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Abstract

Rationality is the universal invariant among human be-
havior, universe physical laws and ordered and complex bi-
ological systems. Econophysics is both the use of physical
concepts in Finance and Economics, and the use of Infor-
mation Economics in Physics. In special, we will show that
it is possible to obtain the Quantum Mechanics principles
using Information and Economic Theory.

Key words: Quantum Games, Rationality, Physical Op-
timal Laws.

1 Introduction

At the moment, Information Theory is studied or uti-
lized by multiple perspectives (Economics, Game Theory,
Physics, Mathematics, and Computer Science). Economics
and Game Theory are interested in the use of information
and order state, in order to maximize the utility functions of
the rational and intelligent players, which are part of an in-
terest conflict. The players gather and process information.
The information can be perfect and complete see ([29], [9],
[37] and [36]). On the other hand, Mathematics, Physics
and Computer Science are all interested in information rep-
resentation, entropy (disorder measurement), optimality of
physical laws and in the living beings’ internal order see
([1], [2], [4], [6], and [7]). Finally, information is stored,
transmitted and processed by physical means. Thus, the
concept of information and computation can be formulated
not only in the context of Economics, Game Theory and
Mathematics, but also in the context of physical theory.
Therefore, the study of information ultimately requires ex-
perimentation and some multidisciplinary approaches such
as the introduction of the Optimality Concept ([3], [2], [10],
[14], [17], [18] and [22]).
The Optimality Concept is the essence of the economic

and natural sciences ([19], [20], [30], [31], and [33]). Eco-
nomics introduces the optimality concept (maximum utility
and minimum risk) as equivalent of rationality and Physics
understands action minimum principle, and maximum en-
tropy (maximum information) as the explanation of nature
laws ([27] and [28]). If the two sciences have a common

backbone, then they should allow certain analogies and to
share other elements such us: equilibrium conditions, evo-
lution, uncertainty measurement and the entropy concept.
In this paper, the contributions of Physics (Quantum In-
formation Theory) and Mathematics (Classical Information
Theory) are used in Game Theory and Economics being
able to explain mixed strategy Nash’s equilibrium using
Shannon’s entropy ([16], [17], and [18]).
In Quantum Information Theory, the correlated equilib-

ria in two-player games means that the associated prob-
abilities of each-player strategies are functions of a cor-
relation matrix. Entanglement, according to the Austrian
physicist Erwin Shrödinger, which is the essence of Quan-
tum Mechanics, has been known for long time now to be
the source of a number of paradoxical and counterintuitive
phenomena. Of those, the most remarkable one is the usu-
ally called non-locality which is at the heart of the Einstein-
Podolsky-Rosen paradox (ERP) see ([3], [4], [5], [22], and
[32]), which consider a quantum system consisting of two
particles separated long distance.
“ERP suggests that measurement on particle 1 cannot

have any actual influence on particle 2 (locality condition);
thus the property of particle 2 must be independent of the
measurement performed on particle 1.”
The experiments verified that two particles in the ERP

case are always part of one quantum system and thus mea-
surement on one particle changes the possible predictions
that can be made for the whole system and therefore for the
other particle ([4]).
This paper is organized as follows. The fist section is

a revision of the existent bibliography. Second section is
the core of this paper; here we present some Quantum Me-
chanics principles as a consequence of maximum entropy
and minimum action principle (Rationality in Physics). In
third section we can see the conclusions of this research.
Finally, section fourth is the acknowledment.

2 Model
Elements of Quantum Game Theory

Let Γ = (K,S, v) be a game to n−players, with K the
set of players k = 1, ..., n. The finite set Sk of cardinality



lk ∈ N is the set of pure strategies of each player where
k ∈ K, skjk ∈ Sk, jk = 1, ..., lk and S = ΠKSk set of
pure strategy profiles with s ∈ S an element of that set,
l = l1, l2, ..., ln represent the cardinality of S, ([10], [11],
[30], [31], [33] and [36]).
The vector function v : S → Rn associates every pro-

file s ∈ S the vector of utilities v(s) = (v1(s), ..., vn(s))T ,
where vk(s) designates the utility of the player k facing the
profile s. In order to get facility of calculus we write the
function vk(s) in one explicit way vk(s) = vk(j1, j2, ..., jn).
The matrix vn,l represents all points of the Cartesian prod-
uct Πk∈KSk. The vector vk(s) is the k− column of v.
If the mixed strategies are allowed, then we have:

∆(Sk) =

pk ∈ Rlk :

lkX
jk=1

pkjk = 1


the unit simplex of the mixed strategies of player k ∈

K, and pk = (pkjk) is the probability vector. The set of
profiles in mixed strategies is the polyhedron ∆ with ∆ =
Πk∈K ∆(Sk), where p = (p1j1 , p

2
j2
..., pnjn), and pk =

(pk1 , p
k
2 , ..., p

k
ln
)T . Using the Kronecker product ⊗ it is

possible to write:

p = p1⊗p2⊗...⊗ pk−1⊗pk⊗pk+1 ⊗ ...⊗ pn

p(−k)=p1⊗p2⊗...⊗ pk−1⊗lk⊗pk+1 ⊗ ...⊗ pn

lk = (1, 1, ..., 1)T ,
£
lk
¤
lk,1

ok = (0, 0, ..., 0)T ,
£
ok
¤
lk,1

The n− dimensional function u : ∆ → Rn associates
with every profile in mixed strategies the vector of expected

utilities u(p) =
³
u1 (p,v(s)) , ..., un (p,v(s))

´T
, where

uk(p,v(s)) is the expected utility for each player k. Ev-
ery ukjk = ukjk(p

(−k),v(s)) represents the expected utility
for each player’s strategy and the vector uk is noted uk

= (uk1 , u
k
2 , ..., u

k
n)

T .

uk =

lkX
jk=1

ukjk(p
(−k), v(s))pkjk

u = v0p

uk =
¡
lk ⊗ vk¢p(−k)

The triplet (K,∆,u(p)) designates the extension of the
game Γ with the mixed strategies. We get Nash’s equilib-
rium (the maximization of utility) if and only if, ∀k, p, the
inequality uk(p∗) ≥ uk(

¡
pk
¢∗
,p(−k)) is respected .

Another way to calculate the Nash’s equilibrium, ([33],
[30]), is equaling the values of the expected utilities of each
strategy when it is possible.

uk1

³
p(−k), v(s)

´
= ... = ukjk

³
p(−k), v(s)

´
lkX

jk=1

pkjk = 1 ∀k = 1, ..., n

σ2k =

lkX
jk=1

³
ukjk

³
p(−k), v(s)

´
− uk

´2
pkjk = 0

If the resulting system of equations doesn’t have solu-
tion

¡
p(−k)

¢∗ then we propose the Minimum Entropy The-
orem. This method is expressed as Minp (

P
kHk(p)) ,

where σ2k(p∗) standard deviation and Hk(p
∗) entropy of

each player k.

σ2k(p
∗) ≤ σ2k

³¡
pk
¢∗
,p(−k)

´
or

Hk(p
∗) ≤ Hk

³¡
pk
¢∗
,p(−k)

´
Minimum Entropy Theorem. The game entropy is min-

imum only in mixed strategy Nash’s equilibrium. The en-
tropy minimization program Minp (

P
kHk(p)), is equal

to standard deviation minimization programMinp (Πkσk(p)),
when

³
ukjk

´
has Gaussian density function or multinomial

logit see proof in [18].
Theorem 1. Gaussian Density Function permits both

maximize Im and minimize ∆u2i .
Proof Let it be the next maximization program:

max
Pi

Im = max
Pi

Ã
−
X
i

Pi lnPi

!
, subject to

1 =
X
i

Pi, and

∆u2i =
X
i

∆u2iPi

evaluating first derivatives

δIm =−
X
i

(lnPi + 1)δPi = 0

α
X
i

δPi = 0

β
X
i

∆u2i δPi = 0

(1)

which brings us to

δIm = −
X
i

(lnPi + 1 + α+ β∆u2i )δPi = 0 (2)

and

Pi = Ae−β∆u
2
i (3)

In order to determine the integration constantsA and β,
let’s consider the following continuos distribution:



Z ∞
−∞

Ae−β∆u
2

d∆u = 1Z ∞
−∞
∆u2Ae−β∆u

2

d∆u = σ2u

(4)

Integrating we found:

P =
1√
2πσu

e
−∆u2

2σ2u (5)

Equation (5) is a Gaussian density function which also
follows MinimumDispersion Theorem see .

From equation (5), considering all given arguments and
the fact that action is not a directly measurable quantity, we
postulate:

P (S) =
1√
2πσ

e−
∆S2

2σ2 (6)

which contains all the information of the system.
Theorem 2. Plank’s constant has a statistical nature.

Furthermore, σ = ~,∆p∆x ≥ ~
2 .

Proof. The action distribution function, which
is local, due to equation
(6), is

e−γ∆S
2

= e−α∆x
2

e−β∆p
2

(7)
Using the conditions, α, β, and γ constants.

σ2 =

R∞
−∞∆S

2e−γ∆S
2

d∆SR∞
−∞ e−γ∆S2d∆S

= (8)R∞
−∞ 4∆p

2∆x2e−α∆x
2

d∆xe−β∆p
2

d∆pR∞
−∞ e−α∆x2d∆xe−β∆p2d∆p

σ2 = 4

R∞
−∞∆x

2e−α∆x
2

d∆xR∞
−∞ e−α∆x2d∆x

R∞
−∞∆p

2e−β∆p
2

d∆pR∞
−∞ e−β∆p2d∆p

(9)

σ2 = 4σ2xσ
2
p

⇒ σxσp =
σ

2
(10)

we obtain the minimum Heisenberg’s uncertainty rela-
tion.

⇒ σ = ~ (11)
σxσp represents the minimum area in phase space, more

generally
speaking, any other area will satisfies

∆p∆x ≥ ~
2

(12)

We can conclude this because δ∆x2 = 0 and ∆x2 ≥ 0
are true only for a
minimum. The same arguments are valid for∆p2.

Theorem 3 Optimal wave superposition ( equation
( )), which satisfies Gaussian density function (equation
(5)), permit us to obtain Plank´s and De Broglie´s equa-

tions.
Let dc be the derivative on space

coordinates.µ
−dc∆S

2

2σ2

¶³
e−

∆S2

2σ2

´
=

Z
A(p,E, k, ω)dcfdkdω

−dc∆S
2

2σ2

Z
A(p,E, k, ω)fdkdω =

Z
A(p,E, k, ω)dcfdkdω

From hereZ
A(p,E, k, ω)

·
fdc
∆S2

2σ2
+ dcf

¸
dkdω = 0

this implies the differential equation

fdc
∆S2

2σ2
+ dcf = 0 (13)

∆S2

2σ2
+ lnf = lnA

⇒ f = Ae−
∆S2

2σ2 (14)
where f is an exponential function on x and t

f = Ae−Φ(kx−ωt) (15)
From where

Φ(kx− ωt) =
∆S2

2σ2
− lnA (16)

Expanding Φ(kx− ωt) in Taylor’s series we have

Φ(kx− ωt) = Φ(0) +
dΦ

du

¯̄̄̄
0

(kx− ωt)

+
1

2

d2Φ

du2

¯̄̄̄
0

(kx− ωt)2 + · · · =
∆S2

2σ2
− lnA (17)

All terms are zero, except Φ(0)
Φ(0) = −lnA

a2

2
(kx− ωt)2 =

(px−Et)2

2σ2
(18)

and we obtain
p =aσk = σk0

E =aσω = σω0
(19)

The integral equation is

e−
∆S2

2σ2 =
1

a2

Z
A(p,E, k0, ω0)e−

(k0x−ω0t)2
2 dk0dω0 (20)

k0 and ω0 are dummy variables, then we can do k0 → k
and ω0 → ω

e−
∆S2

2σ2 =
1

a2

Z
A(p,E, k, ω)e−

(kx−ωt)2
2 dkdω

therefore a = 1 and
p =σk

E =σω
(21)

which are De Broglie’s and Plank’s equations, respec-
tively. Again we
obtain that

σ = ~ (22)



The new integral equation is

e−
(px−Et)2

2σ2 =

Z
A(p,E, k, ω)e−

(kx−ωt)2
2 dkdω

this implies that

A(p,E, k, ω) = δ

µ
E

σ
− ω

¶
δ
³ p
σ
− k

´
(23)

and obviously

e−
(px−Et)2

2σ2 =

Z
δ

µ
E

σ
− ω

¶
δ
³ p
σ
− k

´
e−

(kx−ωt)2
2 dkdω

(24)
Let’s analyze every term in equation 24

δ

µ
E

σ
− ω

¶
=
1

2πσ

Z ∞
−∞

e−i
(E−σω)

σ tdt

δ
³ p
σ
− k

´
=
1

2πσ

Z ∞
−∞

ei
(p−σk)

σ xdx

(25)

from there
1

(2πσ)2

Z
ei

(px−Et)
σ e−i

(σkx−σωt)
σ dxdt = A(p,E, k, ω))

(26)
Now we are able to define the wave functions

Ψp,E =
1

2πσ
ei

(px−Et)
σ

Ψp0,E0 =
1

2πσ
e−i

(p0x−E0t)
σ

(27)

Or considering only p (and the fact that σ = ~)

Ψp =
1√
2π~

ei
px
~ (28)Z

ΨpΨ
∗
p0dx = δ(p− p0) (29)

which is the Dirac’s condition of normalization. If we con-
sider only E, we have

ΨE =
1√
2π~

e−i
Et
~ (30)Z

ΨEΨ
∗
E0dt = δ(E −E0) (31)

which is the law of conservation of energy. From equation
(28) we see that

−i~ ∂

∂x
Ψp = pΨp (32)

and from equation (30) we obtain

i~
∂

∂t
ΨE = EΨE (33)

We see the way in which all concepts of QuantumMechan-
ics appear naturally.
In general, the wave function is

Ψ = Ae
i∆S
~ (34)

Given that
∆S =

X
i

piqi −Et (35)

where pi and qi are physical conjugate observables.

−i~∂Ψ
∂qi

= piΨ (36)

in this way, every physical ( pi) observable has associated
a Hermitian operator (p̂i = −i~ ∂

∂qi
), such that its mean

values are the eigenvalues of that operator ([20], [21], [27],
[34] and [28]).
Let’s consider a photon

E = pc

E2

c2
− p2 = 0 (37)

given that E = −∂S
∂t and p =

∂S
∂x then

1

c2

µ
∂S

∂t

¶2
−
µ
∂S

∂x

¶2
= 0 (38)

This bring us to define the Lagrangian density

L =
µ
∂S

∂x

¶2
− 1

c2

µ
∂S

∂t

¶2
(39)

From Euler - Lagrange equation

∂

∂x

"
∂L¡
∂S
∂x

¢#+ ∂

∂t

"
∂L¡
∂S
∂t

¢# = 0 (40)

∂2S

∂x2
− 1

c2
∂2S

∂t2
= 0 (41)

where we obtain
S = S0e

i(kx−ωt) (42)
the energy

E =
∂S

∂t
= −iωS0ei(kx−ωt) (43)

The square modulus
|E|2 = ω2|S0|2 (44)

The average is

h|E|2i = 1√
2πσ

Z ∞
−∞

ω2|S0|2e−
∆S20
2σ2 d∆S0 = ω2~2 (45)

i. e.
Efotón =

p
h|E|2i = ω~ (46)

What we measure, in fact, is the mean quadratic value of
the random fluctuations of energy.
Given that

∆S20
2σ2

=
∆E2

2σ2E
+
∆t2

2σ2t
(47)

we find
σEσt =

σ

2
=
~
2

(48)
or in general

∆E∆t ≥ ~
2

(49)
which is the other Heisenberg’s uncertainty equation. Equa-
tion (47) explains the reason there is a Gaussian dispersion
of energy in a monochromatic LASER and not a Dirac’s
delta.



3 Conclusions

1. The Universe is structured in optimal laws. Random
processes are those that maximize the mean informa-
tion and are strongly related to symmetries, therefore,
to conservational laws. Random processes have to do
with optimal processes to manage information, but they
do not have anything to do with the contents of it, this
is the anthropic principle: Laws and physical constants
are designed to produce life and conscience see [12].

2. Every physical process satisfies that the action is a lo-
cally minimum. It is the most important physical mag-
nitude, after information, because through it is possible
to obtain the energy, angular momentum, momentum,
charge, etc. Every physical theory must satisfy the nec-
essary (but not sufficient) condition δS = 0, because it
is an objective principle.

3. We have demonstrated that the concepts of information
and the principle of minimum action δS = 0 leads us to
develop the concepts of Quantum Mechanics and to ex-
plain the spontaneous decay transitions. Also, we have
understood that all physical magnitudes are quadratic
mean values of random fluctuations.

4. Information connects every thing in nature, each phe-
nomenon is an expression of totality.

5. Mass appears were certain symmetries are broken, or
equivalently, when the mean information decreases. A
very small decrease in information produces enormous
amounts of energy. Also, we have shown that there exist
a relation between the amount of information and the
energy of a system (equation ( )). Information, mass
and energy are conservative quantities which are able to
transform one into another.
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