power loss reduction 2.0661 MW, the most
economical alternative USD 768.95/h, and the improved voltage profile (VD = 0.36824 pu). In
addition, the CHIO tends to have the least voltage stability index 0.071587 pu and emission
levels 0.09055 ton/h. Figure 8 displays the convergence curves of the CHIO, the ALO,
and the SSA techniques over several test schemes. These records illustrate that the CHIO
influences the best values of the OF in the least number of iterations, consistently: for all test
scenarios (1–5), the CHIO reaches the lowest OFs in comparison with the other methods in
a smaller number of iterations, which proves the effectiveness of the presented technique.
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Figure 8. Convergence rates for Scenarios 1, 2, 3, 4, and 5 with CHIO, ALO, and SSA: (a) convergence
rates for Scenario 1; (b) convergence rates for Scenario 2; (c) convergence rates for Scenario 3;
(d) convergence rates for Scenario 4; (e) convergence rates for Scenario 5.

The proposed CHIO compared with the reported methods for Scenarios 1–5 is given
in Table 9. In comparison to the literature approaches, the proposed CHIO contributes to
competitiveness strategy for different scenarios (1–5).

Table 9. Comparative analysis for SO functions for IEEE 30-bus test scheme (Scenarios 1–5) (The
numbers in bold are the best values found).

Scenarios Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5

IGWO [52] 811.838 0.09783 - 2.3584 -
DA-PSO [37] 802.12 0.205 - 3.189 -
MOALO [70] 799.14 - - - -
MODA [71] 802.32 - - - -

WOA-PS [71] 799.56 0.206 - 2.967 -
PSO-SSO [72] 798.98 0.205 1.25 2.858 0.124

ECBO [73] 799.035 - - - -
ECHT [36] 800.41 0.205 - 3.084 0.136

DA-APSO [74] 802.63 - - 3.003 -
MVO [75] 799.24 - - 2.881 0.115

ALO 769.32 0.090553 0.37794 2.0724 0.071614
SSA 769.64 0.090553 0.37173 2.0848 0.071596

CHIO 768.95 0.090550 0.36824 2.0661 0.071587

5.1.2. Dual-Objective Scenarios

Tables 10 and 11 represent the scheduling of control variables and the simulation
results of dual-objective scenarios (Scenarios 6–8) using the AHP, respectively. Scenario 6
enhances the fuel and emissions of generation stations concurrently. Scenario 7 enhances
fuel costs and VD, while Scenario 8 reflects the fuel costs and the stability enhancement as
the main dual-objective. The presented CHIO indicates the best compromise alternatives
for Scenarios 6–8. The findings obtained the success of the presented CHIO compared
to the literary methods mentioned. Figure 9 shows the efficacy of the CHIO technique
proposed as opposed to the other algorithms SSA and ALO using the AHP technique.
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Table 10. Lists of control variables for Scenarios 6–8 for IEEE 30-bus test scheme: AHP-based solutions
(The numbers in bold are the best values found).

Variables and
Parameters

Bounds Scenario #6 Scenario #7 Scenario #8

Min Max CHIO ALO SSA CHIO ALO SSA CHIO ALO SSA

Active
power
(MW)

PTPG2 20 80 36.731 36.279 38.165 37.265 36.304 38.277 37.393 37.786 37.368
PTPG5 10 60 38.259 39.366 38.253 38.639 39.291 38.74 38.683 38.721 39.174
PTPG8 10 35 10 10.001 10.794 10 10 10 10 10 10
PTPG11 0 60 43.679 42.398 38.918 40.932 42.481 43.261 40.947 37.993 36.702
PTPG13 10 60 32.958 31.971 32.57 32.446 31.727 31.403 31.862 32.205 33.668

Reactive
power
(MVAr)

Q2 −20 60 10.833 10.874 9.6167 18.225 11.811 −20 11.203 11.39 19.449
Q5 −30 35 35 35 35 24.834 35 35 35 35 26.742
Q8 −15 40 40 40 40 40 40 40 40 40 40
Q11 −25 30 19.086 18.154 18.192 21.655 19.127 22.201 18.895 18.226 19.549
Q13 −20 25 19.924 22.768 22.559 14.549 16.545 19.504 20.235 22.113 19.33

Bus
voltage

(pu)

V1 0.96 1.10 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
V2 0.96 1.10 1.0899 1.0905 1.0897 1.0879 1.089 0.9585 1.0899 1.0901 1.09
V5 0.96 1.10 1.1 1.0996 1.0894 1.0655 1.1 1.0985 1.1 1.0993 1.0702
V8 0.96 1.10 1.1 1.0999 1.0769 1.1 1.0874 1.0692 1.1 1.0955 1.0763
V11 0.96 1.10 1.1 1.1 1.1 1.1 1.0966 1.1 1.1 1.1 1.1
V13 0.96 1.10 1.0913 1.0997 1.0987 1.0721 1.0798 1.0823 1.0919 1.0975 1.088

Wgencost

Not applicable

114.16 117.71 114.14 115.37 117.47 115.7 115.51 115.63 117.09
PVgencost 119.65 115.73 104.92 110.19 115.64 118.66 110.68 101.58 98.182

PVTPgencost 99.824 96.776 98.611 98.248 96.042 95.024 96.568 97.476 102.11
Fuelvlvcost 436.16 439.69 452.51 445.08 440.45 441.12 446.73 454.86 452.84

Fuel costs ($/h) 769.79 769.91 770.19 768.89 769.6 770.5 769.49 769.55 770.22
VD (pu) 1.0767 1.1414 1.1208 0.87394 0.96677 0.88008 1.0753 1.1121 1.0101

Ploss (MW) 5.3788 5.4231 5.5705 5.4964 5.4415 5.5104 5.5244 5.6632 5.627
L-index 0.11387 0.11146 0.11234 0.12229 0.1179 0.12414 0.11259 0.11388 0.11691

Emissions (ton/h) 0.1478 0.15006 0.15161 0.15101 0.15036 0.14771 0.15158 0.15475 0.15446
Execution time (s) 385.0354 353.1225 384.7674 343.9965 348.5127 430.5964 309.6968 408.3730 391.4846
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Table 11. Numerical results of Scenarios 6–8 for IEEE 30-bus test scheme “Dual-objectives”.

Scenarios Scenario #6 Scenario #7 Scenario #8

Optimizations CHIO ALO SSA CHIO ALO SSA CHIO ALO SSA

Fuel costs ($/h) 769.79 769.91 770.19 768.89 769.6 770.5 769.49 769.55 770.22
Emissions (ton/h) 0.1478 0.1501 0.1516 0.1510 0.1504 0.1477 0.1516 0.1548 0.1545

VD (pu) 1.0767 1.1414 1.1208 0.8739 0.9668 0.8801 1.0753 1.1121 1.0101
Ploss (MW) 5.3788 5.4231 5.5705 5.4964 5.4415 5.5104 5.5244 5.6632 5.627

L-index 0.1139 0.1115 0.1123 0.1223 0.1179 0.1241 0.1139 0.1126 0.1169

Figure 10 explains the Pareto fronts with the strategies CHIO, ALO, and SSA for
Scenarios 6–8. In Scenarios 6–8, Table 12 demonstrates the numerical results of the presented
CHIO using TOPSIS in comparison with further utilized techniques. The use of the CHIO
is more competitive in various scenarios relative to the approaches described.
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Figure 10. Pareto fronts with CHIO, ALO, and SSA for Scenario 6–8. (a) Pareto fronts with CHIO,
ALO, and SSA for Scenario 6; (b) Pareto fronts with CHIO, ALO, and SSA for Scenario 7; (c) Pareto
fronts with CHIO, ALO, and SSA for Scenario 8.
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Table 12. Lists of control variables for Scenarios 6–8 for IEEE 30-bus test scheme: TOPSIS-based
solutions (The numbers in bold are the best values found).

Variables and
Parameters

Bounds Scenario #6 Scenario #7 Scenario #8

Min Max CHIO ALO SSA CHIO ALO SSA CHIO ALO SSA

Active
power
(MW)

PTPG2 0 80 47.845 48.982 46.078 45.621 40.152 66.178 39.117 47.489 42.04
PTPG5 10 60 49.719 53.164 51.233 24.064 55.8 40.281 42.978 42.409 45.261
PTPG8 10 35 33.338 29.341 30.902 22.187 31.809 26.5 30.152 33.634 34.153
PTPG11 0 60 54.086 54.074 54.865 38.309 42.535 39.127 45.717 55.79 44.429
PTPG13 10 60 41.396 42.335 44.852 20.455 18.392 21.337 36.454 36.587 41.89

Reactive
power
(MVAr)

Q2 −20 60 −19.618 12.779 −20 −20 −20 60 −20 −20 −20
Q5 −30 35 34.737 35 35 35 35 −17.095 35 35 35
Q8 −15 40 40 40 40 72.152 40 40 40 40 40
Q11 −25 30 20.212 15.917 11.242 31.598 38.362 30 43.473 39.702 38.295
Q13 −20 25 25 19.142 25 29.794 47.92 25 46.347 47.177 46.652

Bus
voltage

(pu)

V1 0.96 1.10 1.0659 1.0995 1.0533 0.96637 1.0343 0.97412 1.0226 1.0384 0.99867
V2 0.96 1.10 1.052 1.0989 0.97869 0.97955 1.0103 1.0998 0.99434 1.019 0.96053
V5 0.96 1.10 1.0491 1.0989 1.0657 1.0446 1.0825 0.98497 1.0773 1.0997 1.0447
V8 0.96 1.10 1.0624 1.0995 1.0687 1.0366 1.0743 1.0966 1.0753 1.0985 1.0639
V11 0.96 1.10 1.0734 1.0988 1.0218 1.09 1.1 1.1 1.0962 1.1 1.1
V13 0.96 1.10 1.0808 1.0981 1.0548 1.0662 1.1 1.0963 1.0829 1.1 1.1

Wgencost

Not applicable

154.01 167.18 159.74 75.685 177.55 120.69 129.76 127.81 137.73
PVgencost 157.51 157.62 160.32 102.42 116.29 105.3 126.84 164.06 122.63

PVTPgencost 128.89 132.48 141.83 66.546 62.286 68.505 111.31 111.82 130.62
Fuelvlvcost 375.16 359.52 356.61 559.47 448.08 512.21 424.55 406.85 412.72

Fuel costs ($/h) 815.57 816.8 818.5 804.13 804.21 806.7 792.46 810.54 803.7
VD (pu) 0.54468 1.3086 0.53194 0.37806 0.38057 0.39431 0.55733 0.39718 0.39866

Ploss (MW) 3.086 2.7679 3.2697 8.0997 4.7286 5.3882 5.0538 4.1804 4.3633
L-index 0.11179 0.1011 0.13014 0.088852 0.08199 0.1176 0.079419 0.08353 0.08072

Emissions (ton/h) 0.092838 0.09288 0.09303 0.17045 0.11515 0.11512 0.11124 0.09741 0.10176
Computation time (s) 1070.14 318.07 441.79 1260.03 403.06 501.39 1265.38 433.11 466.480

An evaluation of the previous related studies for dual objectives was stated in Table 13.
The results obtained the effectiveness of the presented CHIO compared to the literary
methods mentioned. The results in bold are more competitive solutions using three opti-
mization techniques.

Table 13. Comparative analysis for dual objective functions (Scenarios 6–8).

Scenarios Scenario #6 Scenario #7 Scenario #8

Objective Functions Fuel Costs ($/h) Emissions (ton/h) Fuel Costs ($/h) VD (pu) Fuel Costs ($/h) L-Index

MOMICA [34] 865.06 0.222 804.96 0.095 - -
MOFA-CPA [33] 852.02 0.279 - - - -

MODA [37] 838.604 0.254 807.2807 0.023 - -
PSO-SSO [72] 834.804 0.243 803.99 0.094 830.35 0.125

ECHT [36] - - 803.72 0.095 - -
DA-APSO [74] - - 802.63 0.116 - -

ALO 769.91 0.15006 769.6 0.96677 769.55 0.11388
SSA 770.19 0.15161 770.5 0.88008 770.22 0.11259

CHIO 769.79 0.1478 768.89 0.87394 769.49 0.11691

5.1.3. Triple-Objective Scenarios

Tables 14 and 15 display the outcomes of simulations obtained for three objective
functions for the SSA, the ALO, and the proposed CHIO for Scenarios 9–11 using the AHP
and the TOPSIS, respectively. In Scenario 9, three objectives are taken into account: fuel
costs, power losses, and voltage deviation minimizations. In Scenario 10, fuel cost, Ploss,
and carbon minimizations are considered. The fuel costs, voltage drop, and emission levels
are considered in Scenario 11.
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Table 14. Lists of control variables for Scenarios 9–11 for IEEE 30-bus test scheme: AHP-based
solutions (The numbers in bold are the best values found).

Variables and
Parameters

Bounds Scenario #9 Scenario #10 Scenario #11

Min Max CHIO ALO SSA CHIO ALO SSA CHIO ALO SSA

Active
power
(MW)

PTPG2 0 80 37.915 37.263 37.519 37.575 37.915 36.998 36.901 37.704 38.33
PTPG5 10 60 39.431 39.388 39.224 39.494 39.405 39.785 38.405 37.865 36.99
PTPG8 10 35 10 10 10 10 10 10.017 10 10 10.183
PTPG11 0 60 37.924 38.554 42.819 41.433 41.144 42.807 43.679 37.467 39.543
PTPG13 10 60 33.009 33.044 32.741 32.477 33.166 32.29 31.781 33.385 32.736

Reactive
power
(MVAr)

Q2 −20 60 18.253 19.472 16.951 17.964 18.299 18.561 18.407 16.73 17.025
Q5 −30 35 24.857 26.403 23.888 25.398 26.694 28.245 24.611 24.745 24.721
Q8 −15 40 40 40 40 40 40 40 40 40 40
Q11 −25 30 21.124 18.252 20.827 19.39 18.651 19.265 23.083 20.747 21.473
Q13 −20 25 15.705 19.236 17.916 21.272 22.718 20.103 10.631 16.58 14.895

Bus
voltage

(pu)

V1 0.96 1.10 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
V2 0.96 1.10 1.0882 1.0896 1.0883 1.0899 1.0909 1.091 1.0871 1.0872 1.0871
V5 0.96 1.10 1.0661 1.0692 1.0658 1.0695 1.072 1.0734 1.0638 1.0646 1.064
V8 0.96 1.10 1.0995 1.099 1.0908 1.1 1.0988 1.0919 1.098 1.0784 1.0962
V11 0.96 1.10 1.1 1.0946 1.1 1.1 1.1 1.1 1.1 1.0986 1.0991
V13 0.96 1.10 1.0758 1.086 1.0824 1.0934 1.0985 1.0912 1.0597 1.0774 1.0723

Wgencost

Not applicable

117.92 117.78 117.25 118.12 117.83 119.07 114.63 112.92 110.18
PVgencost 101.29 102.96 117.07 112.26 112.23 116.7 119.65 100.3 105.73

PVTPgencost 100.07 100.15 99.192 98.338 100.51 97.759 96.223 101.19 99.137
Fuelvlvcost 450.24 448.3 436.4 440.65 439.73 436.03 439.35 455.56 453.9

Fuel costs ($/h) 769.19 769.53 769.91 769.38 770.3 769.56 769.85 769.97 768.95
VD (pu) 0.89865 0.96724 0.95242 1.0514 1.1035 1.0609 0.78891 0.88963 0.85853

Ploss (MW) 5.5598 5.547 5.3219 5.3811 5.367 5.3112 5.4224 5.6972 5.6488
L-index 0.12136 0.11871 0.11957 0.11559 0.11345 0.11468 0.1258 0.12208 0.1232

Emissions (ton/h) 0.15239 0.1525 0.14674 0.14855 0.14763 0.14732 0.14897 0.15521 0.15312
Execution time (s) 279.63 347.842 362.581 274.884 375.193 384.989 272.287 364.287 385.129

Table 15. Lists of control variables for Scenarios 9–11 for IEEE 30-bus test scheme: TOPSIS-based
solutions (The numbers in bold are the best values found).

Variables and
Parameters

Bounds Scenario #9 Scenario #10 Scenario #11

Min Max CHIO ALO SSA CHIO ALO SSA CHIO ALO SSA

Active
power
(MW)

PTPG2 0 80 45.405 48.361 62.321 46.448 53.022 45.228 57.368 48.538 49.279
PTPG5 10 60 55.529 50.909 52.175 71.7 56.496 54.824 49.2 46.063 48.875
PTPG8 10 35 32.838 26.289 30.04 34.277 29.567 29.562 31.29 25.863 26.658
PTPG11 0 60 42.484 55.725 51.342 59.487 57.34 51.823 51.129 51.793 50.458
PTPG13 10 60 34.013 43.227 25.283 40.994 41.834 42.571 39.104 43.911 39.191

Reactive
power
(MVAr)

Q2 −20 60 −20 15.13 −20 13.944 −3.0635 −20 −20 −2.0587 32.849
Q5 −30 35 35 32.075 35 23.902 34.535 35 35 35 19.43
Q8 −15 40 40 40 40 40 40 40 33.567 40 40
Q11 −25 30 23.42 19.691 21.981 17.235 16.358 11.408 25.992 19.223 18.668
Q13 −20 25 18.363 12.202 25 19.746 18.545 18.641 24.103 21.071 25

Bus
voltage

(pu)

V1 0.96 1.10 1.0745 1.0734 1.0649 1.095 1.0915 1.0813 1.0526 1.0631 1.0155
V2 0.96 1.10 1.0537 1.0697 1.0252 1.0947 1.0846 1.0137 0.96787 1.054 1.0201
V5 0.96 1.10 1.0716 1.0596 1.0815 1.0859 1.0813 1.0654 1.0569 1.0653 0.99491
V8 0.96 1.10 1.0651 1.0713 1.0763 1.0983 1.0869 1.0725 1.0326 1.0621 1.0204
V11 0.96 1.10 1.0899 1.0729 1.0787 1.097 1.0851 1.0479 1.0754 1.0661 1.025
V13 0.96 1.10 1.065 1.0468 1.0787 1.0955 1.0831 1.059 1.0594 1.0612 1.0585

Wgencost

Not applicable

176.48 158.51 163.35 244.28 180.33 173.68 152.07 140.59 150.86
PVgencost 115.16 163.95 147.25 177.97 169.19 148.74 146.02 149.08 143.64

PVTPgencost 103.26 135.73 77.989 127.38 130.44 133.12 120.58 138.35 120.81
Fuelvlvcost 406.04 355.05 429.43 308.98 349.31 357.93 397.85 376.03 386.85

Fuel costs ($/h) 800.93 813.24 818.02 858.61 829.27 813.47 816.52 804.05 802.16
VD (pu) 0.59367 0.50992 0.53133 1.2231 0.96821 0.48706 0.43323 0.46179 0.73504

Ploss (MW) 3.3057 3.06 3.326 1.9072 2.5598 3.0963 3.2613 3.5004 3.7856
L-index 0.11386 0.11634 0.11076 0.10076 0.10914 0.12837 0.11684 0.11521 0.12004

Emissions (ton/h) 0.09912 0.09411 0.09662 0.091123 0.09144 0.09394 0.093589 0.09718 0.09799
Computation time (s) 995.1156 318.7531 524.7601 1000.5954 302.5808 425.4336 1186.5667 322.3311 431.3868

In Scenario 9, the proposed CHIO obtained the best fuel cost and voltage deviation,
while the SSA technique achieved the best reduction in power losses. In Scenario 10, the
proposed CHIO obtained the best economic benefit, while the SSA technique obtained the
best reduction in power losses and environmental benefits. In Scenario 11, the proposed
CHIO obtained the best values in all objectives of that scenario. Figure 11 indicates Pareto
fronts with ALO, SSA, and the proposed CHIO methods for Scenarios 9–11.
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fronts with CHIO, ALO, and SSA for Scenario 11.

The fuel costs in Scenarios 9, 10, and 11 obtained using the AHP are more economical
than obtained using a TOPSIS. In Scenario 9, voltage deviation and power losses obtained
using a TOPSIS are more technical than obtained using the AHP. In Scenario 10, emission
levels and power losses obtained using a TOPSIS are more environmental and technical
than obtained using the AHP, respectively. In addition, voltage deviation and emission
levels obtained in Scenario 11 using a TOPSIS are more technical and offer more environ-



Mathematics 2022, 10, 1201 29 of 43

mental benefits than obtained using the AHP, respectively. To sum up, we can say that
optimization techniques using the AHP are superior to obtaining the best values of fuel
costs in comparison to the TOPSIS while the optimization techniques using the TOPSIS
has more environmental and technical benefits in comparison to the AHP in the case of
triple-objective scenarios.

An evaluation of the previous related studies for triple-objectives is stated in Table 16.
The results obtained the effectiveness of the presented CHIO in comparison with the
literary methods mentioned. The results in bold are more competitive solutions using three
optimization techniques.

Table 16. Comparative analysis for triple-objective functions (Scenarios 9–11) (The numbers in bold
are the best values found).

Scenarios Scenario #9 Scenario #10 Scenario #11

Objective
Functions

Fuel
Costs
($/h)

VD (pu)
Power
Losses
(MW)

Fuel
Costs
($/h)

Emissions
(ton/h)

Power
Losses
(MW)

Fuel
Costs
($/h)

Emissions
(ton/h) VD (pu)

MOFA-CPA [33] - - - 878.13 0.2165 3.9232 - - -
MODA [37] - - - 867.9070 0.2640 4.5342 - - -

PSO-SSO [72] 864.27 0.316 4.545 865.18 0.224 4.093 804.332 0.346 0.164
ALO 769.19 0.96724 5.547 770.3 0.14763 5.367 769.97 0.15521 0.88963
SSA 769.91 0.95242 5.3219 769.56 0.14732 5.3112 768.95 0.15312 0.85853

CHIO 769.53 0.89865 5.5598 769.38 0.14855 5.3811 769.85 0.14897 0.78891

5.1.4. Quad-Objective Scenario

Table 17 displays EETD simulation results for the quad objective “Scenario 12”. This
table confirms that the presented CHIO leads, in comparison with the ALO and the SSA
using the TOPSIS, to the most competitive economic solutions at tolerable voltages of
system losses. The convergence curve in Figure 12 displays the efficiency and the minimum
number of iterations of the proposed CHIO method using the AHP. Furthermore, Table 18
assesses the CHIO offered as compared to MOMICA [34], I-NSGA-III [35], MODA [37],
and ECHT [36] in the context of Scenario 12 and individual ALO and SSA techniques. In
comparison to existing individual optimization methods using the ALO and the SSA, the
proposed CHIO approach offers the best possible compromise solution.

Table 17. Lists of control variables for Scenario 12 for IEEE 30-bus test scheme: TOPSIS-based
solutions (The numbers in bold are the best values found).

Variables and Parameters Min. Max. CHIO ALO SSA

Active
power (MW)

PTG2 20 80 48.714 50.953 47.125
PTG5 10 60 48.81 54.609 50.637
PTG8 10 35 27.752 33.426 31.178
PTG11 10 60 54.453 48.113 54.953
PTG13 10 48.652 39.445 36.464 43.843

Reactive
power
(MVAr)

Q2 −20 60 33.559 6.7174 −20
Q5 −30 35 26.541 35 28.401
Q8 −15 40 40 38.79 40
Q11 −25 30 16.525 17.953 16.23
Q13 −20 25 14.031 14.739 12.23

Bus voltage
(pu)

V1 0.96 1.10 1.071 1.0769 1.0804
V2 0.96 1.10 1.0723 1.0716 0.99356
V5 0.96 1.10 1.0543 1.074 1.0452
V8 0.96 1.10 1.0697 1.0619 1.05
V11 0.96 1.10 1.0634 1.0759 1.0526
V13 0.96 1.10 1.0499 1.0581 1.0363



Mathematics 2022, 10, 1201 30 of 43

Table 17. Cont.

Variables and Parameters Min. Max. CHIO ALO SSA

Wgencost

Not applicable

150.62 172.84 157.47
PVgencost 159.28 134.89 160.63

PVTPgencost 121.73 111.72 138.18
Fuelvlvcost 375.46 392.93 361.45

Total cost ($/h) 807.09 812.37 817.74
VD (pu) 0.4942 0.59979 0.46338

Ploss (MW) 3.2669 2.9596 3.1828
L-index 0.11517 0.11298 0.13688

Emission (ton/h) 0.095747 0.093889 0.092843
Computation time (s) 1070.1630 302.5195 404.1681
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Table 18. Lists of control variables for Scenario 13 for IEEE 30-bus test scheme: TOPSIS-based
solutions (The numbers in bold are the best values found).

Variables and Parameters Min Max CHIO ALO SSA

Active
power (MW)

PTG2 20 80 73.507 47.479 47.016
PTG5 10 60 54.844 45.5 47.761
PTG8 10 35 33.146 25.043 33.585
PTG11 10 60 56.072 46.144 46.941
PTG13 10 48.652 38.813 35.025 40.565

Reactive
power
(MVAr)

Q2 −20 60 −20 1.6023 33.452
Q5 −30 35 35 31.742 6.0559
Q8 −15 40 40 40 40
Q11 −25 30 37.94 20.115 24.597
Q13 −20 25 44.923 25 25

Bus voltage
(pu)

V1 0.96 1.10 1.0326 1.0659 1.0516
V2 0.96 1.10 0.97156 1.0572 1.0502
V5 0.96 1.10 1.0951 1.0475 1.0134
V8 0.96 1.10 1.0909 1.0718 1.0592
V11 0.96 1.10 1.0948 1.0763 1.0775
V13 0.96 1.10 1.0941 1.0916 1.0695

Wgencost

Not applicable

173.76 138.58 146.75
PVgencost 164.98 128.43 131.24

PVTPgencost 119.51 106.59 125.99
Fuelvlvcost 406 414.66 400.5

Total cost ($/h) 864.25 788.26 804.47
VD (pu) 0.39559 0.55259 0.42219

Ploss (MW) 3.1204 3.9664 3.4982
L-index 0.075979 0.11077 0.10948

Emission (ton/h) 0.096721 0.10653 0.096649
Computation time (s) 991.7640 347.8191 358.4133
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5.1.5. Quanta-Objective Scenario

Table 18 demonstrates the results of the EETD issue for quanta-objectives “Scenario
13”. The table confirms that the presented CHIO indicates more competitive compromise
alternatives at appropriate thresholds of voltage at the losses to the system in comparison
with the ALO and the SSA. It can be noted from Figure 13 that the presented CHIO attains
the best alternative. Furthermore, Table 19 assesses the CHIO offered as compared to
MOMICA [34], I-NSGA-III [35], MODA [37], and ECHT [36] in the context of Scenario 13.
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Table 19. Comparative analysis for quad and quanta objective functions (Scenarios 12 and 13) (The
numbers in bold are the best values found).

Scenarios Scenario #12 Scenario #13

Objective
Functions

Fuel Costs
($/h)

Emission
(ton/h) VD (pu)

Power
Losses
(MW)

Fuel Costs
($/h)

Emissions
(ton/h) VD (pu)

Power
Losses
(MW)

L-Index

MOMICA [34] 830.188 0.252 0.298 5.585 - - - - -
I-NSGA-III [35] 881.9395 0.2209 0.1754 4.7449 843.8571 0.1485 0.2388 5.7405 0.1253

MODA [37] 828.49 0.265 0.585 5.912 - - - - -
ECHT [36] 830.2123 0.253 0.296 5.586 - - - - -

PSO-SSO [72] 826.94 0.258 0.466 5.515 826.8 0.256 0.463 5.464 0.145
ALO 769.07 0.14957 0.84792 5.5493 769.93 0.14867 0.97541 5.3714 0.11758
SSA 770.43 0.14799 0.83337 5.4257 770.18 0.15455 0.8247 5.6446 0.12473

CHIO 768.92 0.15177 0.92664 5.4395 770.13 0.14624 0.86862 5.3023 0.12242

5.2. Results for IEEE 57-Bus Scheme

For SO and MO scenarios for the second test scheme, the simulation findings are stated
as follows:

5.2.1. Single Objective Scenarios

For the IEEE-57 bus scheme, Table 20 shows the SOEETD alternatives obtained by the
ALO, the SSA, and the presented CHIO for Scenario 14. In this scenario, the minimization
of fuel costs is the main OF. The presented CHIO tends to be the least economical alternative
(USD 32,752/h) in comparison with other approaches the ALO (USD 32,756/h) and the
SSA (USD 32,770/h). Figure 14 illustrates the convergence rates of the proposed CHIO in
comparison to other algorithms of the ALO and the SSA. This figure shows that the CHIO
attains the best estimates of the OF in the least number of iterations
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Table 20. Lists of control variables for Scenario 14 for IEEE 57-bus test scheme (The numbers in bold
are the best values found).

Variables and Parameters
Bounds Scenario #14

Min Max CHIO ALO SSA

Active
power (MW)

PTPG1 80 200 142.03 143.32 142.02
PTPG2 30 100 100 100 100
PTPG3 40 140 140 140 140
PTPG6 30 100 90.462 99.915 85.404
PTPG8 100 550 381.24 375.31 384.08
PTPG9 30 100 48.64 48.587 48.605
PTPG12 100 410 362.39 362.87 364.11

Reactive
power
(MVAr)

Q2 −17 50 46.138 49.685 50
Q3 −10 60 29.639 28.616 −10
Q6 −8 25 5.0015 1.2401 −8
Q8 −140 200 42.065 40.539 69.403
Q9 −3 9 5 9 −3
Q12 −150 155 56.541 67.292 69.611

Bus voltage
(pu)

V1 0.95 1.10 1.1 1.0991 1.1
V2 0.95 1.10 1.1 1.1 1.0999
V3 0.95 1.10 1.1 1.1 1.0078
V6 0.95 1.10 1.1 1.0994 0.9591
V8 0.95 1.10 1.1 1.1 1.1
V11 0.95 1.10 1.1 1.098 1.0423
V12 0.95 1.10 1.0821 1.0865 1.0823

Wgencost

Not applicable

555.43 555.43 555.43
PVgencost 1646.6 1616.9 1658.4

PVTPgencost 156.77 156.57 156.63
Fuelvlvcost 30,393 30,427 30,399

Fuel costs ($/h) 32,752 32,756 32,770
VD (pu) 4.9146 4.9821 4.5556

Ploss (MW) 12.738 12.708 13.098
L-index 0.2321 0.2294 0.2417

Emissions (ton/h) 1.2322 1.2582 1.2763
Computation time (s) 347.42 399.24 609.65
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5.2.2. Dual-Objective Scenarios “Economical and Technical Benefits”

In Scenario 15, the fuel costs and VD can be enhanced concurrently. The presented
CHIO tends to the optimal compromise alternative using the AHP (USD 32,754/h) and
(4.8974 pu) in comparison with other individual approaches; the ALO (USD 32,771/h) and
(4.9926 pu); and the SSA (USD 32,786/h) and (4.6149 pu). The proposed CHIO leads to
the optimal compromise solution using the TOPSIS (USD 33,299/h) and (1.0707 pu) in
comparison with other individual techniques; the ALO (USD 32,935/h) and (1.0937 pu);
and the SSA (USD 33,230/h) and (1.0872 pu); as illustrated in Table 21. The fuel cost
using the CHIO-AHP and voltage deviation using the SSA-AHP are more economical and
technical than obtained using other approaches, respectively.

Table 21. Lists of control variables for Scenario 15 using AHP and TOPSIS for IEEE 57-bus test scheme
(The numbers in bold are the best values found).

Variables and Parameters
Bounds Scenario #15—AHP Scenario #15—TOPSIS

Min Max CHIO ALO SSA CHIO ALO SSA

Active
power
(MW)

PTPG1 80 200 141.13 146.85 142.12
PTPG2 30 100 100 100 100 97.284 99.802 99.991
PTPG3 40 140 140 140 140 136.61 139.98 140
PTPG6 30 100 90.525 66.72 64.232 66.124 75.725 49.604
PTPG8 100 550 381.28 391.52 390.9 394.54 400.59 342.82
PTPG9 30 100 48.555 48.524 48.595 47.437 48.526 48.244
PTPG12 100 410 362.39 374 375.88 349.16 360.12 406.63

Reactive
power
(MVAr)

Q2 −17 50 50 47.376 50 50 50 −17
Q3 −10 60 30.456 28.034 −10 32.267 −10 35.239
Q6 −8 25 5.0223 9.0762 −8 −8 25 25
Q8 −140 200 42.625 37.959 63.327 45.618 13.908 28.807
Q9 −3 9 9 9 9 9 9 9
Q12 −150 155 56.269 63.386 65.015 139.05 155 155

Bus voltage
(pu)

V1 0.95 1.10 1.099 1.0996 1.1 1.0096 1.0153 0.99824
V2 0.95 1.10 1.1 1.1 1.0977 1.0274 1.038 0.95031
V3 0.95 1.10 1.1 1.1 0.9876 1.0113 0.99729 1.003
V6 0.95 1.10 1.1 1.0991 1.0437 0.99375 1.0266 1.0878
V8 0.95 1.10 1.1 1.1 1.1 1.0164 1.0094 1.0091
V11 0.95 1.10 1.1 1.1 1.099 1.0247 1.0577 1.0997
V12 0.95 1.10 1.0815 1.0866 1.0836 1.0257 1.0426 1.0941

Wgencost

Not applicable

555.43 555.43 555.43 539.82 555.32 555.43
PVgencost 1645.4 1691.9 1689.8 1706.3 1732.7 1468.1

PVTPgencost 156.45 156.33 156.6 152.24 156.33 155.27
Fuelvlvcost 30,397 30,367 30,384 30,900 30,490 31,052

Fuel costs ($/h) 32,754 32,771 32,786 33,299 32,935 33,230
VD (pu) 4.8974 4.9926 4.6149 1.0707 1.0937 1.0872

Ploss (MW) 12.736 12.458 12.717 16.833 16.794 16.379
L-index 0.23147 0.22979 0.2404 0.26182 0.26843 0.25241

Emissions (ton/h) 1.2584 1.341 1.3454 1.3261 1.3465 1.3064
Computation time (s) 427.4885 414.6923 596.62 1303.38 455.579 560.509

The fuel cost using the ALO-TOPSIS and voltage deviation using the CHIO-TOPSIS
are more economical and technical than obtained using other approaches, respectively.
Figure 15 shows the convergence rate and the Pareto front for the dual objectives for
Scenario 15 using the AHP and the TOPSIS, respectively.

5.2.3. Dual-Objective Scenarios “Economical and Environmental Benefits”

In Scenario 16, the fuel costs and emissions are concurrently enhanced. The presented
CHIO tends to be the optimal compromise alternative using the AHP (USD 32,751/h)
and (1.2553 ton/h) in comparison with other approaches; the ALO (USD 32,753/h) and
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(1.2581 ton/h); and the SSA (USD 32,772/h) and (1.3422 ton/h). The proposed CHIO leads
to the optimal compromise alternative using the TOPSIS (USD 33,344/h) and (1.0976 ton/h)
compared with other approaches; the ALO (USD 33,049/h) and (1.1198 ton/h); and the
SSA (USD 33,473 /h) and (1.0964 ton/h) as illustrated in Table 22. The fuel cost and
emission levels obtained using the CHIO-AHP are more economical and environmental
than obtained using other approaches, respectively.
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Figure 15. The convergence rate and the Pareto front for the dual-objective for Scenario 15 using the
AHP and TOPSIS: (a) convergence rates using the AHP with ALO, SSA, and CHIO; (b) Pareto fronts
with CHIO, ALO, and SSA.

Table 22. Lists of control variables for Scenario 16 using AHP and TOPSIS for IEEE 57-bus test scheme
(The numbers in bold are the best values found).

Variables and Parameters
Bounds Scenario #16—AHP Scenario #16—TOPSIS

Min Max CHIO ALO SSA CHIO ALO SSA

Active
power
(MW)

PTPG1 80 200 140.44 142.84 158.66 140.44 142.84 158.66
PTPG2 30 100 100 100 100 100 100 99.849
PTPG3 40 140 140 140 140 139.99 140 139.99
PTPG6 30 100 90.488 95.416 65.626 99.938 100 99.78
PTPG8 100 550 381.21 384.31 392.53 320.04 336.72 320.58
PTPG9 30 100 48.653 48.614 48.601 48.609 48.671 48.578
PTPG12 100 410 362.38 357.39 372.12 339.96 345.59 334.15

Reactive
power
(MVAr)

Q2 −17 50 46.138 49.066 49.93 45.377 45.545 30.186
Q3 −10 60 29.64 28.429 30.756 26.853 21.835 −4.2581
Q6 −8 25 4.9955 3.4006 10.004 7.0424 4.1125 −8
Q8 −140 200 42.068 39.15 47.067 44.505 35.441 83.674
Q9 −3 9 9 9 −3 9 9 9
Q12 −150 155 56.541 67.055 61.353 80.818 102.34 48.528

Bus voltage
(pu)

V1 0.95 1.10 1.1 1.0993 1.099 1.0995 1.1 1.0934
V2 0.95 1.10 1.1 1.1 1.1 1.0994 1.1 1.0852
V3 0.95 1.10 1.1 1.1 1.1 1.0992 1.1 1.0724
V6 0.95 1.10 1.1 1.1 1.0992 1.0995 1.1 1.0496
V8 0.95 1.10 1.1 1.1 1.1 1.0987 1.1 1.0915
V11 0.95 1.10 1.1 1.0999 0.9527 1.0968 1.1 1.0907
V12 0.95 1.10 1.0821 1.0858 1.0833 1.0887 1.1 1.0614
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Table 22. Cont.

Variables and Parameters
Bounds Scenario #16—AHP Scenario #16—TOPSIS

Min Max CHIO ALO SSA CHIO ALO SSA

Wgencost

Not applicable

555.43 555.43 555.43 555.39 555.43 555.36
PVgencost 1645.4 1658.3 1696.8 1363.1 1439.8 1365.3

PVTPgencost 156.82 156.67 156.62 156.65 156.9 156.54
Fuelvlvcost 30,393 30,383 30,363 31,269 30,897 31,395

Fuel costs ($/h) 32,751 32,753 32,772 33,344 33,049 33,473
VD (pu) 4.9146 4.9718 4.8841 4.9968 5.2342 3.8727

Ploss (MW) 12.738 12.968 12.601 14.258 13.762 15.241
L-index 0.2321 0.2298 0.2317 0.22947 0.22395 0.25315

Emissions (ton/h) 1.2553 1.2581 1.3422 1.0976 1.1198 1.0964
Computation time (s) 422.21 404.68 488.94 1575.13 402.319 477.557

The fuel cost using the ALO-TOPSIS and emission levels using the CHIO-TOPSIS
are more economical and technical than obtained using other approaches, respectively.
Figure 16 shows the convergence rate and the Pareto front for the dual objectives for
Scenario 16 using the AHP and the TOPSIS, respectively.
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Figure 16. The convergence rate and the Pareto front for the dual objectives for Scenario 16 using
AHP and TOPSIS: (a) convergence rates using AHP with ALO, SSA, and CHIO; (b) Pareto fronts
with ALO, SSA, and CHIO.

5.3. Evaluation of Economical-Environmental-Technical Benefits

In this section, we focus on the economic, environmental, and technical advantages
that allow the operator to compromise the various operational elements. Table 23 highlights
the economic benefits of saving in fuel costs for the two standard test schemes with and
without the integration of RESs using the proposed CHIO technique. This table compares
the presented approach to the best approach published in the literature, which corresponds
to various objectives. For the IEEE 30-bus, the annual saving differences in fuel cost with
and without RESs in Scenarios 1 and 6 are USD 263,062.8 and USD 569,522.6, respectively.
For the IEEE 57-bus, the annual saving differences in fuel cost with and without RESs in
Scenarios 14 and 16 are USD 78,092,421.6 and USD 78,152,865.6, respectively.
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Table 23. Economic benefits of the presented CHIO approach in comparison with other approaches
with and without the integration of RESs.

System Scenario #

IEEE without RESs IEEE Integrated with RESs Saving Difference with
and without RESs

Competitive Techniques Savings
($/h)

Annual
Savings
($/yr.)

Competitive Techniques Savings
($/h)

Annual
Savings
($/yr.)

Savings
($/h)

Annual
Savings
($/yr.)

IEEE
30-bus

1
PSO-SSO [72] 798.98

0.0550 481.80
CHIO 768.95

12.45 109,062
30.03 263,062.8

ECBO [73] 799.035 GWO [76] 781.40

6
PSO-SSO [72] 834.804

0.110 963.60
CHIO 769.79

12.51 109,588
65.014 569,522.6

MVO [75] 834.95 SHADE [76] 782.30

IEEE
57-bus

14
PSO-SSO [72] 41,666.66

7.96 69,729.6
CHIO 32,752

4 35,040
8914.66 78,092,421.6

DA-PSO [37] 41,674.62 ALO 32,756

16
PSO-SSO [72] 41,672.56

151.9 1,330,644
CHIO 32,751

2 17,520
8921.56 78,152,865.6

SSO [72] 41,824.46 ALO 32,753

Table 24 highlights the environmental benefits of saving in emission levels for the two
standard test schemes with and without the integration of RESs utilizing the presented
CHIO technique. For the IEEE 30-bus, the annual saving differences in emission levels
with and without RESs in Scenarios 10 and 13 are 657 ton/h and 963.6 ton/h, respectively.
For the IEEE 57-bus, the annual saving differences in fuel cost with and without RESs in
Scenarios 14 and 16 are 973.236 ton/h and 917.172 ton/h, respectively.

Table 24. Environmental benefits of the presented CHIO approach in comparison with other ap-
proaches with and without the integration of RESs.

System Scenario #

IEEE without RESs IEEE Integrated with RESs
Saving Difference
with and without

RESs

Competitive Techniques Savings
(ton/h)

Annual
Savings
(ton/yr.)

Competitive Techniques Savings
(ton/h)

Annual
Savings
(ton/yr.)

Savings
(ton/h)

Annual
Savings
(ton/yr.)

IEEE
30-bus

10
PSO-SSO [72] 0.224

0.001 8760
CHIO 0.14855

1.6115 14,116.3
0.075 657

PSO [72] 0.225 GWO [76] 1.76

13
PSO-SSO [72] 0.256

0.001 8760
CHIO 0.14624

0.314 2750.6
0.11 963.6

SSA [72] 0.257 SHADE [76] 0.46

IEEE
57-bus

14
PSO-SSO [72] 1.3433

0.5654 4947.25
CHIO 1.2322

0.026 227.76
0.11 973.236

DA-PSO [37] 1.9087 ALO 1.2582

16
PSO-SSO [72] 1.36

0.24 ALO
1.2581 1.2553

0.0028 24.528
0.105 917.172

SSO [72] 1.60

From the technical point of view, as seen in Table 25, the CHIO presented has the
lowest level in emissions with considerable emission reductions for Scenarios 10, 13, 14, and
16 corresponding to 8760 kg, 4947 tons, and 2100 tons/yr., respectively. Table 24 highlights
the technical benefits of saving in power losses for the two standard test systems with
and without the integration of RESs using the presented CHIO technique. For the IEEE
30-bus, the annual saving differences in Ploss with and without RESs in Scenarios 1 and 4
are 26,823.12 MW and 6937.044 MW, respectively. For the IEEE 57-bus, the annual saving
differences in power losses with and without RESs in Scenarios 14 and 16 are 19,096.8 MW
and 21,295.56 MW, respectively.
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Table 25. Technical benefits of the presented CHIO method in comparison with other methods with
and without the integration of RESs.

System Scenario #

IEEE without RESs IEEE Integrated with
RESs

Saving Difference with
and without RESs

Competitive Techniques Savings
(MW)

Annual
Savings
(MW)

Competitive Techniques Savings
(MW)

Annual
Savings

(MW/yr.)

IEEE
30-bus

1
PSO-SSO [72] 8.602

0.0112 98.112 CHIO 5.54
3.062 26,823.12

ECBO [73] 8.6132

4
PSO-SSO [72] 2.858

0.023 201.48 CHIO 2.0661
0.7919 6937.044

MVO [75] 2.881

IEEE
57-bus

14
PSO-SSO [72] 14.916

0.022 192.72 CHIO 12.736
2.18 19,096.8

DA-PSO [37] 14.938

16
PSO-SSO [72] 15.169

0.217 1900.9 CHIO 12.738
2.431 21,295.56

SSO [72] 15.386

6. Conclusions

This paper proposed an EETD problem for obtaining the best compromise solutions;
fuel costs, emission levels, voltage deviation, losses, and stability index of adapted IEEE
30-bus and IEEE 57-bus schemes involved thermal and RESs such as PV, wind, and hybrid
PV and tidal-power plants. The major objective is to keep overall fuel costs, active power
losses, and pollution levels as low as possible. Various constraints were studied as system
limitations. Different optimization methods—the CHIO, the SSA, and the ALO—were
utilized for identifying the best alternatives. A total of 16 scenarios were assessed to confirm
the potential of the introduced model in resolving the EETD issue. The AHP was employed
in computing the weights of the EETD issue. In addition, the TOPSIS procedure was
developed to help decision makers use various preferences to find the best alternatives
from Pareto results. Finally, the results showed that the CHIO surpasses the techniques
studied in resolving the EETD problem. By applying additional optimization techniques,
especially hybrid algorithms, the EETD formula may be further researched. Furthermore,
it is still a challenge for future study that non-convex EETD problems and uncertainties
about load demand combined with uncertainties of all RESs be explored. In addition, IEEE
118 bus, including thermal and stochastic RESs, can be investigated in future works.
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Abbreviations

ABC Artificial bee colony
ABC-DP Dynamic population-based artificial bee colony
AHP Analytical hierarchy process
ALO Ant lion optimizer
APSO Accelerating particle swarm optimization
CCO Criss-cross optimizer
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CHIO Coronavirus herd immunity optimizer
CI Consistency index
CR Consistency ratio
DP Dynamic programming
EETD Economical-environmental-technical dispatch
ES Energy storage
ESCO Enhanced sine cosine optimizer
GF Gumbel fitting
HIP Herd immunity population
HIS Herd immunity size
ISA Interior search algorithm
LF Lognormal fitting
MADM Multi-attribute decision making
MIL Mixed-integer linear
MIQ Mixed-integer quadratic
MO Multi-objective
MOCE/D Multi-objective cross-entropy algorithm based on decomposition
MOEA/D Decomposition-based multi-objective evolutionary algorithm
MOHHO Multi-objective Harris hawks optimization
MOPEO Multi-objective population extremal optimization
MWOA Modified whale optimization algorithm
NSGA Non-dominated sorting genetic algorithm
NSGA-RL Non-dominated sorting genetic algorithm reinforcement learning
ORC Overestimation of the reservation cost
PDFs Probability density functions
POZs Prohibited operating zones
PSO Particle swarm optimization
PV photovoltaic
PVTP Photovoltaic and tidal power
RC Relative closeness
RESs Renewable energy sources
RI Average random index
SMODE Summation based multi-objective differential evolution
SO Single objective
SOS Symbiotic organisms search
SPG Standby power generation
SSA Salp swarm algorithm
TLBO Teaching learning-based optimization
TOPSIS The technique for order preference by similarity to an ideal solution
TP Tidal power
TPGs Thermal power generations
TVAC Time-varying acceleration coefficient
UPC Underestimation of the penalty cost
VD Voltage deviation
WF Weibull fitting
WP Wind power

Nomenclature

α The scale factor of the wind turbine
β The shape factor of the wind turbine
CdPV The direct cost of the photovoltaic system
CdPVTP The direct cost of the photovoltaic-tidal power system
CdWP The direct cost of the wind turbine
CrPV The reserve capacity cost of the photovoltaic system
CrPVTP The reserve capacity cost of the photovoltaic-small hydro system
CrWP The reserve capacity cost of the wind turbine
CSPV The storage units cost of the photovoltaic system
CSPVTP The storage units cost of the photovoltaic-tidal power system
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CSWP The storage units cost of the wind turbine
Ctot The total cost of the fuel or generation
CtotPV The total cost of the photovoltaic generation unit
CtotPVTP The total cost of the photovoltaic-tidal power unit
CtotWP The total cost of the wind turbine generation unit
Ctot(PTPGs) The total cost of the thermal power generations
Ctot(PRESs) The total cost of the renewable energy sources
δij The phase difference between the buses i and j
ηw Tidal efficiency turbines’
Etot The total emission
fv(v) The probability of wind speed
f Friction factor
γ Scale parameter of the river
G Solar irradiance
Gstd Standard solar irradiance
Gq(ij) The transconductance of branch q connected to bus i and bus j
Hw The effective pressure head for the water
KdWP The direct cost parameter of the wind turbine
KrWP The reserve capacity cost parameter of the wind turbine
KSWP The storage unit cost parameter of the wind turbine
λ Location parameter of the river
L-index Stability index
Max_Itr Maximum iteration number
NG Number of generator buses
NL Number of load buses
nl Number of branches in the network
Ploss Power loss
PPVact The actual power of the photovoltaic system
PPV r The rated power of the photovoltaic system
PPV sch The scheduled power of the photovoltaic system
PPVTPact The actual power of the photovoltaic small hydro system
PPVTPsch The scheduled power of the photovoltaic-small hydro system
Pmin

TPGi
The minimum power of the ith thermal power generator unit

PT(Qw) The yield power from the tidal power plant
PWPact The actual power of the wind turbine
PWPr The rated power of the wind turbine
PWPsch The scheduled power of the wind turbine
Qw River flow rate
Rc Operation irradiance
ρw Water density
SL p The branches’ capacity limit
Ts The standard temperature in kelvin
v The wind speed
VGi The voltage of the ith on generator bus
vin Cut-in speed of the wind turbine
VLp The voltage of the pth on load bus
vout Cut-out speed of the wind turbine
vr The rated speed of the wind turbine

Appendix A

Table A1. Direct, reserve, and standby cost coefficients for RESs uncertainties.

WP PV PVTP

Direct cost coefficients ($/MW) KdWP = 1.70 KdPV = 1.60 KdPVTP = 1.50
Reserve cost coefficients ($/MW) KrWP = 3.00 KrPV = 3.00 KrPVTP = 3.00
Penalty cost coefficients ($/MW) KsWP = 1.40 KsPV = 1.40 KsPVTP = 1.40
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Table A2. Control parameter setting of CHIO, ALO, and SSA algorithms for the testing power system.

Optimization Techniques ALO SSA Proposed (CHIO)

Max. iteration 300 300 300
No. of population 50 50 50

Control parameters rand = [0, 1]
Kmin = 0.43 C0 = 1
Kmax = 0.85 BRr = 0.05

Independent runs 30 30 30

Table A3. Decision variables of the IEEE 30-bus system.

Decision Variables
Bounds

Min Max

Active power (MW)

PTPG2 20 80
PTPG5 10 60
PTPG8 10 35
PTPG11 10 60
PTPG13 10 60

Bus voltage (pu)

V1 0.96 1.10
V2 0.96 1.10
V5 0.96 1.10
V8 0.96 1.10
V11 0.96 1.10
V13 0.96 1.10

Table A4. Decision variables of the IEEE 57-bus system.

Decision Variables
Bounds

Min Max

Active power (MW)

PTPG1 80 200
PTPG2 30 100
PTPG3 40 140
PTPG6 30 100
PTPG8 100 550
PTPG9 30 100
PTPG12 100 410

Bus voltage (pu)

V1 0.95 1.10
V2 0.95 1.10
V3 0.95 1.10
V6 0.95 1.10
V8 0.95 1.10
V11 0.95 1.10
V12 0.95 1.10
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