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Economics of Naturally Regenerating,

Heterogeneous Forests

Olli Tahvonen

Abstract: An economic model for naturally regenerating, heterogeneous forests is
specified to yield both clear-cuts and continuous cover forestry endogenously. The
model includes nonconvexities and any number of state variables but is, in its
simplest form, a one-state variable problem. Clear-cuts with various rotation lengths
and continuous harvesting appear as locally optimal solutions. Necessary and suffi-
cient conditions for the local and global optimality of these two forest management
types are obtained. Discounting is found to increase rotation length and to favor
continuous harvesting. Initial state may determine the optimality of continuous
forest cover versus clear-cuts. The relative value of large trees is an important factor
in the optimality of different solutions. Analytical results are demonstrated by an
empirical application.

JEL Codes: Q20, Q23

Keywords: Continuous cover forestry, Forestry, Nonconvexities, Optimal harvesting,
Optimal rotation, Size-structured model, Uneven-aged forestry

THE LITERATURE OF RESOURCE economics focusing on forestry relies heavily on
Faustmann’s (1849) rotation model. The roles of that model’s simplifying assump-
tions about competitive markets and certainty are well understood and have been
generalized in many subsequent studies (Amacher, Ollikainen, and Koskela 2009).
What is seldom mentioned, however, is that Faustman’s model is restricted to even-
aged forests. In its purest and most commonly applied form, the model describes a
forest consisting of only a single tree, and its economic problem concerns deciding
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the length of the forest’s clear-cut periods. Although the model is best suited to pure
plantations,1 it is nonetheless widely applied to natural forests. By extending the
plantation model beyond its narrow boundaries, resource economics may uninten-
tionally promote plantation-type forestry at the cost of a more natural forest environ-
ment. This study shows that heterogeneous, naturally regenerating forests call for a
more general model, in which the rotation-type solution is only one candidate for
optimality among other forest management alternatives.

The generalized approach recognizes both the possibility of partial harvests in
addition to clear-cuts and self-regeneration and the heterogeneous structure of tree
populations. Adams and Ek (1974) began to explore in this direction, basing their
uneven-aged discrete time setup on a biological size-structured model that is suitable
for many species (e.g., trees, fish, sea mammals, birds, and herbivores). That model is a
standard workhorse in population biology (Cushing 1998; Caswell 2001). Because it
includes any number of state variables, its complexity goes well beyond the classical
rotation setup. One strength of the rotation approach is its clear analytical demonstra-
tion of the underlying economic principles. By comparison, analytical results are lack-
ing for uneven-aged management. Moreover, as noted by Getz and Haight (1989),
numerical solutions to the complex uneven-aged model seldom offer clear economic
and mathematical validity. Even when it is correctly specified, an uneven-aged model
has the shortcoming of excluding the clear-cut alternative. Such a dichotomy between
even- and uneven-aged management is theoretically unsatisfactory and motivates us to
ask how to develop a framework that includes both alternatives as potentially optimal
solutions. Haigh and Monserud (1990) and Tahvonen (2009) have presented numer-
ical computations allowing for both alternatives, but they leave many questions open
and do not develop analytical results.

My aim here is to address these shortcomings. To this end, I specify a generic
model for size-structured biological resources that can be viewed as a theoretically
sound version of the setup described by Adams and Ek (1974) and their followers.
Mathematically, the model is a discrete-time control problem, and it includes any
number of state and control variables. The forestry version of this model is complicated
by the fact that for many tree species (both tropical and boreal), natural regeneration
decreases as density increases. Such a negative dependence necessarily implies non-
convexities and directly affects decisions whether to manage forests as successive even-
aged cohorts or as continuously regenerating and harvested mixed-age class systems.
Studies applying the size-structured model appear not to have addressed this com-
plication, but it is here shown to be a key feature in a generalized forest harvesting
model.

1. According to FAO (2014), about 7% of world forests are plantations.

310 Journal of the Association of Environmental and Resource Economists June 2015



This study will begin by specifying the general size-structured model, analyzed in
its simplest form, which is somewhat surprisingly a one-state variable problem. The
continuous harvesting and clear-cut alternatives may exist simultaneously as locally
optimal solutions. Their local and global optimalities depend on biological features,
relative values of trees in different size classes, and the interest rate. The continuous
harvesting solution converges toward either constant harvesting or a cycle. Solutions
with clear-cuts may fail to satisfy the necessary optimality conditions. If smaller trees
do not have direct value, a higher interest rate leads to a longer rotation and favors
the solution without clear-cuts: the effect of the interest rate is opposite to what is
found in the classic rotation model. The global optimality of the continuous harvest-
ing solution may, in addition, depend on the initial stand state. Furthermore, a
higher relative value of small trees favors the clear-cut solution. The optimal size of
harvested trees is determined by a combination of economic and biological factors
and cannot be found by formulae of the Faustmann or Wicksellian type. Noncon-
vexities complicate the search for globally optimal solutions, but the assumption of
initially bare land allows the model to be specified in a computationally efficient
form. When an empirically estimated model is used, the theoretical analysis rational-
izes results that cannot be explained within the classical rotation framework. These
analytical results are new and reveal properties, hitherto unknown, but that are
included in any realistic economic model of naturally regenerating, uneven-aged for-
ests. Finally, this study suggests a stylized model for uneven-aged forestry that, in its
simplicity, can be compared to the classic optimal rotation model.

1. THE SIZE-STRUCTURED OPTIMIZATION PROBLEM

A generic size-structured optimal harvesting problem can be specified as

max
fhst;s= 1;...;n;t= 0;1;...g o

∞

t=0

U Htð Þbtþ1; ð1Þ

subject to

yt =on

s=1
γsxst; ð2Þ

x1;tþ1 = φ ytð Þ þ β1x1t – h1t; ð3Þ

xsþ1;tþ1 = αsxst þ βsþ1 xsþ1;t – hsþ1;t s = 1; . . . ; n – 1; ð4Þ

Ht = o
n

s=1

fshst; ð5Þ

xst ≥ 0; hst ≥ 0; s = 1; . . . ; n; t = 0; 1; . . . ; ð6Þ

xs0; s = 1; . . . ; n given: ð7Þ
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The variables xst denote the number of trees in size classes s = 1, . . . , n at the
beginning of the periods t = 0, 1, . . . and hst, s = 1, . . . , n, t = 0, 1, . . . are the
harvested trees at the ends of the periods (n is the largest size class). The utility
function U ∈ C1 is increasing and linear. Total harvest per period is Ht, and fs, s =
1, . . . , n are the trees’ usable volume, or market value (stumpage price). Assume
0 ≤ fs ≤ fs+ 1, s = 1, . . . , n – 1 and fn> 0. The discount factor is b= 1= 1þ rð Þ and r
is the interest rate. At the end of periods before harvesting, fractions αs, s = 1, . . . , n
of trees have moved to the next class, while fractions βs, s = 1, . . . , n, remain in the
same class. Assume 0 ≤ αs< 1, 0 ≤ βs< 1, αs + βs ≤ 1, s = 1, . . . , n. When βs = 0,
s = 1, . . . , n, an age-structured model is obtained as a special case. Variable yt
measures population density (e.g., stand volume in m3) and γs ≥ 0, s = 1, . . . , n
(e.g., in m3) is the density effects of trees in different size classes.

The function φ ∈ C2 denotes regeneration. For some species, regeneration is an
increasing function of density (Getz and Haight 1989, 71). However, for trees,
particularly shade-intolerant species, the relationship between population (or stand)
density and regeneration is negative. This relationship has been described for many
rain forest, hemiboreal, and boreal tree species. In a widely cited work, Buongiorno
and Michie (1980) estimated a linear and decreasing relationship between regenera-
tion and the density of the Wisconsin sugar maple. Vanclay (1992) estimated de-
creasing and convex relationships for several tropical rain forest tree species of North
Queensland; Bollandsås, Buongiorno, and Gobakken (2008) found a similar relation-
ship for boreal trees. This yields the assumptions:

φ 0ð Þ≔φ0 > 0; φ0 yð Þ< 0; φ00 yð Þ> 0 for 0 ≤ y<~y; ~y∈ 0;∞ð Þ;
φ ≥ 0 and if ~y is finite φ yð Þ= φ0 yð Þ= 0 for y ≥ ~y;

ðQ1Þ

that is, the function is continuous, twice continuously differentiable, strictly convex,
and decreasing.2 Since many rain forest trees have efficient means of dispersal, a
species does not have to live within or near a site for regeneration to occur (Vanclay
1992).

Convex regeneration implies that the model (1)–(7) includes nonconvexities. To
approach the problem in its simplest form (cf. Wan 1994; Salo and Tahvonen
2002) assume n= 2.3 Condition (3) and the restriction h1 ≥ 0 can now be written
as

2. A decreasing linear function in Buongiorno and Michie (1980) implies that beyond
some density level, regeneration must be zero (not negative), which in turn implies that their
regeneration model is actually convex (but not everywhere differentiable).

3. Recall that the “Mitra-Wan tree farm” (Wan 1994) is a model for trees without
biological connections and it actually describes forestry at a regional or market level (with
endogenous price) and is not, as such, a model for uneven-aged forestry.
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h1t =ð Þ – x1;tþ1 þ φ ytð Þ þ β1x1t ≥ 0: ð8Þ

Note that even when x2,t + 1 = x2t = 0 in (4), it is possible to have h2t = αx1t>
0 since the fraction α1 of x1t moves to a larger size class at the end of each period.
Because recruitment is decreasing in x0t and x2t (φ′ < 0 in [Q1]), positive levels of
x2t will only decrease recruitment and will postpone and decrease the harvest from
size class 2 (β2 < 1), so that x2t > 0 cannot be optimal. Thus, the two size classes
problem takes the form

J x0ð Þ= max
xtþ1;t= 0;1;...f g o

∞

t=0

btþ1U f1 – xtþ1 þ φ xtð Þ þ βxt½ � þ f2αxtf g; ð9Þ

subject to

xtþ1 – φ xtð Þ – βxt ≤ 0; ð10Þ
xt ≥ 0; ð11Þ

xt=0 given; ð12Þ
where the subscripts for xt, α, and β can be neglected without confusion and yt = xt
(γ1 = 1). The Lagrangian and Karush-Kuhn-Tucker conditions are

L= o
∞

t= 0

btþ1 U f1 –xtþ1 þ φ xtð Þ þ βxt½ � þ f2αxtf g – λt xtþ1 – φ xtð Þ – βxt½ �f g;

∂L
∂xtþ1

b– t–1 = –U0 Htð Þf1 þ U0 Htþ1ð Þb f1φ
0 xtþ1ð Þ þ f1β þ f2α½ � – λt

þ λtþ1b φ
0 xtþ1ð Þ þ β½ � ≤ 0;

ð13aÞ

∂L
∂xtþ1

b –t–1xtþ1 = 0; ð13bÞ

xtþ1 ≥ 0; ð13cÞ
xtþ1 – φ xtð Þ – βxt ≤ 0; ð14aÞ
xtþ1 – φ xtð Þ – βxt½ �λt = 0; ð14bÞ

λt ≥ 0: ð14cÞ

Another possibility for obtaining the first-order necessary conditions is to apply
infinite horizon discrete-time optimal control (Sydsæter et al. 2008, 441; Blot and
Hayek 2014). The appendix shows that this will yield equivalent optimality condi-
tions as (13a)–(13c) and (14a)–(14c). Since φ is convex, these conditions are not
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sufficient for locally maximizing solutions. The solution strategy is to find admissi-
ble solutions that satisfy (13a)–(13c) and (14a)–(14c) and qualify as locally maxi-
mizing solutions, and then to search for the global optimum among these candi-
dates. Variable xt is bounded both from below and above. Given the linear utility
function, the problem is linear, excluding strictly convex recruitment. If the objec-
tive function is minimized, then the first-order necessary conditions will be suffi-
cient for minimizing solutions (see the appendix, sec. B). This holds for interior
solutions in particular; thus, maximizing solutions must be identified among bound-
ary solutions where either the lower or upper bound constraint for xt is active in
every period and satisfies (13a)–(13c) and (14a)–(14c).

2. RESULTS

2.1. Continuous Harvesting versus Two-Period Clear-Cut Cycles When f1 = 0

Small trees are usually less valuable than larger trees: to obtain the simplest possi-
ble generic setup, assume that the size class 1 trees are not directly valuable. Thus,
let f1 = 0 and write f2 = f, x2t = xt for simplicity. A regime with active constraints
is one in which only class 2 is harvested, xt always equals its upper bound, and
constraint (10) is binding. In this regime Ht = f h2t = fαxt and by (10)

xtþ1 = φ xtð Þ þ βxt; x0 given: ð15Þ
When (15) has a stable steady state, this solution converges to xt = x̂> 0 and

h2 = αx̂, where x̂= φ x̂ð Þ þ βx̂ (fig. 1). By (13a)–(13c)

λ̂=
bfα

1 – bβ – bφ0 x̂ð Þ> 0; ð16Þ

since b ≤ 1, β < 1, φ′ < 0. Thus, the solution satisfies conditions (13a)–(13c) and
(14a)–(14c) for a local maximum. At the beginning of each period, the forest in-
cludes x̂ class 1 trees; at the period’s end, before harvest, it has the same number
x̂ = φ x̂ð Þ þ βx̂ð Þ of class 1 trees, while αx̂ number of trees has reached size class 2.
At the end of each period, only these bigger trees are harvested (cf. “thinning from
above”). This is clearly a solution with continuous harvesting (and continuous for-
est cover) and no clear-cuts. Letting τ denote the time between clear-cuts, this so-
lution can be referred to as τ = ∞ or τ∞ for short.

Proposition 1: Given – 1< φ0 0ð Þ þ β and x0 ≥ 0, continuous harvesting with h1t = 0 for

t∈ ½0;∞Þ is locally optimal, and the solution converges toward a globally asymptotically

stable steady state.

Proof: See the appendix, section C.
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In the example shown in figure 1 a continuous cover solution (x0 = 100, dashed
line) converges toward the steady state x̂, and trees are harvested only when they
enter class 2. However, if the regeneration is sensitive to density, that is, if φ is
steep and β is low (mortality in class 1 is high), the steady-state yield from such
continuous harvesting may remain low. By comparison, the cohort φ0 generated
after a clear-cut may be large. A fraction αφ0 of this cohort can be harvested two
periods after clear-cuts, implying that such a solution may be superior to a continu-
ous but low yield. The fundamental trade-off between continuous cover and clear-
cut solutions arises from this possibility. A two-period clear-cut cycle (fig. 1) where
all trees are harvested every second period is defined as

xt = 0; Ht = h1t = 0 for t= 0; 2; . . . ; ð17Þ

xt = φ 0ð Þ= φ0; Ht = f h2t = f αφ0; h1t = φ φ0ð Þ þ βφ0 for t= 1; 3; . . . : ð18Þ

Figure 1. The continuous harvesting solution and the two-period clear-cut cycle
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Denote the two-period clear-cut cycle by τ2 and the first (second) cycle period by
t = 0 (t = 1). Assume x0 = 0 in figure 1, implying by (17) and (18) that x1 = φ0.
At t = 1, it holds that h11 = φ(φ0) + βφ0 and h21 = αφ0, implying x2(= x0) = 0
and that the solution develops clockwise along the two-period clear-cut cycle (solid)
line.4

Proposition 2: A two-period clear-cut cycle is locally optimal if and only if 1 + b[φ′(0) +

β]< 0, that is, if φ′(0) is sufficiently low but fails to be locally optimal if the interest rate is

sufficiently high or if the global stability condition of the continuous harvesting solution in

proposition 1 is satisfied. Low β works in favor of local optimality for the clear-cut solution.

Proof: Given active constraints, a maximizing cycle satisfies (17), (18), λ0> 0, λ1 = 0, and

by (13a), bfα – λ0 = 0 and bfα + λ0[φ′(0) + β]< 0, that is,

bf α 1þ b φ0 0ð Þ þ β½ �f g< 0: ð19Þ

Given that (19) is met, the cycle can be reached optimally with any x0 ≥ 0, since a

solution x1 = 0 reaches the cycle by one step and satisfies (13a)–(13c) and (14a)–(14c)

by (19). The left-hand side of (19) becomes lower as the value of φ′(0) falls, but (19) is

violated if the stability condition in proposition 1 is met or if b is sufficiently low. The

left-hand side of (19) is increasing in β, implying that low β favors the local optimality of

the clear-cut solution. QED

When (19) is not met, clear-cutting is not locally optimal. The interpretation is
that leaving a marginal class 1 tree unharvested (instead of clear-cut) yields a next-
period marginal gain bfα, because a fraction α of these trees can be harvested as
class 2 trees at the end of that next period. However, regeneration two periods
forward is decreased by φ′(0), implying a marginal net loss on the class 2 harvest
equal to b2f α φ0 0ð Þ þ β½ �. When this loss for the first unit of trees is lower than the
next-period benefit bfα, it is optimal to leave all (φ″ > 0) the class 1 trees un-
harvested; that is, clear-cutting is not locally optimal. The interest rate does not
favor clear-cutting because the positive effect of not cutting the small trees is re-
alized sooner than the loss.

If condition (19) is satisfied, the clear-cut solution is locally optimal and the
condition for global stability of the continuous harvesting solution is violated. How-
ever, the global stability condition is sufficient but not necessary. Thus, two locally

4. Since at the end of periods with clear-cut there are one- and two-period-old trees, I
call this solution a clear-cut solution instead of an even-aged solution and uneven-aged
solution as continuous cover (or harvesting) solution. For various definitions, see Pom-
merening and Murphy (2004).
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optimal solutions may exist simultaneously. In addition, the violation of (19) is
sufficient but not necessary for the superiority of the τ∞ solution over the τ2 solution.

A continuous harvesting solution cannot be optimal for any x0 if a regime switch
from the continuous harvesting steady state x0 = x̂ increases the objective value:

Proposition 3: Given φ0= 2þ rð Þ> x̂, the τ∞ solution is unoptimal for any x0, and given

x0 = x̂, φ0= 2þ rð Þ< x̂, a switch to τ2 is unoptimal.

Proof: Assume that x0 = x̂. If the solution τ∞ is followed forever, the outcome is

Jτ∞ = bf αx̂= 1 – bð Þ. A clear-cut at the end of the initial period and continuing with solution τ2
thereafter yields Jτ2 = bf αx̂þ b3αfφ0= 1 – b2ð Þ. The switch and clear-cut satisfy necessary

optimality conditions, since λt+ 1 = bfα and (13a)–(13c) is satisfied by φ0= 2þ rð Þ> x̂. Main-

taining τ∞ is unoptimal, if Jτ2 > Jτ∞ , which is equivalent to φ0= 2þ rð Þ> x̂, implying that the

switch to τ2 is unoptimal if φ0= 2þ rð Þ< x̂. QED

For interpretation, condition Jτ2 > Jτ∞ can be rewritten as

αf x̂< rb αfx̂þ b2αfφ0

1 – b2

� �
:

Thus it is optimal to clear-cut if the income per period from continuous harvesting
falls short of the interest earned on income from the next clear-cut plus the value
of bare land. This condition can be compared to the optimality condition for the
generic Faustmann model, where clear-cut is optimal when value growth falls short
of interests on the income from the next clear-cut plus the value of bare land.

Again, a high interest rate favors a continuous harvesting solution and a low
interest rate works against it. However, this effect is different from the local op-
timality condition (19), which describes the optimality of harvesting all class 1 trees
at the time of clear-cutting. A high interest rate favors the continuous harvesting
solution and Jτ2 < Jτ∞ because there is an additional time delay between harvests in
the clear-cut solution that is absent in a continuous harvesting solution.

In the continuous cover regime, trees are cut when they enter the “large trees” size
class. Such a solution may be globally optimal, but will following such a regime neces-
sarily stabilize the harvest and stand structure over time? The answer is no, because the
continuous cover steady state is locally unstable when –1> φ0 x̂ð Þ þ β, implying that
the τ∞ solution may exist as a limit cycle. This is the case when φ=A= 1þ axtð Þ2, A =
100, a = 1/10, and β = 1/10, implying x̂≃ 16:194, φ0 x̂ð Þ þ β≃ –1:013. Applying
theorem 1.21 in Elaydi (2000, 35), define
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ztþ1 =Φ ztð Þ≔ φ φ ztð Þ þ βzt½ � þ β φ ztð Þ þ βzt½ �: ð20Þ

Given a limit cycle of two periods, there must exist two distinct cycle points z1
and z2 that solve the difference equation (20). One obtains

z1 ≃ 12:6; z2 ≃ 20:9 and φ0 z1ð Þ þ β½ � φ0 z2ð Þ þ β½ �≃ 0:95;

showing that the cycle exists and is locally asymptotically stable. Proposition 2
suggests that this solution can be optimal only if the discount factor is low. Setting
b = 0.1 yields λ1 ≈ 0.095, λ2 ≈ 0.084, that is, the cycle is locally optimal. If the
conditions of proposition 2 hold, the two locally optimal cycles exist simultaneously
(fig. 2). Given b = 0.1 and x0 = 0, the clear-cut regime yields a present value equal
to Jτ2 ≈ 1:010 while the continuous cover solution is globally optimal and yields
Jτ∞ ≈ 1:013. Thus, even when the globally optimal solution is continuous harvesting
the yield is not necessarily smooth over time.

Figure 2. Globally optimal continuous harvesting cycle and locally optimal two-period
clear-cut cycle.
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2.2. Clear-Cut Cycles with Any Period Length

Next I will show that solutions with continuous harvesting and a two-period clear-
cut cycle are extremes within the solutions in which the length of the clear-cut cycle
may range from two periods to infinity. Because no partial harvests occur before the
clear-cut, the two-period cycle represents a pure clear-cut solution. In the example
shown in figure 3, x̂ < ½φ0, which implies that if b = 1, the continuous cover
solution is not globally optimal (proposition 3). The facts x̂ < ½φ0 and φ″ > 0 in
(Q1) imply5 φ′(0) + β < – 1, that is, the τ2 solution is locally optimal (condition
[19]). Assume x0 = 0 and αf = 1. The two-period cycle produces an average yield
equal to ½φ0; but in figure 3, x2 > ½φ0, so that clear-cutting every third period
increases average yield over clear-cutting every two periods. Since x3 < ½φ0, clear-
cutting every fourth period (or less frequently) decreases average yield compared to
the τ3 solution. Thus, the τ3 clear-cut cycle with one thinning from above is globally
optimal. Letting r = ⅔ changes the outcome, so that the τ∞ solution becomes globally
optimal.

A locally optimal τ3 solution satisfies x0 = 0, x1 = φ0, x2 = φ(φ0) + βφ0, λ0> 0,
λ1 > 0, λ2 = 0 (and h10 = h11 = 0, h12 = φ(x2) + βx2, h21 = αφ0, h22 = αx2). By
(13a), the necessary conditions include bfα – λ0 + λ1b[φ′(φ0) + β]=0, λ1=bfα, and
bfα + λ0b[φ′(0) + β]< 0, implying

λ0 = bfα 1þ b φ0 φ0ð Þ þ β½ �f g> 0; ð21Þ

1þ b φ0 0ð Þ þ β½ � þ b2 φ0 φ0ð Þ þ β½ � φ0 0ð Þ þ β½ �< 0: ð22Þ
Since 1 + φ′(φ0) + β< 0 implies that φ(φ0) + βφ0< 0, a contradiction with φ ≥ 0
in (Q1), condition (21) is always satisfied. If φ′(0) + β ≥ 0, then (22) and φ″ > 0
in (Q1) rule out the local optimality of the τ3 solution and (19) rules out the τ2
solution, implying that the optimal solution must have τ> 3. If 1 + b[φ′(0) + β] ≤
0 but φ′(φ0) + β ≥ 0, then (22) is satisfied, and τ2 and τ3 solutions are both locally
optimal. If 1 + b[φ′(0) + β] ≤ 0, φ′(φ0) + β< 0, and (22) is not satisfied, then the
τ2 solution is locally optimal but the τ3 solution is not. If 1 + b[φ′(0) + β] > 0, φ′
(φ0) + β> 0, and (22) is satisfied, then the τ3 solution is locally optimal but the τ2
solution is not. In all the cases, τ∞ is locally optimal. Thus, many locally optimal
candidates exist, and the task is to find the global optimality. To this end, general-
izing for any 2 ≤ τ<∞ yields

bfα – λt þ λtþ1b φ
0 xtþ1ð Þ þ β½ �= 0; t= 0; . . . ; τ – 3; ð23Þ

bfα – λτ–2 = 0; ð24Þ

bfαþ λ0b φ
0 0ð Þ þ β½ �< 0: ð25Þ

5. If φ′(0) + β ≥ 0, then x̂>½φ0 by φ″> 0.
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The solution for the nonautonomous difference equation (23), (24) reads as

λt = λ0Pt
i=1

φ0 xið Þ þ β½ �–1 – bfαo
t

i=1
Pt
j=i

φ0 xj
� �þ β

� �–1
; t= 1; . . . ; τ – 2; ð26Þ

λ0 = bfα 1þ o
τ–2

i=1

biPi
j=1

φ0 xj
� �þ β

� �( )
; ð27Þ

and eliminating λ0 from (25) yields the generalization of (22)

1þ o
τ–1

i=1

biPi
j=1

φ0 xj – 1

� �þ β
� �

< 0: ð28Þ

From (24), λτ–2> 0, which implies by similar reasoning as in the proof for proposi-
tion 1 that a solution λt> 0, t = 0 , . . . , τ – 2 reaching bfα at τ – 2 exists.

Figure 3. An optimal tree period clear-cut cycle
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Proposition 4: Given x0 = 0, the continuous harvesting solution τ∞ is globally optimal if

(a) φ′(0) + β ≥ 0, or (b) – 1 ≤ φ′(0) + β < 0 and φ′(φ0) + β ≤ 0, or (c) the discount

factor b is low enough.

Proof: See the appendix, section D.

In case c, the high interest rate implies the global optimality of continuous har-
vesting, because harvesting class 1 trees is not locally optimal independently of the
clear-cut cycle length (see the interpretation of proposition 1). Case a rules out clear-
cuts as unoptimal because stand density and harvests from class 2 increase from
period 1 onward. In this case the negative effect of stand density on regeneration is
low, trees remain a long time in class 1, and natural mortality is low. In case b, the
conditions for continuous cover are less favorable, but the first assumption (–1 ≤
φ′(0) + β< 0) implies that the steady state is favorable compared to the two-period
cycle (see proposition 2) and the second (φ′(φ0) + β ≤ 0) that the yields along the
transition are not too high but are (cyclically) increasing. This last feature rules out
the optimality of longer clear-cut cycles (see fig. 3). A different case for the global
optimality of τ∞ is as follows:

Proposition 5: If φ(φ0) + βφ0 ≥ φ0 and 1 + φ′(0) + β < 0, then the globally optimal

solution is regime τ∞ or an immediate clear-cut followed by τ∞.

Proof: See the appendix, section E.

In figure 4, r = 0.04 and αf = 2. Given x0 = 25, regime τ∞ yields J = 2,382
whereas the clear-cut at the end of the first period and τ∞ thereafter yields J = 2,444.
In this case, natural mortality is low (β = 0.95) but trees grow slowly to class 2. The
clear-cut utilizes the high initial regeneration and reaches large harvest levels much
sooner than the solution in which the forest is stuck at low density and harvestable
size class 2 levels.

The optimality of continuous harvesting may depend on the initial state:

Proposition 6: Assume some ~φ and φ0 that satisfy (Q1) together with 0< ~β and 0<~r

such that x̂= φ0= 2þ~rð Þ= ~φ φ0ð Þ þ ~βφ0. Given that x̂ is stable for solutions from x0 = 0,

there exist φ; 0< β, and ~r < r such that φ 0ð Þ= φ0, x̂= φ x̂ð Þ þ βx̂, φ φ0ð Þ þ βφ0 < x̂ and

that τ∞ is optimal for x0 = x̂ and τ2 is optimal for x0 = 0.

Proof: See the appendix, section F.

The optimality of continuous harvesting becomes dependent on the initial state
when the continuous harvesting steady state is more favorable than the switch to
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clear-cuts but when the transition toward the steady state requires an initial low
harvest. In this case continuous harvesting is optimal if the stand is initially heteroge-
neous (x0 = x̂), but the clear-cut solution is optimal when initial state is bare land
(x0 = 0). In the example given in figure 5, ~φ xtð Þ þ ~βxt = 100= 1þ 0:040xtð Þþ
0:277xt, and ~r= 0:102, implying x̂ ≈ 47:6 and the fact that τ∞ and τ2 yield equal
objective functional value ( J = 464) for both x0 = x̂ and x0 = 0. Given φ xtð Þþ
βxt = 100= 1þ 0:027xtð Þ þ 0:08xt and r= 0:11, the outcome is as in proposition 6:
τ∞ is globally optimal for x0 = x̂ and τ2 for x0 = 0. This dependence from the initial
state follows from nonconvexities.

2.3. Discounting and Rotation Length

It is possible to view the optimization problem (9)–(12) from a somewhat different
angle. Assume an initial state with no trees. Recognize the large initial cohort of
new trees at the end of period zero and the evolving harvest of size class 2 trees at

Figure 4. Optimal continuous-harvesting solution with possible initial clear-cut
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the end of each period, from period 1 onward. Decide when to stop the process by
a clear-cut (and restart from bare land) or whether to apply continuous harvesting
forever. This view can be specified as an integer optimization problem of the form

max
τ ∈ ½1;2;...;∞Þf g o

τ

t=0

fαxt–1b
tþ1= 1 – bτþ1ð Þ; subject to xtþ1 = φ xtð Þ þ βxt; x0 = 0: ð29Þ

It is not optimal to clear-cut after τ periods if continuing the regime without a
clear-cut for another period increases the objective function in (29), that is, if

o
τ

t=0

f αxtb
tþ1= 1 – bτþ1ð Þ ≥ o

τ–1

t=0

fαxtb
tþ1= 1 – bτð Þ: ð30Þ

Specification (29) offers an efficient procedure to compute the optimality of the
continuous cover solution vis-à-vis the clear-cut solutions with different cycles (or

Figure 5. Dependence of solution type on initial state parameter values (see text)
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rotation periods). Recall that the optimal rotation τ in discrete-time Faustmann
model satisfies

bτxτ= 1 – bτð Þ ≥ btxt= 1 – btð Þ; for t= 1; . . . ; n; t ≠ τ;

where xt gives the stand volume as a function of stand age t, 0 ≤ τ ≤ n, and n is the age
after which the trees start to lose their value. In particular, for optimal τ, it holds that

u≔bτxτ= 1 – bτð Þ – bτþ1xτþ1= 1 – bτþ1ð Þ ≥ 0:

It can be shown that ∂u/∂b< 0 when u=0. Thus, when the discount factor increases,
u can only change its value from positive to negative, thus implying that a decrease in
the discount rate can only increase the optimal rotation length.

Proposition 7: Given problem (29), (Q1), decreasing xt, and a finite optimal rotation

length, a decrease in the discount rate can only decrease the rotation length.

Proof: Write (30) in the form

g: = o
τ–1

t=1

xt–1b
t= 1 – bτ–1ð Þ – o

τ

t=1

xt–1b
t= 1 – bτð Þ ≤ 0;

where rotation τ is finite, xt is the end of period yield from harvesting the size class 2

trees, and fα = 1 without losing generality. Differentiation and x0 = 0 yields

∂g
∂b

����
g=0

=
b2x2

1þ b – b3 – b4
> 0 for τ = 3;

∂g
∂b

����
g=0

=
b3 b2x2 þ x3 1 – b2ð Þ½ �

1þ bþ b2 – b4 – b5 – b6
> 0 for τ = 4;

and in general for τ = 5, 6, . . .

∂g
∂b

����
g=0

=
bτ–1 b2x2 þ xτ–1 1 – b2ð Þ þ oτ–2

i=3 τ – ið Þbτ–iþ1 xτ–iþ2 – xτ–1ð Þ
h i

oτ–1

i=1b
i–1 – o2 τ–1ð Þ

i=τ bi
> 0: ð31Þ

In (31), the numerator and denominator (by decreasing xt) are positive. Thus, when the

discount factor increases, the sign of g can change only from negative to positive, that is,

a decrease in the interest rate decreases the length of the optimal rotation. QED

In proposition 7, it is assumed that xt decreases over time, because with mono-
tonically increasing or constant xt, the globally optimal solution is continuous har-
vesting (propositions 4 and 5). A higher interest rate may not only cause the clear-
cut solutions to become locally unoptimal (proposition 4), but increase rotation
length, as the delay without harvest after the clear-cut becomes costly. In figure 6,
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the development of xt is computed forward from x0 = 0 and the objective function
is evaluated with all clear-cut cycles from τ2 onward by applying (29). Since x̂ >

½φ0, the τ∞ solution yields a higher average yield than τ2, but because φ′(0) + β<
–1, both these solutions are locally optimal under r = 0 (propositions 1 and 2).
However, the highest average yield per period (73.6) is obtained by τ7. Increasing
the interest rate increases the length of the globally optimal clear-cut cycle, and
when r> 0.6, the continuous harvesting solution is globally optimal.

2.4. Trees in Class 1 Have Immediate Value: f1> 0

Given that small trees are directly valuable and f1> 0, it may be optimal to harvest
the whole cohort at one period old. The necessary condition for the τ1 solution
from (13a)–(13c) to (14a)–(14c) is

f1 – bαf2 – bf1 φ
0 0ð Þ þ β½ �> 0: ð32Þ

If f1 – bαf2 > 0, the direct present value from harvesting class 1, is higher than
from harvesting class 2. A strong recruitment effect, φ′(0) + β < 0, favors harvest-
ing trees from size class 1 as does a high discount rate and a high f1/( f2α) ratio.

Figure 6. Effect of discounting on optimal clear-cut cycle length
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By (13a)–(13c) to (14a)–(14c), the steady-state solution of τ∞ is locally optimal
if λ> 0, that is, if

f1 – bαf2 – bf1 φ
0 x̂ð Þ þ β½ �< 0; ð33Þ

⇔
αf2

1 – b βþφ0 x̂ð Þ½ � – f1

f1
> r: ð34Þ

For the interpretation, set β = φ′= 0. Now (34) reads: (αf2 – f1)/f1 > r. Thus it is
optimal to cut trees from class 2 if the relative value growth exceeds the interest
rate. If α = 1, this is the Wicksellian wine-aging case. When β > 0, saving an
individual in class 1 causes an infinitely lasting increase in the flow from class 1 to
class 2 with the present value equal to f2αo∞

t=0 bβð Þt = f2α= 1 – bβð Þ. Positive β in-
creases the rate of return and favors harvesting trees from class 2. Given φ′< 0, the
marginal effect and the infinitely lasting flow is lower. The marginal rate of return
in (34) is a combination of biological and economic parameters and may be labeled
the “bioeconomic rate of return.” Higher levels of α, β, f2 increase the size of
harvested trees, whereas the effects of r, φ′, and f1 are to reduce the size of
harvested trees. This shows that the optimal size of harvested trees cannot be
found by formulae of the Wicksellian or Faustmann type that circumvent combin-
ing the economic and biological parameters through the time delays of the size-
structured growth process.

Next, it is possible to generalize the necessary optimality condition (28) for f1 >
0 and any τn, n ≥ 2. Given σðxÞ≔ – f1 þ bαf2 þ bf1½φ0ðxÞ þ β�, this yields

σ 0ð Þ þ o
τ–1

i=1

σ xið ÞbiPi
j=1

φ0 xj – 1

� �þ β
� �

≤ 0; ð35Þ

which collapses to (28) when f1 = 0.

Proposition 8: Given any x0 ≥ 0 and (a) σ x̂ð Þ< 0, a clear-cut solution with some period

length is globally optimal, or (b) σ(0) > 0 and φ′(0) + β ≥ 0, the continuous cover

solution τ∞ is globally optimal.

Proof: When σ x̂ð Þ< 0, condition (33) is violated, that is, the τ∞ solution is not locally

optimal. Since at least condition (32) is satisfied, some τ<∞ is optimal. When σ(0)> 0,

the convexity of φ implies that σ(xi) > 0 for all xi > 0, and φ′(0) + β ≥ 0 that (35) is

positive for all τ ≥ 1. Thus, necessary optimality conditions are violated for all τ<∞, but

by σ(0)> 0, condition (33) is satisfied and τ∞ is globally optimal. QED

In case a continuous harvesting is not optimal because the bioeconomic rate of
return from saving small trees is lower than the interest rate (cf. eqs. [6], [34]). In
case b the reverse holds and the transition path is favorable since harvest from class 2
is continuously increasing (cf. proposition 4a).
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Applying steps analogous to proposition 3, it is better to switch to solution τ2
from the τ∞ steady state if

x̂<
αf2φ0 þ f1 φ φ0ð Þ þ βφ0 þ rφ x̂ð Þ r þ 2ð Þ½ �

r þ 2ð Þ αf2 – βf1rð Þ : ð36Þ

Since this condition collapses to x̂< φ0= 2þ rð Þ if f1 = 0 and since the right-hand
side increases with f1, it follows that a positive level of f1 works against the global
optimality of the continuous cover solution. The effect of interest rate is a priori
indeterminate.

Assuming x0 = 0 and f1> 0, problem (29) can be extended to

max
τ∈½1;∞Þf g

oτ–1

t=0 f2αxtb
tþ1 þ f2αxτ þ f1 φ xτð Þ þ βxτ½ �f gbτþ1

1 – bτþ1
; subject to 3ð Þ and x0 = 0;

ð37Þ
where the numerator is the present-value yield per cycle from harvesting classes 2
and 1 (the latter only at the clear-cut). If harvesting class 2 trees before the clear-
cut is ruled out, the model collapses back to the Faustman model and the optimal
rotation period will be finite by construction. If harvesting of size class 2 trees is
included but continuous regeneration is replaced by costly investment in regenera-
tion, the model collapses back to a rotation model with optimized intermediate
harvesting, and again the rotation period is finite by construction. Specification (37)
can be extended to include various kinds of management costs, but I leave these
complications for future studies.

2.5. Any Number of Size Classes

An extension of problem (37) to include any number of size classes can be given as

Jτ = max
fτ;hst;s=1;...;n;t=0;1;...;τg

oτ

t= 0U Htð Þbtþ1

1 – bτþ1
; ð38Þ

subject to (2)–(6) and the stand’s initial state. Computation of this problem can be
performed by applying the empirically estimated growth model of Bollandsås et al.
(2008). Their model differs from (2)–(7) since their αs = 1, . . . , n – 1, and βs =
1, . . . , n depend on stand density. The dependence is statistically weak and could
be removed, but the results here will be qualitatively the same when it is maintained.
In Bollandsås et al. (2008), the period length is 5 years, and the recruitment func-
tion for Norway spruce (per hectare) is

φ ytð Þ= 147:809 yt þ σð Þ–0:157

1þ e – 0:599þ0:018yt
;
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where yt is the cross section (basal) area (in m2) of trees measured at breast height.
This function is decreasing and strictly convex in yt (cf. [Q1]). In Bollandsås et al.
(2008), σ = 0, which implies that φ(y) → ∞ as y → 0. Bollandsås et al. (2008) do
not discuss this unrealistic feature and here various values for σ are used to obtain
finite values for φ(0). This causes only negligible effects in the regeneration with
typical levels of y. The fractions of trees moving to the next size classes are estimated
as

αs = 0:02 17:839þ 0:0476δs – 11:585� 10 – 5δ2s – 0:3412yst þ 0:906ξ – 0:024yt – 0:268l
� �

;

where s = 1, . . . , n – 1, δs is the diameter (cm), yst is the basal area of trees with
larger diameters than trees in size class s, ξ (= 15) is the site index, and l (= 60) is
latitude. Write βst = 1 – αst – ηst, s = 1, . . ., n, t = 0, 1, . . . , where ηst is natural
mortality given as

ηst = 1þ e2:492þ0:020δsþ3:2�10–5δ2sþ0:031yst
� �–1:

Table A1 in the appendix, section G, provides tree volumes. The objective
function (38) is given as

max
τ;hst; s=1;...;n;t=0;1;...;τf g

oτ

t=0b
tþ1on

s=1
hst v1sp1 þ v2sp2ð Þ

1 – bτþ1
; ð39Þ

where v1s and v2s are the volumes per tree for sawn timber and smaller diameter
logs in m3 and p1 = €55.5/m3 and p2 = 23.7€/m3 are the stumpage prices.

Figure 7 shows that when φ0 ≤ 825, continuous harvesting solutions are optimal
with interest rates (per annum) 0 ≤ r ≤ 0.1, whereas when φ0 ≥ 1,025, clear-cut
solutions become optimal with interest rates 0 ≤ r ≤ 0.1. Between these boundaries,
the continuous harvesting solution is optimal if the interest rate is high and vice
versa. Although the numerical model includes a couple of extensions, these results
are in line with the analytical results: high interest rate supports and high initial re-
generation φ0 works against the optimality of the continuous cover solution.

Figure 7 shows that given φ0 = 900, the continuous cover solution is optimal for
r = 0.03 but clear-cut is optimal for r = 0. Figure 8 compares the development of
various variables for these two solutions. The length of optimal rotation under r = 0
is 145 years, and in intermediate cuttings the trees are harvested from diameter
classes 32.5 cm and 37.5 cm. Given r = 0.03, trees are harvested only from diameter
class 27.5 cm. The development of all the variables is intuitive and empirically
realistic.

In figure 9, trees with diameters less than 37.5 cm are valueless. This setup is an
extension of specification (29). Clear-cut solutions are unoptimal at any interest rate
level when φ0 < 2,000 (fig. 9a). When φ0 ≥ 2,000, their optimality depends on
discounting. Assuming φ0 = 2,500, the optimal rotation is 255 years under r = 0 but
continuous harvesting is optimal when r ≥ 0.002. In each case, it becomes optimal to
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harvest trees when they enter the diameter class 37.5 cm. Figure 9b shows how op-
timized annual revenues develop over time with various regeneration levels.

2.6. A Stylized Model for Continuous Harvesting

An important strength of the classic rotation model is its simplicity, which, how-
ever, has a cost. The most generic version (Samuelson 1976) describes optimal ro-
tation of a single tree or a number of similar trees without biological connections.
After adding density dependence (even with no internal structure), the solution
without intermediate cuttings becomes a special case (Clark 1976, 263), but in the
generic version, intermediate cuttings are ruled out by construction.

This study as well as some previous ones (Getz and Haight 1989, 301;
Tahvonen 2011) shows that it is characteristic of continuous harvesting solutions
to target cuttings to the largest trees. Specifying model (37) in continuous time
leads to the problem

max
h tð Þ;τ∈½0;∞Þf g

J=
Eτ

0

ph tð Þe–rtdtþ e–rτpx τð Þ

1 – e–rτ
; subject to x= gðtÞf ðxÞ – h; x 0ð Þ= x0; ð40Þ

where h(t) denotes intermediate cutting of largest trees, x(τ) is the clear-cut vol-
ume, p the stumpage price, g(t) denotes aging of trees regenerated after clear-cut,

Figure 7. Optimal solution type with different regeneration and interest rate levels data
(see text).
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and f(x) a component of stand growth that depends on density. This stylized
model is close to Clark’s (1976, 263), but there is no reason to assume a pure
even-aged plantation case where g(t) → 0 as the regenerated trees age. Thus,
whereas Clark’s specification yields clear-cuts by construction, specification (40)
with the appropriate growth model (g(t) > 0, g′(t) ≤ 0, t ∈ [0, ∞)) and related
solution for the intermediate cuttings leaves the choice of forest management type

Figure 8. Optimal solutions when regeneration after clear-cut is 900 seedlings per 5 years.
All figures per hectare.
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open a priori. The first-order necessary condition for the rotation period in (40) is
ph(τ) + px′(τ) – rpx(τ) – rJ = 0, if locally optimal τ is finite, and limτ→∞ ph τð Þþ½
px0 τð Þ – rpx τð Þ – rJ� ≥ 0 if locally optimal τ is infinite. The optimal intermediate har-
vests can be mimicked by solving a singular solution as in Clark (1976), or by utiliz-
ing the output from size-structured models (figs. 8 and 9b). Although model (40)
has a somewhat loose and ad hoc connection with empirical models of forest growth,
and although it cannot capture various features such as a size-structured forest’s
optimal density or the size of optimally harvested trees, it nonetheless characterizes
the choice between forestry with and without clear-cuts. Thus, it is not optimal to
clear-cut if the steady-state present value of revenues from continuous harvesting
integrated over infinite horizon exceeds the sum of the clear-cut revenues and the
value of bare land.

3. DISCUSSION AND CONCLUSIONS

Although previous analytical results are nonexistent, the basic understanding de-
scribed here can be compared with some empirical/numerical studies that have
applied economically coherent optimization setups. The intermediate cuttings in my
study remove large trees and increase the length of optimal rotation in a manner
similar to empirical numerically computed structured models of even-aged manage-
ment (e.g., Tahvonen, Pihlainen, and Niinimäki 2013). The typical (steady-state)
solution in empirical/numerical uneven-aged models (Getz and Haight 1989, 301) is
the cutting of largest trees, similar to the analytical solutions obtained here. Most
uneven-aged studies present only the continuous cover solution and are silent about
the possibility that nonconvexities in regeneration may produce optimal clear-cuts

Figure 9. Average (a) and annual (b) revenues with different regeneration levels when
only trees with diameters above or equal to 37.5 cm are valuable.
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endogenously. Exceptions are Haight and Monserud (1990) and Tahvonen (2009),
who present numerical examples for cyclical close-to-clear-cut solutions based on
natural regeneration. Nonconvexities require that numerical results should be com-
puted with care, as most algorithms have serious difficulties in finding solutions such
as the clear-cut cycle. This study presents an effective computation scheme for
finding the globally optimal solution: write the uneven-aged problem as a rotation
model with (optimized) intermediate cuttings and vary the rotation length up
through infinity.

My analytical investigation produced several results that have no counterpart in
existing studies. Clear-cuts may not satisfy necessary optimality conditions, because
saving small size class trees increases yields from intermediate cuttings, and the
negative density dependence effect that reduces future yields may be smaller and is
realized later. This is one reason why the interest rate works against clear-cutting.
Clear-cuts are followed by periods with no harvest. Such periods are costly and the
cost increases with interest rate, implying that it becomes optimal to clear-cut less
frequently or abandon clear-cuts completely. These results are surprising in the light
of the conventional Faustmann approach but very natural in the size-structured
setup analyzed here. The initial stand state matters in two ways: depending on initial
state, the optimal long-term solution may be either continuous cover solution or
clear-cuts (and short rotation). In addition, depending on the initial state, it may be
optimal to clear-cut the initial stand, even if the optimal long-run solution is to
maintain continuous forest cover. The optimal size of harvested trees is determined
by a bioeconomic rate of return that combines the economic and biological parame-
ters through time delays in the stand growth process and thus deviates from the
Wicksellian and Faustmann optimal tree-cutting formulae.

I have here followed most numerical uneven-aged studies by applying stumpage
prices without explicit harvest costs. Lower harvest costs per tree in clear-cuts favors
this regime. However, in naturally regenerated heterogeneous forests, continuous
cover harvesting may yield a much higher average volume of harvested trees, thus
decreasing the cost per harvested volume. The cost difference also depends strongly
on both site circumstances and harvesting equipment.

The choice between clear-cuts and continuous forest cover is greatly influenced by
the relative values of different-size trees, a fact that explains the historical alternation
of these management practices in Nordic countries. Continuous cover forestry has
been favored when demand for small-diameter trees has been low, and vice versa.
The current trend is a shift in pulpwood production from boreal regions to tropical
plantations. A resulting increase in the relative prices of large-diameter trees in the
North would favor continuous cover forestry. In addition, including continuous
cover forestry in the palette of management alternatives has potential benefits for
biodiversity, landscape esthetics, and mitigating climate change everywhere, from
tropics to boreal forests.
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APPENDIX

A. The Infinite Horizon Discrete-Time Optimal Control Formulation

Write the problem for n = 2 as

max
ht;t=0;1;...f g o

∞

t=0

btþ1 f1ht þ f2αxtð Þ

subject to xtþ1 = φ xtð Þ þ βxt – ht;

x0 given; ht ≥ 0;

–φ xtð Þ – βxt þ ht ≤ 0:

ðA1Þ

Applying theorem 12.4.1 in Sydsæter et al. (2008, 441) and its extension, the-
orem 2.20 in Blot and Hayek (2014, 57),

H= btþ1 f1ht þ f2αxtð Þ þ ~pt φ xtð Þ þ βxt – ht½ �;

L=H – ~μt – φ xtð Þ – βxt þ ht½ �;
where H is the Hamiltonian and L is the Lagrangian. The first-order necessary con-
ditions include (A1) and

∂L
∂ht

= btþ1f1 – ~pt – ~μt ≤ 0; ðA2Þ

btþ1f1 – ~pt – ~μt½ �ht = 0; ðA3Þ

ht ≥ 0; ðA4Þ

–φ xtð Þ – βxt þ ht ≤ 0; ðA5Þ

~μt –φ xtð Þ – βxt þ ht½ �= 0; ðA6Þ

~μt ≥ 0; ðA7Þ
~pt–1 = btþ1f2αþ ~pt þ ~μtð Þ φ0 xtð Þ þ β½ �: ðA8Þ

Let ~pt≔ptbtþ1; ~μt≔μtb
tþ1, and λt≔ – f1 þ pt þ μt. Thus (A2)–(A4) can be written as

λt ≥ 0; ðA9Þ

λt xtþ1 – φ xtð Þ – βxt½ �= 0; ðA10Þ

xtþ1 – φ xtð Þ – βxt ≤ 0: ðA11Þ

From (A8), pt–1 = bf2α + b(pt + μt) [φ′(xt) + β]. Letting t – 1 → t, t → t + 1 and
applying the fact that pt = λt + f1 – μt, it follows that (A8) takes the form:

bf2α – λt – f1 þ λtþ1 þ f1ð Þ φ0 xtþ1ð Þ þ β½ �= –μt ≤ 0: ðA12Þ
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Since –xt+1 = – φ(xt) – βxt + ht conditions (A5)–(A7) can be written as

xtþ1 ≥ 0; ðA13Þ

Φxtþ1 = 0; ðA14Þ

Φ ≤ 0; ðA15Þ

where Φ≔ bf2α – λt – f1 þ ðλtþ1 þ f1Þ½φ0ðxtþ1Þ þ β�. Conditions (A9)–(A11) coin-
cide with conditions (14a)–(14c), and conditions (A13)–(A15) coincide with con-
ditions (13a)–(13c).

B. Interior Solutions as Minimizers

To find interior solutions that are minimizers for the original problem, write

max
ht;t= 0;1;...f g o

∞

t=0

btþ1 – f1ht – f2αxtð Þ

subject to xtþ1 = φ xtð Þ þ βxt – ht; x0 given:

The Hamiltonian is H = bt+1(–f1ht – f2αxt) + qt[φ(xt) + βxt – ht] and the neces-
sary optimality conditions are given as

–btþ1f1 – qt = 0; ðA16Þ
qt–1 = –btþ1f2αþ qt φ

0 xtð Þ þ β½ �: ðA17Þ

Condition (A16) implies that qt = –bt+1f1 ≤ 0, where the equality holds if f1 = 0.
The fact qt ≤ 0 implies that Hamiltonian is concave. By the theorem 12.5.2 in
Sydsæter et al. (2008, 447) the solutions satisfying (A16) and (A17) are optimal
because they in addition satisfy for all admissible solutions

lim
t→∞

qt xt – x�t
� �

≥ 0

since limt→∞ qt = limt→∞ – btþ1f1 = 0 and xt – x�t are bounded by assumptions in (Q1).
Letting ~pt = –qt shows that the interior solutions for (A2)–(A8) are equivalent to
(A16) and (A17); that is, the interior solutions for (A2)–(A8) yield minimizers for
the original problem (9)–(12).

C. Proof of Proposition 1

Given –1 < φ′(0) + β, the steady state for (15) is globally asymptotically stable by
φ′< 0, φ″ ≥ 0 in (Q1), 0 ≤ β< 1, and theorem 11.7.1 and note 1 in Sydsæter et al.
(2008, 419–20). Along a solution toward the steady state x̂, it must hold that λt >
0, and by (13a)–(13c) and (15)

λtþ1 = λt – bfαð Þ= b φ0 φ xtð Þ þ βxtð Þ þ β½ �f g: ðA18Þ
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The characteristic equation for system (15) and (A18) is

r2 – r φ0 x̂ð Þ þ β þ b φ0 x̂ð Þ þ β½ �f g –1	 
þ b –1 = 0:

Given –1< φ0 x̂ð Þ þ β< 1, the absolute value of one root is always above 1 while
the absolute value of the other is below 1; that is, the steady state is a saddle point.
Since λ̂> 0 at the steady state, λt> 0 must hold in the vicinity of the steady state as
well. Assume that the denominator in (A18) is positive and write yðxtÞ≔ φ0ðφðxtÞ þ
βxtÞ þ β> 0. Thus, given that λt+1 > 0 holds for some t, it is possible to choose
some 0< bfα< λt and proceed backward toward x0 and maintain λt> 0. If y(xt)< 0,
the same argument holds, given that λt satisfies 0< λt< bfα. If y(xt) changes its sign,
similar reasoning applies (as well as in the cases where y(xt) = 0 for some xt). Thus,
given xt→x̂ as t → ∞, there exists some positive sequence λt→λ̂; that is, the solution
τ∞ represents a local maximum. QED

D. Proof of Proposition 4

(a) Since λ0> 0 is necessary, the case φ′(0) + β ≥ 0, equation (25) or (28) and convex-
ity of φ rule out local optimality of all τ<∞ solutions and imply that τ∞ is optimal.

(b) The conditions –1 ≤ φ′(0) + β < 0 and φ′(φ0) + β ≤ 0 imply that ½φ0 < x̂,
φ0 x̂ð Þ þ β< 0 (by φ″ > 0), and that x→x̂ cyclically. The left-hand side of (28),
(29) can be rewritten as

1þ b φ0 0ð Þ þ β½ � þ b φ0 0ð Þ þ β½ � b φ0 x1ð Þ þ β½ � þ b2 φ0 x1ð Þ þ β½ � φ0 x2ð Þ þ β½ � þ . . .f g:
ðA19Þ

Given the first assumption in b, the term 1 + b[·] in (A19) is nonnegative. The term
f˙g is negative since the products with an odd number of square bracket terms are
negative and the subsequent terms with an even number of square bracket terms are
positive but always lower than the absolute value of the preceding negative terms.
Thus, [·] {·} > 0, implying that (A19) and (28) are positive and that that the local
optimality of all τ<∞ solutions is ruled out: τ∞ is optimal.

(c) Condition (28) implies directly that when b is sufficiently low, no candidates with
τ < ∞ satisfy the necessary optimality conditions, and thus that τ∞ is globally optimal.
QED

E. Proof of Proposition 5

If x0 = 0, the τ∞ regime yields Jτ∞ =o
∞

t= 1b
tþ1fαxt where xt ≥ φ0 for all t by φ(φ0) +

βφ0 ≥ φ0, implying τ∞ dominates all clear-cut cycles. Given x0 > 0, a clear-cut at
the end of period t = 0 satisfies conditions (13a)–(13c) and (14a)–(14c) by 1 +
φ′(0) + β < 0, because λ1 > bfα and because φ(φ0) + βφ0 ≥ φ0 implies φ′(φ0) +
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β > 0. Since 1 + φ′(0) + β< 0 and x̂ ≥ φ0, the function φ(x) + βx has a minimum
(satisfying φ(x) + βx > x) that can be made arbitrarily low without violating (Q1).
Thus, if τ∞ is chosen, the increase of xt toward φ0 from some arbitrarily low x0 =
arg min {φ(x) + βx} becomes arbitrarily slow and regime τ∞ is dominated by a
clear-cut at the end of period t = 0 followed by regime τ∞. If the clear-cut at the
end of t = 0 and regime τ∞ thereafter is dominated by a later clear-cut, then it is
never optimal to clear-cut, because increasing xt implies that the net gain from
postponing the clear-cut can only increase. Thus, the optimal solution is either
regime τ∞ from t = 0 or a clear-cut at t = 0 followed by τ∞. QED

F. Proof of Proposition 6

Given x̂= φ0= 2þ~rð Þ and x0 = x̂, the objective values for all τn, n ≥ 2 solutions are
equal and the same holds for x0 = 0 by x̂= ~φ φ0ð Þ þ βφ0. Given φ; 0< β,
x̂= φ x̂ð Þ þ βx̂, and r=~r, the solutions τ∞ and τ2 for x0 = x̂ are unaltered, but by
~r> 0, τ2 yields a higher objective value than any τn, n> 2 for x0 = 0 if

x̂ – xt > xtþ1 – x̂ for all t= 2; 4; . . . : ðA20Þ
Since x̂= φ x̂ð Þ þ βx̂ and xtþ1 = φ xtð Þ þ βxt for all t ≥ 2, equation (A20) can be

written as g≔ x̂ – xt – φ xtð Þ – βxt þ φ x̂ð Þ þ βx̂> 0. The assumption φ φ0ð Þ þ βφ0

< x̂ implies that xt < x̂ for all t = 2, 4, . . . . Differentiating yields ∂g=∂xt =
–1 – φ0 xtð Þ – β< 0, where the sign holds by the stability of x̂, convexity of φ, and
xt < x̂. Thus, g > 0 and by proposition 2, there exists r>~r such that τ∞ is optimal
for x0 = x̂ and τ2 for x0 = 0. QED

Table A1. Parameter Values for Model Specifications (39), (2)–(7)

Size Class

1 2 3 4 5 6

Diametera 75 125 175 225 275 325
v1
b 0 0 0 .234 .446 .684

v2
b .014 .067 .167 .081 .065 .060

7 8 9 10 11 12

Diametera 375 425 475 525 575 625
v1
b .963 1.253 1.574 1.900 2.214 2.564

v2
b .0498 .050 .043 .0392 .033 .031

a Unit: mm.
b Unit: m3; v1 = sawn timber volume; v2 = pulp volume.

G. Tree Volumes
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