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Abstract
This study reviewed research published after 1990 on the economics of agricultural 
mechatronic automation and robotics, and identified research gaps. A systematic search 
was conducted from the following databases: ScienceDirect, Business Source Complete, 
Wiley, Emerald, CAB Abstract, Greenfile, Food Science Source and AgEcon Search. This 
identified 4817 documents. The screening of abstracts narrowed the range to a dataset of 
119 full text documents. After eligibility assessment, 18 studies were subjected to a quali-
tative analysis, with ten focused on automation of specific horticultural operations and 
eight related to autonomous agricultural equipment. All of the studies found some scenar-
ios in which automation and robotic technologies were profitable. Most studies employed 
partial budgeting considering only costs and revenues directly changed by the introduction 
of automation or robotics and assuming everything else constant. None examined cropping 
system changes, or regional and national impacts on markets, trade and labour demand. 
The review identified a need for in-depth research on the economic implications of the 
technology. Most of the studies reviewed estimated economic implications assuming that 
technology design parameters were achieved and/or based on data from prototypes. Data 
are needed on the benefits and problems with using automation and robotics on farm. All 
of the studies reviewed were in the context of agriculture in developed countries, but many 
of the world’s most pressing agricultural problems are in the developing world. Economic 
and social research is needed to understand those developing country problems, and guide 
the engineers and scientists creating automation and robotic solutions.
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Introduction

The rapid growth of agricultural crop robotics in the last decade results from, (a) the con-
vergence of maturing mechatronics technology, making such automation technically feasi-
ble and, (b) the demand for alternatives to human labour in crop production. Worldwide, 
agricultural workers are difficult to hire and retain. Increasing environmental and food 
safety concerns push agriculture to manage and apply inputs more precisely (Finger et al. 
2019). The engineering side of agricultural robotics has advanced rapidly (Duckett et al. 
2018; Shamshiri et al. 2018), but understanding of the economic implications has lagged. 
The objective of this study is to review the publicly available research on the economics 
of crop robotics and identify research needs and gaps. The results of this study will be of 
interest to agricultural researchers, agribusinesses, farmers and agricultural policy makers.

The definition of “robot” is debated (e.g. Robot Institute of America—RIA undated; 
Simon 2017). The etymology of “robot” is the Czech word for serf, worker or servant. 
The official RIA definition is: “a reprogrammable, multifunctional manipulator designed 
to move material, parts, tools, or specialized devices through various programmed func-
tions for the performance of a variety of tasks”. Some of the disagreements about the def-
inition of robotics are about need for mobility, degree of autonomy (can function with-
out direct human intervention), ability to learn, range of decision making and extent of 
pre-programmability.

The characteristics of agricultural robots have been described by several authors (e.g. 
Duckett et al. 2018; Blackmore 2007), but there is no widely agreed definition. Because 
the focus of this study is on the economics of robotics for crop production in open fields, 
the working definition of a “field crop robot” for this study was: a mobile, autonomous, 
decision making, mechatronic device that accomplishes crop production tasks (e.g. soil 
preparation, seeding, transplanting, weeding, pest control and harvesting) under human 
supervision, but without direct human labour. Mobility is an essential part of the definition 
because field crops are typically geographically dispersed in the landscape. Autonomy is 
also essential because the field environment is not entirely controllable. Among the deci-
sions that a field crop robot might make are distinguishing a crop plant from a weed, identi-
fying an insect to choose the appropriate pesticide for micro dosing, choosing ripe fruits or 
vegetables, and stopping when it encounters an unknown obstacle.

Of course, there are many types of robotics and decisions had to be made about the 
kind of studies and articles to be included. The review includes papers on the economics 
of partially roboticized field crop operations, especially those in which the agricultural 
work (e.g. seeding, harvesting and weeding) has been automated, but the equipment is 
still guided through the field by a human driver. These studies provide useful examples 
of economic analysis of automated agricultural systems and it is assumed that when the 
economic and social conditions require it, they could be made autonomous relatively 
easily. The review includes both broad acre and horticultural crops grown in open fields, 
but does not include studies and articles on livestock or protected environment produc-
tion even though both are areas in which the use of robotics has advanced more rapidly 
than in field crop production. Intensive livestock farming and greenhouse production 
operate in more controlled environments than field crops and consequently, robots have 
been developed more quickly than for crops grown in open fields. For example, in 2015, 
roughly one quarter of the dairy farms in Denmark and the Netherlands used robotic 
milking (Dairy Global 2015). Robotics for intensive livestock and greenhouses are 
substantially different from those needed for field crops. They can often be stationary 
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(e.g. milking robots) or with limited mobility (e.g. greenhouse robots on rails). Because 
intensive livestock and greenhouse systems are more controllable, the need for auton-
omy and decision making is less. The review also excludes the numerous studies on the 
economics of Global Navigation Satellite Systems (GNSS) for agriculture because they 
all assume that a human driver is in direct control of the equipment. However, it must 
be noted that agricultural GNSS has helped lay the basis for autonomous agricultural 
equipment.

Economic analysis of new technology in agriculture is important for at least two rea-
sons: “(1) guiding future research and (2) informing farmer and agribusiness adoption 
decisions. Because profitable technologies are more likely to be widely adopted and 
the environmental and social benefits of the technologies are more likely to be realized 
when they are  widely adopted, those who fund research and desire impact are often 
guided by the potential economic feasibility. With a similar motivation, researchers 
use potential economic benefits as an important factor in deciding how to allocate their 
time. In research planning, even a negative economic estimate for a technology is valu-
able, especially if key economic constraints can be identified and research targeted to 
resolve those constraints. Before investing in a new technology, farmers and agribusi-
ness people often seek out economic research studies. They realise that such studies sel-
dom replicate completely their on-farm or business situations, but they can identify key 
barriers to profitable use of the technology and characteristics of businesses that could 
use them economically.

In precision agriculture, economic estimates have played a key role in guiding research 
and adoption decisions (Lowenberg-DeBoer 2018). The currently observed precision agri-
culture adoption patterns were accurately predicted by economic studies done in the 1990 s 
and in the early years of the 21st Century. Those studies that looked beyond partial budget-
ing to include changes in management costs, training expense and personnel-related issues 
were particularly useful. Since GNSS guidance was introduced for ground-based agricul-
tural equipment in the late 1990 s, almost all economic studies have estimated economic 
benefits and substantial qualitative advantages, which were more difficult to measure. Con-
sequently, the rapid adoption of this and related technologies should not come as a sur-
prise. Since the early 1990 s, variable rate fertilizer studies have shown mixed economic 
outcomes and the adoption record reflects that mixed picture with substantial adoption in 
some niche situations, but with widespread adoption waiting for technical breakthroughs 
that reduce costs and enhance effectiveness. Economic analysis of crop robotics could play 
a similar role in the research planning and adoption of the technology.

The general objective of this study was to provide a synthesis of the results of research 
on the economics of field crop robotics. The specific objectives were to: (1) list and sum-
marise the publicly available research on the economics of field crop robotics, (2) identify 
research gaps and needs related to crop robotics and (3) propose research topics that need 
urgent attention. This review contributes to science by summarizing the knowledge that 
has been accumulated about the economics of crop robots, suggesting mechanisms for how 
those facts fit together, and identifying gaps in the science. The primary focus of this study 
is on farm level profitability because without profitability crop robots will not be widely 
used and the expected environmental, social and food safety benefits will not be achieved. 
Environmental, social and food safety benefits of the potentially profitable autonomous 
crop technologies were noted when identified. The overall hypothesis is that most studies 
of the economics of field crop robotics use partial budgeting to focus on changes in vari-
able cost and consequently there is an urgent need for a more systematic study of the poten-
tial impact of automation and robotics.
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Materials and methods

A systematic literature review identified published research on the economics of crop pro-
duction robots and automation. The Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis (PRISMA) (Moher et  al. 2009) approach was followed for reporting the 
searches, screening and synthesis.

The searches were restricted to those published in English and between January 1990 
and May 2018. The decision to exclude articles before 1990 was made because there was 
almost no economic research on mechatronic automation or autonomous field robots before 
that time. However, it is important to recognise that this review was not exhaustive. It was 
limited to the databases that the team was able to access.

Databases used for this search included AgEcon Search, EbscoHost (including Business 
Source Complete, CAB Abstract, Greenfile, Food Science Source), Emerald, ScienceDirect 
and Wiley Online. The search string was adapted to the syntax of each database. Boolean 
operators (AND, OR) and wildcards (*) were used where accepted by the database/search. 
Table 1 shows the search field and search string used for each database.

The search string was composed of three components which were combined with AND:

(1) Economic analysis—economic* OR profit* OR financ* OR cost* (It was believed 
that this would include the key types of economic evaluation such as cost analysis, 
cost–benefit analysis, cost-effectiveness analysis etc.)

AND

(2) Robotics—robot* OR automatic OR automated OR automation

AND

3) Agricultural sector (open field crops)—agri* OR field OR crop* OR plant* OR harvest* 
OR seed* OR fruit* OR apple* OR asparagus* OR barley OR banana* OR beetroot* 
OR blueber* OR broccoli OR carrot* OR cauliflower* OR cabbage* OR celer* OR 
cereal OR cherr* OR citrus* OR corn OR cotton* OR cucumber* OR eggplant* OR 
garlic OR grape* OR herbaceous OR lemon* OR lettuce* OR maize OR olive* OR 
onion* OR orange* OR orchard* OR pepper* OR potato* OR raspber* OR strawber* 
OR sugar* OR tomato* OR radicchio OR scallion* OR soy*bean* OR vineyard* OR 
weed OR wheat

This search string was used for all databases apart from AgEcon Search. It was believed 
that AgEcon Search contains articles all related to agriculture. Therefore, it was deemed 
unnecessary to add the component representing agriculture sector.

The search terms were pilot tested and agreed upon within the research team. This 
search generated 5094 articles. After removing duplicates, 4792 articles remained. In addi-
tion to the search, 25 more articles were identified from conference proceedings and the 
bibliography of the seminal articles. This led to the final 4817 titles for initial screening.

Screening was conducted with the EPPI-Reviewer 4. EPPI is an acronym that originally 
stood for “Evidence of Policy and Practice Information” (Thomas et al. 2010). Two of the 
co-authors screened the titles and abstracts with sample double screening (40%). Discrep-
ancies were resolved through discussion with each other and checking with the third and 
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fourth co-authors. A similar approach was taken for full-text screening. Inclusion criteria 
were discussed and agreed by the full research team. It was decided that only articles which 
reported original research in agricultural mechatronic automation and robotics for the pro-
duction of the crops in the following list and contained some element of economic analysis 
would be included for full-text synthesis analysis.

The following crops were explicitly included:

• Viticulture—grape
• Field crops—asparagus, broccoli, beets, carrots, celery, cabbage, cauliflower, cereal 

crops, cotton, cucumber, lettuce, eggplant, onion, scallions, garlic, maize (corn), soy-
bean, barley, wheat, sugar beet, sugarcane, sweetcorn, tomato, pepper, potato

• Soft fruits—strawberry, blueberry, raspberry
• Top fruits—apples, pears, citrus, orange, lemon olive, cherry, plums

As noted in the introduction, greenhouse crops were excluded because both the technology 
and the economics are substantially different from those of field crops. Articles focused on 
conventional mechanization were also excluded, but those involving mechatronic automa-
tion were retained even if the technology was not full autonomous.

Screening on title and abstract was based on whether the original research was on robot-
ics or automation for at least one of the above mentioned crops. Articles with an obvious 
lack of economic analysis were also excluded. However, extreme caution was exercised. 
This means that, if in any doubt, the titles would be included for full text review. This was 
to minimise the chance of missing any relevant articles. Through this screening procedure, 
119 titles were retained for full-text screening.

Full text assessment of eligibility was based on whether some type of economic analysis 
was conducted. This ranged from basic cost description or cost analysis to more complete 
cost–benefit analyses.

The complete procedure of literature identification, screening and final inclusion and 
exclusion process is presented in Fig. 1.

Out of the 119 articles, four were found to be multiple publications on same studies 
(Cembali et al. 2008; Mazzetto and Calcante 2011; Pedersen et al. 2006; 2008). 97 articles 
were excluded for the following reasons:

• No economics (n = 44)
• Not robotics (n = 16)
• Not original study (n = 27)
• Not open fields (n = 10)

This led to the remaining 18 articles on which this qualitative analysis is based. Statistical 
meta-analysis (Borenstein et al. 2009) was not attempted because of the diversity of meth-
odologies used in the crop robotic economics studies found.
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Results

Characteristics of the full‑text studies analysed

Of the 18 studies which included economic analysis of automation/robotics, ten came 
from the USA, four from Denmark (Table 2). The other countries among the 18 papers 
with economics were United Kingdom, Greece, Italy, Israel, Japan and Germany. Two 
of the studies from the US were based on international collaboration. One of these was 
part of a Danish study which involved multiple countries.

Concerning the type of automation/robotic technology studied, harvesting (n = 5) 
and weeding (n = 4) were the top two types of automation/robotics for which economics 
was studied. Other automation/robotics included in the 18 documents were for scouting, 
planting, transplanting, seeding and pruning.

Of the 18 included in the full-text review, crops studied were sugar beet (n = 4), 
asparagus (n = 4), grapes (n = 2), lettuce (n = 2), and apple, celery, cabbage, radicchio, 
carrots, sugarcane, olive, tomato and melon (n = 1 for each). Most studies reviewed 
focused on one or two crops, but two of the studies were whole farm (i.e. Sørensen et al. 
2005; Shockley and Dillon 2018).

Fig. 1  Process of literature search and screening (PRISM flow diagram)
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Economic benefits of robotic technology

In total, the literature screening produced 18 studies published between 1990 and 2018 
in which some form of economic analysis was conducted for robotics and mechatronic 
automation of field crops. Because of the different methodologies used in the 18 stud-
ies, this analysis focused on qualitative rather than quantitative synthesis. It aimed to 
identify the economic benefit or viability assessed, the methods used in the assessment 
(Tables 2 and 3), and aspects of automation and robotics that have not yet been studied. 
All 18 of the studies identified some scenarios in which automation or robotics would 
be profitable.

Autonomous operations considered

Of the eight studies which reported some economic analysis of autonomous agricultural 
robotics, five used partial budgets and three used methodologies that provided a somewhat 
broader perspective. Sørensen et al. (2005) used scenario planning to assess the potential 
for robotic weeding of organic crops. Scenario planning is whole farm budgeting drawing 
on input from farmers, researchers and farm advisors to specify the parameters. They cre-
ated eight organic farm scenarios, but most of the analysis focused on the scenario involv-
ing sugar beet and carrot production because of the labour involved in organic production. 
With manual weeding, sugar beet and carrot production was expected to add over 100 h/
ha of labour. If a two-row (1.0 m) robotic weeder required an investment of €26,882 and 
was 80% efficient, weeding costs for the 5 ha of sugar beet and carrot would be reduced by 
about 50%. They found that a farmer could pay up to €40,000 for the robotic weeder and 
still be better off than with manual weeding. Contract weeding may reduce costs even more 
because it would allow the robot to cover a larger area each crop season.

McCorkle et al. (2016) employed a relatively detailed financial simulation model of a 
vineyard enterprise, but only treated robotics in a sensitivity test, as a potential substitute 
for labour. They estimated that a 20.2 ha vineyard would require 334.7 h/ha at a cost of 
US$4,402.58/ha, and a 40.4 ha vineyard would require 282.8 h/ha at a cost of US$3,799.33/
ha. They emphasized the cost savings if human workers were replaced with robots. Their 
methodology facilitated analysis of risk, but lacked detail on how robotics might affect 
variability.

Edan et al. (1992) used partial budgets to assess the potential for automation of melon 
harvest, but consider autonomy as a sensitivity test. Their treatment of autonomy was 
very limited because GNSS guidance technology was not available for agricultural equip-
ment when the study was done in 1992. Edan et  al. (1992) reported results in terms of 
the breakeven area for an initial investment ranging from US$50,000 to US$250,000, and 
manual harvest costing US$247/ha to US$741/ha. Over that initial investment range, the 
autonomous melon harvester was shown to be economically competitive for 202.4 ha of 
melon when manual harvesting cost was less than US$494/ha. If the initial investment is 
US$50,000, the breakeven melon area drops to less than 81 ha over the range of manual 
labour costs considered. For a low manual labour cost of US$247/ha and initial equipment 
cost of greater than US$50,000, the breakeven area is between 202.4 and 404.8 ha It should 
be noted that among the 18 studies reviewed in detail, Edan et  al. (1992) provided the 
most detailed explanation of their cost estimate, including a detailed parts list for the auto-
mated melon harvester, construction cost estimate including manufacturer profit margin, 
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estimated useful life, salvage value, and effective field rate. As such, it is an example of a 
well-documented budget study.

In Denmark, Pedersen and colleagues used partial budgets to estimate the economic 
benefits of robots for crop scouting, mechanical weeding, grass cutting and spot reseeding. 
Pedersen et al. (2006) considered three scenarios. Key results included:

• Robotic crop scouting—They estimated an initial investment of € 7799 for the robot 
scout and, for 500 ha, annual costs of €15.60/ha/yr. They indicated that manual scout-
ing with the same intensity would cost about €19.40/ha/yr for a cost savings of €3.80. 
Pedersen et al. (2006) did not estimate the pesticide cost saving with site-specific weed 
control, but noted that research indicated herbicide cost savings from 30 to 75%.

• Robotic weeding—For horticultural crops, they estimated an initial cost of €64,939 for 
a weeding robot and, for a total area of 80 ha, an annual cost of €260.40/ha/yr. Their 
robotic weeder was a micro-spray system. They estimated the cost of conventional 
weed control with broadcast herbicides and manual inter-row hoeing at €296.6/ha/yr, 
resulting in a cost saving of €36.20/ha/yr for the robotic system.

• Robotic grass cutting—They estimated an initial cost of €43,069 for a golf course grass 
cutter. With a total area of 36 ha, it had an annual cost of €283/ha/yr. Manual grass cut-
ting was estimated to cost €586.30/ha/yr, for a savings of €303.30/ha/yr.

In each of the three scenarios, Pedersen et al. (2006) found cost savings with the robotic 
alternative, but stated that the high cost of real time kinematic global navigation satellite 
systems (RTK GNSS) and the modest capacity of the robots were the main reasons for the 
relatively high cost of the robotic systems.

The benefits of robotic weed scouting and robotic weeding were re-estimated by Ped-
ersen et al. (2008). This analysis extended the Pedersen et al. (2006) study by estimating 
robotic weeding costs for USA, Greece and the UK, as well as for Denmark. They noted 
that the robotic weeder had an important cost advantage in the USA, UK and Denmark, but 
not in Greece. They found that differences in labour costs, crop rotation and farm structure 
may have important impacts on the potential use of these systems in different countries. 
Pedersen et al. (2008) emphasized the radical change in economies of scale when human 
operators are removed from farm equipment and the implications for farm size and struc-
ture. They also noted that country-to-country differences in safety regulations and insur-
ance may have major cost implications.

The profitability of robots for early seeding and reseeding of sugar beets was estimated 
by Pedersen et  al. (2017). Early seeding is a possibility with small robotic equipment 
because it is relatively light weight and could be in the field when it is too wet for conven-
tional machinery. The study assumed that a robotic seeder could plant about 4 weeks ear-
lier than conventional equipment. Based on planting time studies, they estimated a 2.67% 
yield increase from earlier planting. Assuming that the robotic seeder is used on 500 ha, 
they found that early seeding with the robot increased gross margin by about €95 or about 
7.7%. Of that increase, €75/ha was due to the yield increase and the remainder was cost 
savings mainly from reducing labour.

The early seeding and reseeding of sugar beets analysed by Pedersen et  al. (2017) is 
an example of farming operations which are not feasible with conventional equipment, 
but would be possible with autonomous machines. Spot reseeding sugar beet maybe use-
ful because of poor germination or because newly emerged plants are destroyed by flood-
ing, rodents or other problems. Reseeding is often impossible with conventional equipment 
because machine operations would cause too much damage to the growing crop. A small 
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robot would be able to do the reseeding while minimizing crushing or otherwise injuring 
the rest of the crop. Pedersen et al. (2017) assumed that spot reseeding increased overall 
yield by 5%. Under that assumption, the gross margin increased about €81/ha, or about 
6.5%.

Gaus et al. (2017) used partial budgeting to estimate the potential cost of mechanically 
weeding wheat with a swarm of autonomous small robots. For a robot that could mechani-
cally weed 3 ha of wheat five times in a crop season, they estimated an operating cost of 
€30.20/ha/hr. They estimated the initial investment for one robot at €626. They commented 
on the potential pesticide cost savings by using robots for mechanical weeding, but did not 
quantify it by comparing the estimated cost of robotic weeding to typical chemical weeding 
expenses. They also commented on the potential for small robots to work in wet field con-
ditions when conventional equipment would not be in the field and point out that working 
day data for small robots would be required to investigate the implications of this aspect of 
small robot use.

Among the documents reviewed, Shockley and Dillon (2018) took the most system-
atic view of how robotics might affect the economics of crop production. They consid-
ered autonomous equipment for maize and soybean production in Kentucky, USA, using a 
whole farm linear programming model. They assumed that all in-house field operations are 
potentially autonomous. They modelled planting, nitrogen fertilizer application and pesti-
cide spraying as potentially autonomous, but that spreading phosphorous and potassium 
fertilizer, lime application and harvest were assumed to be done by (human) contractors. 
Parameters for autonomous equipment was based on prototypes developed and tested by 
their colleagues in the Department of Biosystems and Agricultural Engineering at the Uni-
versity of Kentucky. The analysis compared net returns from using autonomous equipment 
to the best complement of conventional equipment for a given farm size. The conventional 
tractor options ranged from 105 to 400 hp. The conventional sprayer alternatives in the 
model ranged from 8.2 to 36.6 m. The analysis suggested that relatively small autonomous 
equipment would have economic advantages for a wide range of farm sizes, but especially 
for small farms.

Shockley and Dillon (2018) reported their key results in terms of the breakeven price of 
intelligent controls that would convert conventional tractors to autonomous. They consid-
ered four scenarios: (1) all costs and returns same as conventional production, (2) a 10% 
reduction in input cost, mainly driven by site-specific pesticide application by the robot, (3) 
same as scenario 1, but with a 7% yield increase because of a reduction in soil compaction 
and (4) both the 10% input cost reduction and the 7% yield increase. The breakeven price 
of intelligent controls on an 850 ha farm were estimated by scenario as: (1) US$33,327, (2) 
US$109,755, (3) US$243,436, and (4) US$319,864. For some smaller farms in the range of 
660–690 ha, the breakeven values for intelligent controls were higher i.e. (1) US$61,017, 
(2) US$184,313, (3) US$378,088 and (4) US$494,194. They argued that farm size must 
be factored into the market size assessment by equipment developers and manufacturers of 
robotic farm equipment.

Automated, but not autonomous

Of the 18 studies, ten focused on automating one or more horticultural production 
operations while retaining the human equipment operator (Tables 2, 3). All of the auto-
mation studies used partial budgeting methods that only accounted for the items that 
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changed with the introduction of the technology, assuming that the overall production 
system remained the same.

Tillett (1993) explored the potential for use of a robotic arm in horticultural opera-
tions, especially harvest. He quantified potential costs, estimated labour savings and 
identified the length of the harvest season as a key variable in profitability. He con-
cluded that a robotic harvester could be economically feasible for crops with a long 
harvest season, such as controlled environment tomatoes.

Arndt et al. (1997) and Clary et al. (2007) concentrated on identifying the percentage 
of potentially harvestable asparagus spears that must be harvested with automation to 
breakeven with manual harvest. Arndt et al. (1997) showed that even with grade No. 1 
asparagus harvest at 28% and grade No. 2 at 15%, the harvester provided a return over 
harvest costs. Clary et al. (2007) found that harvester would be economically successful 
if the harvest percentage were 70–80% of hand harvest. Cembali et al. (2008) focused 
on changes in the harvest interval with automation. They found that if the manual har-
vest cost increased from US$0.51 to US$0.60/kg, the automated harvest breakeven har-
vest rate dropped from 70 to 61%. Ruhm (2004) stated that automated asparagus harvest 
could play an important role in decreasing production cost, but only with a substantial 
capital investment. He noted a capital cost for automated harvesters on a 50 ha aspara-
gus operation of €100,000. Ruhm (2004) also indicated that fully automated asparagus 
grading would be economically viable if it had a capacity of 1600 spears/h.

Three studies estimated the cost savings from automation for automated transplant-
ing and weed control (i.e. Tsuga 2000; Mazzetto and Calcante 2011; and Pérez-Ruíz 
et al. 2014). Tsuga (2000) estimated a cost curve for an automated vegetable transplant 
machine and found that the machine competed with manual labour if the area covered 
was over 8.21 ha. Pérez-Ruíz et al. (2014) showed that the co-robotic weeding of broc-
coli reduced labour time by 13.8 h/ha, and cut weeding labour cost by US$170.15/ha. 
The term “co-robotic” is used when robots work co-operatively with human workers. 
The cost of the weeding robot was not estimated, and consequently the economic viabil-
ity was not determined. Mazzetto and Calcante (2011) showed that an automated grape 
vine transplanter increased the work rate by about 15%, mainly by eliminating a worker 
responsible for physically laying out the vineyard. The automated transplanter followed 
a virtual design. An estimated cost curve showed that the automated vine transplanter 
was the lower cost option if the area transplanted annually exceeded about 23 ha.

Zhang et  al. (2016) considered a self-propelled apple harvesting and in-field sort-
ing machine. They estimated that the equipment would save the average New York 
apple orchard US$149,438 and reduce net returns to the average California orchard by 
US$3,381. The difference in benefits depended on orchard area, production level and 
the percentage of processing apples.

All ten of the automation studies identified scenarios in which automation was eco-
nomically beneficial. Of the ten studies, Fennimore et  al. (2014) were most sceptical 
about the benefits. They stated that with the technology available at that time, machine 
vision-guided weeding with a rotating cultivator between plants was economically fea-
sible for transplanted vegetables, but not for the direct seeded crops on which field trials 
had been conducted. The machine vision-guided weeding reduced the stand of seeded 
lettuce by 22–28%, but the stand of transplanted lettuce was reduced by only 6–9% com-
pared to the standard cultivator. Combining the rotating cultivator with herbicide treat-
ment reduced the number of weeds intra-row and consequently the damage to the crop. 
For transplanted celery, combining the rotating cultivator with herbicide resulted in an 
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average gain over two trials of US$815/ha, while the zero-herbicide rotating cultivator 
resulted in a loss of US$4857.50/ha.

General comments

All of the robotic economics studies focused on relatively small robots. For example, the 
autonomous tractor in the Shockley and Dillon (2018) study was 46 hp and the sprayer was 
6.1 m wide. None of the studies reviewed have opted to assess the economics of autono-
mous versions of the large scale equipment used on most commercial farms today. It should 
be noted that the major farm equipment companies have released information about their 
research and development programs focused on autonomous large scale equipment (e.g. 
CNH 2016; Daniels 2016).

Farm size was considered in all of the eight studies of economics with autonomous 
equipment (Table 3), but not in most of the automation economics studies. For the automa-
tion studies, it was plausible to assume that increasing the number of automated machines 
according to farm size would lead to an equivalent increase in cost and output, hence creat-
ing a situation of constant returns to scale. The main complications are the discrete steps 
introduced by fixed equipment sizes (e.g. 1-row, 2-row or 3-row). Among the studies of 
economics with autonomous equipment, Edan et  al. (1992) estimated the area of melon 
production needed for breakeven given alternative manual labour wage rates. Sørensen 
et  al. (2005) and Gaus et  al. (2017) estimated cost of autonomous weeding given fixed 
crop area and farm sizes. The studies by Pedersen and colleagues (Pedersen et al. 2006; 
2008; 2017) estimated costs of autonomous equipment for a given area. McCorkle et al. 
(2016) estimated how replacing manual labour with robots would affect vineyards of dif-
ferent sizes. Shockley and Dillon (2018) considered farm sizes ranging from 40 to 1240 ha.

Most of the 18 studies with economic analysis used the technical design parameters or 
data collected in prototype testing. One exception is Cembali et al. (2008) who used crop 
simulation to estimate asparagus growth and timing, but based harvest equipment param-
eters on design parameters and prototype testing information. The other exception is Fen-
nimore et al. (2014) who used on-farm trial data. All of the economic studies show signs of 
being data-constrained. For example, Shockley and Dillon (2018) stated: “Economic mod-
elling of autonomous machinery is scarce because of the lack of necessary data” (p. 7). 
Most of the studies probably chose to use partial budgets, targeting cost saving or break-
even harvest recovery rates because that was the least data-demanding approach. On-farm 
experience with autonomous field crop equipment is rare because it has just started being 
commercialized and for the most part still existed mostly in the form of prototypes. The 
lack of data is complicated by the fact that while much of the basic science for develop-
ment of ag robotics is done in the public sector, the development of practical autonomous 
tools is a business opportunity. Businesses usually want to control the information being 
made public about any new products or services, consequently they are not eager to share 
robot work rates, reliability, maintenance and repair costs, and other operational detail that 
is essential for economic assessment.

Only one of the 18 studies which include economic analysis was originally presented 
or published for an audience of economists (i.e. Gaus et al. 2017). All of the other stud-
ies were presented or published to audiences dominated by engineers or horticulturists 
(Table 2), but the majority included economists as co-authors. This is consistent with the 
observation that disciplinary economics is mostly focused on the development of new 
research tools. The assessment of the economics of agricultural automation/robotics uses 



293Precision Agriculture (2020) 21:278–299 

1 3

well established economic methods, consequently the audience is among engineers and 
agricultural scientists who are interested in the economic implications of their innovation.

Discussion

The publicly available research on the economics of crop automation and robotics is mini-
mal compared to the need. Gaps identified include:

• Systems analysis—The partial budgeting used by most of the studies is a useful starting 
point, but cannot shed light on some of the key hypotheses about the economic impact 
of crop robotics. For example, the economies of scale in agriculture are radically 
changed when human operators are removed and the equipment is made autonomous 
(Pedersen et  al. 2008). With autonomous equipment, the motivation for large equip-
ment is much diminished and optimal farm size is probably affected. Various research 
methodologies have been used to investigate economies of scale and optimal farm size 
in agriculture, but given the lack of on-farm experience with autonomous equipment, 
the initial studies are likely to use whole farm mathematical programming models.

• Farm surveys and on-farm trials—Very few of the economic studies of crop automation/
robotics incorporated farm experience because use of these machines on farms is very 
new. Some farmer robotic agriculture testimonials are available on the internet (e.g. 
Future Farming 2018; Naïo Technologies 2017; Progressive Farmer 2018), but quanti-
fication of key parameters is lacking. As autonomous farm equipment and mechatronic 
automated machines become commercially available, on-farm trials become possi-
ble. Classic on-farm trial protocols could be adapted or some of the new on-farm trial 
designs that make use of electronic data collection (e.g. Bullock et al. 2009) could be 
used. To be credible, the trials probably need to be led by a non-commercial entity (e.g. 
university, research institute, NGO). To have access to the latest technology, they prob-
ably need to be implemented in collaboration with the equipment manufacturers and 
retailers. Farmers need to be identified who are curious enough to commit their land, 
labour and management. While some in-kind contributions of equipment, land, labour, 
scientific expertise are likely from research institutions or businesses, government or 
philanthropic funding will probably be needed to prime the pump.

• Robot size—All of the publicly available research studies of the economics of agri-
cultural robotics focus on relatively small robots, but the major farm equipment com-
panies are focusing on autonomous versions of their largest equipment (CNH 2016; 
Daniels 2016). Evidence is needed on the optimal robot size for a given farm type and 
set of tasks. This analysis would need to include many factors including: robot cost, 
maintenance expense, work rates under different farm conditions, energy consumption, 
compaction and resulting yield effects, legal and regulatory restrictions and transport 
between fields and farmstead to field.

• Changing structure of the farm equipment market—In much of the world, farmers tra-
ditionally owned most farm equipment. In the conventional farm equipment market, 
there is talk of moving to a “licence to operate” structure which gives the farmer the 
right to use equipment, but limits the right to repair or modify. That license to oper-
ate approach is in part driven by the intellectual property that companies have in the 
software required to operate new farm equipment (e.g. Solon 2017; Wiens and Cham-
berlain 2018). Among robotics entrepreneurs, there is talk of a service model, perhaps 
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like the model used by the transportation company Uber. Under that model, a farmer 
who needs a field weeded would book that service on the internet and the closest robots 
would come and weed. For farmers, this is attractive, especially at the beginning of 
robotic agriculture transitions, because it reduces the need to invest in technology that 
may become rapidly obsolete. On the entrepreneurial side, the service model allows the 
company to capture more of the learning that comes with operating robots in the field. 
A robotic service model has implications for the size and organization of farms.

• Market size estimates—Almost all of the studies were able to find some scenarios in 
which automated field operations with a human equipment operator or autonomous 
field operations were profitable, but that does not mean special purpose autonomous 
equipment/robots will be developed for all those situations. In many cases (especially 
for horticulture), the size of the market for a given machine or robot may be too small 
to cover the development cost. Equipment companies and agricultural consulting firms 
have done proprietary market assessments that are available only to paying customers 
and which may have gaps. Research-based market assessments would serve entrepre-
neurs, smaller companies and the public sector. Public funding organizations need to 
understand market size before committing research money to automation or robotics. 
For example, the public good generated by supporting research to automate a handful 
of fruit or vegetable producers may not justify the investment. With market size esti-
mates, engineers, entrepreneurs, venture capitalists and public funding agencies could 
decide where on the continuum between a general purpose robot and a highly special-
ized machine, would maximize benefits.

• Studies on grain, oilseeds, cotton and other commodity crops—Most of the automation/
robotics economics studies focused on horticultural crops. Sørensen et al. (2005), Ped-
ersen et al. (2006), (2008) and Pedersen et al. (2017) focused on sugar beet. Sørensen 
et al. (2005), Pedersen et al. (2006), Gaus et al. (2017) and Shockley and Dillon (2018) 
estimated some benefits for cereals. The focus on automation/robotics for horticulture 
is logical because it is often a high value crop. In terms of potential equipment market 
size and food security implications, the commodity crops cannot be ignored. Like the 
Sørensen et al. (2005), Pedersen et al. (2006), and Shockley and Dillon (2018) studies, 
initial economic analysis will make use of design parameters, data collected in proto-
type tests and imagination. To understand the market and public good implications, it is 
key to start exploring the potential of automation and robots for commodity crops.

• Co-robotics or “Cobots”—The entirely autonomous farm is probably several decades in 
the future. In the meantime, farmers and agribusinesses will need to learn to work with 
automation and autonomous machines. The concept of humans working with robots is 
often call “Co-robotics” or “Cobots”. A combination of modelling studies and on-farm 
trials can start to identify the sweet spots for human–robot interaction in agriculture.

• National, regional and sector level economic impacts and externalities have been 
hypothesized for field crop robots (Lowenberg-DeBoer 2018), but none of the publicly 
available studies have examined those potential impacts. For example, small robots 
could almost eliminate the competitive advantage that large rectangular fields have in 
commodity agriculture. With robots, small, irregularly shaped fields in areas with good 
soils, reliable rainfall and market access (e.g. Western Europe, Eastern USA) may be 
much more competitive in grain and oil seed production in the future. Other exam-
ples involve the impact of robots on the labor market. Widespread use of robots could 
almost eliminate the need for unskilled labor in agriculture in industrialized countries 
thereby wiping out a category of entry level jobs. Robots could also change immigra-
tion flows if the demand drops for unskilled workers in crop production (especially hor-
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ticultural crop production). The change in field crop labour requirements would affect 
the political debate around immigration in industrialized countries, unemployment lev-
els in the developing countries that are now supplying unskilled agricultural migrants 
and remittance flows back to those countries. At least one model of this type of study 
exists for the greenhouse sector (Posadas 2012). He collected data in the South-East-
ern USA on the economic impact of mechanization and automation in greenhouse and 
nursery companies. He concluded that mechanization and automation increased the 
gross revenue of horticultural production businesses, and allowed them to pay higher 
wages and retain workers longer. They also hired fewer new skilled workers. Studies 
of the national, regional and sector level economic impact of field crop robots have the 
potential to guide policy and influence business/farm level technology planning.

• The cost effectiveness of achieving environmental benefits using crop robotics—
A wide range of environmental benefits are hypothesized to result from crop robot-
ics (Sørensen et al. 2005; Duckett et al. 2018; Lowenberg-DeBoer 2018; Finger et al. 
2019), but none have been quantitatively documented. Those environmental benefits 
include reduced pesticide use, less soil compaction and the ability to farm around trees, 
rocks, streams and other features of the natural landscape. Crop robotics may or may 
not be a cost-effective way of achieving environmental goals compared to other man-
agement methods.

• The cost/benefit of robotic safety regulations—For example, some European Union 
countries require a human supervisor to be physically present in the field where a crop 
robot is working. Such a regulation would substantially reduce the economic benefit 
of crop robotics; if a human must be physically present, he or she may just as well be 
operating the equipment. If the goal is human safety, would better sensors to detect 
humans in the field or fencing to reduce human–robot encounters be a more cost-effec-
tive solution?

• Value of agricultural data collected by automation/robots—Among the studies 
reviewed, robots for crop scouting and data gathering are represented (Pedersen et al. 
2006; 2008), but the value of the data that crop robots could collect as they go about 
other tasks is not explicitly considered. It is possible that the detailed data collected 
could turn out to be at least as valuable as the labour savings. For instance, a weed-
ing robot in a broccoli field might also collect data on the formation of broccoli heads 
which would form the basis for a selective harvest strategy and a marketing plan.

• Robotics and automation in the developing world—Commentators have pointed out the 
potential for robotics and automation in developing world agriculture (e.g. Tarannum 
et al. 2015; Schlogl and Sumner 2018; Kushwaha et al. 2016), but research is scarce. 
Farm labour is increasingly hard to find everywhere in the world, including develop-
ing countries. In the developing world, young people go to the cities making it difficult 
to maintain labour intensive traditional production systems. The conventional wisdom 
is that developing world agriculture needs motorized mechanization, but that technol-
ogy is most efficient when it can be operated in the context of large rectangular fields. 
Creating large rectangular fields in a landscape previous dominated by small farm agri-
culture is very socially, economically and environmentally disruptive. It would mean 
cutting down field trees and bushes, changing watercourses, and in some cases mov-
ing villages. Robotics might offer a way for developing country agriculture to skip the 
motorized mechanization step. If a developing country farmer would buy a simple robot 
that could plant, weed and harvest for the price of a motor bike, he or she might be able 
to bring the latest in agricultural technology to the farm without drastically altering 
the small farm landscape. This kind of research would probably require collaboration 
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with advanced engineering, agriculture and economic research institutions from the 
industrialized world with the international agricultural research centres of the Consulta-
tive Group for International Agricultural Research (CGIAR) and national agricultural 
research systems (NARS). The CGIAR and the NARS have only just started to think 
about the potential for robotics in their environment.

Conclusions

This study showed that while research on crop robotics is relatively abundant, studies on 
the economics of that technology are scarce. The review identified only 18 studies since 
1990 which estimated the profitability or cost-effectiveness of crop robotics. Of those 18 
studies, eight consider autonomous equipment and ten focus on automated equipment with 
human operators. Seventeen of the eighteen studies use budgeting to estimate the cost 
effectiveness of robotics for specific crop operations. Only one study used farm level linear 
programming to examine the systemic impacts of crop robotics. All the studies focused on 
private monetary benefits of crop robotics; none of them estimated the economic impacts 
beyond the farm gate or the potential environmental and social impacts. The results of this 
review reinforce the need for economic research on crop robotics. Research needs include:

• Impacts on different crops—Most existing crop robotics studies focus on horticultural 
or industrial crops, but grains and oilseeds may be the “low handing fruit” for robot-
ics entrepreneurs because most grain and oilseed production is already mechanized. 
Robotics would only need to make that equipment autonomous.

• System analysis—Switching from conventional mechanization to crop robots may have 
systemic effects that ripple through the whole farm.

• Farm level robotics testing—Farmer experience with new technologies is often differ-
ent from the use intended by researchers and manufacturers.

• Robot size—With conventional mechanization, the economic rule of thumb is “bigger 
is better”. That may change when human operators are no longer needed.

• Structure of farm equipment market—Traditionally, farmers have owned most farm 
equipment. With robotics leasing or a service provide model may have advantages for 
both farmers and equipment providers.

• Market size estimates—The types of crop robots commercialized will depend in part 
on market size. Highly specialized robots would be commercialized only for relatively 
large markets and/or high value crops. A general purpose robot with specialized attach-
ments would probably be best for a mosaic of niche markets.

• Co-robotics or cobots—What is the optimal combination of human operated equipment 
and autonomous equipment for a given farm? While robotic technology is being devel-
oped, it is almost inevitable that humans and robots will work together.

• National, regional and sector level impacts and externalities—Crop robotics will impact 
labour markets, farm structure and agricultural policy.

• Cost-effectiveness of using robotics to achieve environmental and social goals—crop 
robotics are a potentially win–win strategy that uses profitable technology with envi-
ronmental and social benefits.

• Cost/benefit of robotic safety regulations—initial crop robot safety regulations in some 
countries focus on human supervision. Fencing to limit human–robot interaction, and 
better sensors and software to detect humans, might be more cost effective.
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• Value of data collected by robotic operations—Some researchers have argued that the 
value of data collected by crop robots may exceed the labour savings.

• Potential for crop robotics in the developing world—The shortage of farm labour and 
the need to manage agricultural inputs more precisely is worldwide, but automation 
technology may differ by farm structure and local needs.
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