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This article is the second part of a review of recent empirical and theoretical developments
usually grouped under the heading Econophysics. In the first part, we reviewed the statistical
properties of financial time series, the statistics exhibited in order books and discussed some
studies of correlations of asset prices and returns. This second part deals with models in
Econophysics from the point of view of agent-based modeling. Of the large number of multi-
agent-based models, we have identified three representative areas. First, using previous work
originally presented in the fields of behavioral finance and market microstructure theory,
econophysicists have developed agent-based models of order-driven markets that we discuss
extensively here. Second, kinetic theory models designed to explain certain empirical facts
concerning wealth distribution are reviewed. Third, we briefly summarize game theory models
by reviewing the now classic minority game and related problems.

Keywords: Econophysics; Financial time series; Correlation; Agent based modelling

1. Introduction

In the first part of the review, empirical developments

in Econophysics were studied. We pointed out that

some of these widely known ‘stylized facts’ are already

at the heart of financial models. But many facts,

especially the newer statistical properties of order

books, have not yet been taken into account. As

advocated by many during the financial crisis of

2007–2008 (see, e.g., Bouchaud (2008), Farmer and

Foley (2009) and Lux and Westerhoff (2009)),

agent-based models should play a large role in future

financial modeling. In economic models, there is usually

the representative agent, who is ‘perfectly rational’ and

uses the ‘utility maximization’ principle while taking

action. In contrast, multi-agent models, which origi-

nated from statistical physics considerations, allow us to

go beyond the prototype theories with the ‘representa-

tive’ agent in traditional economics. In this second part

of our review, we present recent developments concern-

ing agent-based models in Econophysics.

There are, of course, many reviews and books already

published in this area (see, e.g., Challet et al. (2004),

Coolen (2005), Chatterjee and Chakrabarti (2007),

Samanidou et al. (2007), Bouchaud et al. (2009), Lux

and Westerhoff (2009), Yakovenko and Rosser (2009),

etc.). We present here our perspectives in three represen-

tative areas.

2. Agent-based modeling of order books

2.1. Introduction

Although known, at least partly, for a long time—

Mandelbrot (1963) presented a reference for a paper

dealing with the non-normality of price time series in

1915, followed by several others in the 1920s—‘stylized

facts’ have often been left aside when modeling financial

markets. They were even often referred to as ‘anomalous’

characteristics, as if observations failed to comply with

theory. Much has been done these past 15 years in order
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to address this challenge and provide new models that can

reproduce these facts. These recent developments have

been built on top of early attempts at modeling the

mechanisms of financial markets with agents. For exam-

ple, Stigler (1964), investigating rules of the SEC,y and

Garman (1976), investigating the double-auction micro-

structure, are two of those historical works. It seems that

the first modern attempts at this type of model were made

in the field of behavioral finance. This field aims at

improving financial modeling based on the psychology

and sociology of the investors. Models are built with

agents who can exchange shares of stocks according to

exogenously defined utility functions reflecting their

preferences and risk aversion. LeBaron (2006b) shows

that this type of modeling offers good flexibility when

reproducing some of the stylized facts, and LeBaron

(2006a) provides a review of this type of model. However,

although achieving some of their goals, these models

suffer from many drawbacks: first, they are very complex,

and it may be a very difficult task to identify the roles of

their numerous parameters and the types of dependence

on these parameters; second, the chosen utility functions

do not necessarily reflect what is observed in the

mechanisms of a financial market.

A sensible change in modeling is obtained with much

simpler models implementing only well-identified and

presumably realistic ‘behavior’. Cont and Bouchaud

(2000) use noise traders who are subject to ‘herding’, i.e.

form random clusters of traders sharing the same view on

the market. This idea is also used by Raberto et al. (2001).

A complementary approach is to characterize traders as

fundamentalists, chartists or noise traders. Lux and

Marchesi (2000) propose an agent-based model in which

these types of traders interact. In all these models, the

price variation directly results from the excess demand: at

each time step, all agents submit orders and the resulting

price is computed. Therefore, everything is cleared at each

time step and there is no order book structure to keep

track of orders.

One big step is made with models taking into account

limit orders and keeping them in an order book once

submitted and not executed. Chiarella and Iori (2002)

build an agent-based model where all traders submit

orders depending on the three elements identified by

Lux and Marchesi (2000): chartists, fundamentalists,

noise traders. Orders submitted are then stored in a

persistent order book. In fact, one of the first simple

models with this feature was proposed by Bak et al.

(1997). In this model, orders are particles moving along

a price line, and each collision is a transaction. Due to

the numerous caveats in this model, the authors

propose in the same paper an extension with funda-

mentalists and noise traders in the spirit of the models

previously evoked. Maslov (2000) goes further in the

modeling of trading mechanisms by taking into account

fixed limit orders and market orders that trigger

transactions, and simulating the order book.

This model was solved analytically by Slanina (2001)

using a mean-field approximation.

Following this modeling trend, the more or less

‘rational’ agents composing models in economics tend

to vanish and be replaced by the notion of flows: orders

are no longer submitted by an agent following strategic

behavior, but are viewed as an arriving flow, the

properties of which are to be determined by empirical

observations of market mechanisms. Thus, the modeling

of order books calls for more ‘stylized facts’, i.e. empirical

properties that could be observed on a large number of

order-driven markets. Biais et al. (1995) provide a

thorough empirical study of the order flows in the Paris

Bourse a few years after its complete computerization.

Market orders, limit orders, time of arrivals and place-

ment are studied. Bouchaud et al. (2002) and Potters and

Bouchaud (2003) provide statistical features of the order

book itself. These empirical studies, which were reviewed

in the first part of this review, are the foundation of

‘zero-intelligence’ models, in which ‘stylized facts’ are

expected to be reproduced by the properties of the order

flows and the structure of the order book itself, without

considering exogenous ‘rationality’. Challet and

Stinchcombe (2001) propose a simple model of order

flows: limit orders are deposited in the order book and

can be removed if not executed, in a simple deposition–

evaporation process. Bouchaud et al. (2002) use this type

of model with an empirical distribution as input. As of

today, the most complete empirical model is, to our

knowledge, that of Mike and Farmer (2008), where order

placement and cancelation models are proposed and fitted

to empirical data. Finally, new challenges arise as

scientists attempt to identify the simple mechanisms that

allow an agent-based model to reproduce non-trivial

behavior: herding behavior (Cont and Bouchaud 2000),

dynamic price placement (Preis et al. 2007), threshold

behavior (Cont 2007), etc.

In this part we review some of these models. This

survey is, of course, far from exhaustive, and we have

selected models that we feel are representative of a specific

modeling trend.

2.2. Early order-driven market modeling: Market

microstructure and policy issues

The pioneering works concerning the simulation of

financial markets were aimed at studying market regula-

tions. The very first one (Stigler 1964) attempted to

investigate the effect of the regulations of the SEC on

American stock markets using empirical data from the

1920s and 1950s. Twenty years later, at the start of the

computerization of financial markets, Hakansson et al.

(1985) implemented a simulator in order to test the

feasibility of automated market making. Instead of

reviewing the huge microstructure literature, we refer

the reader to the well-known books of O’Hara (1995) and

Hasbrouck (2007), for example, for a panoramic view of

ySecurity Exchange Commission.
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this branch of finance. However, by presenting a small

selection of early models, we underline the grounding of

recent order book modeling.

2.2.1. A pioneer order book model. To our knowledge,

the first attempt to simulate a financial market was by

Stigler (1964). This paper was a biting and controversial

reaction to the Report of the Special Study of the

Securities Markets of the SEC (Cohen 1963a), the aim of

which was to ‘‘study the adequacy of rules of the

exchange and that the New York stock exchange under-

takes to regulate its members in all of their activities’’

(Cohen 1963b). According to Stigler, this SEC report

lacks rigorous tests when investigating the effects of

regulation on financial markets. Stating that ‘‘demand

and supply are [� � �] erratic flows with sequences of bids

and asks dependent upon the random circumstances of

individual traders’’, he proposes a simple simulation

model to investigate the evolution of the market. In this

model, constrained by the simulation capability of 1964,

price is constrained within L¼ 10 ticks. (Limit) orders are

randomly drawn, in trade time, as follows: they can be bid

or ask orders with equal probability, and their price level

is uniformly distributed on the price grid. Each time an

order crosses the opposite best quote, it is a market order.

All orders are of size one. Orders not executed N¼ 25

time steps after their submission are canceled. Thus, N is

the maximum number of orders available in the

order book.

In the original paper, a run of a hundred trades was

computed manually using tables of random numbers. Of

course, no particular result concerning the ‘stylized facts’

of financial time series was expected at that time.

However, in his review of order book models, Slanina

(2008) performs simulations of a similar model, with

parameters L¼ 5000 and N¼ 5000, and shows that price

returns are not Gaussian: their distribution exhibits

power-law behavior with exponent 0.3, far from empirical

data. As expected, the limitation L is responsible for the

sharp cut-off of the tails of this distribution.

2.2.2. Microstructure of the double auction. Garman

(1976) provides an early study of the double auction

market with a point of view that does not ignore the

temporal structure, and defines order flows. Price is

discrete and constrained to be within { p1, pL}. Buy and

sell orders are assumed to be submitted according to two

Poisson processes of intensities � and �. Each time an

order crosses the best opposite quote, it is a market order.

All quantities are assumed to be equal to one. The aim of

the author was to provide an empirical study of the

market microstructure. The main result of the Poisson

model was to support the idea that the negative correla-

tion of consecutive price changes is linked to the

microstructure of the double auction exchange. This

paper is very interesting because it can be seen as a

precursor that clearly sets the challenges of order book

modeling. First, the mathematical formulation is prom-

ising. With its fixed constrained prices, Garman (1976)

can define the state of the order book at a given time as

the vector (ni)i¼1, . . . ,L of awaiting orders (negative quan-

tity for bid orders, positive for ask orders). Future

analytical models will use similar vector formulations that

can be cast into known mathematical processes in order

to extract analytical results (see, e.g., Cont et al. (2008),

reviewed below). Second, the author points out that,

although the Poisson model is simple, the analytical

solution is hard to work out, and he provides Monte

Carlo simulations. The need for numerical and empirical

developments is a constant in all following models. Third,

the structural question is clearly asked in the conclusion

of the paper: ‘‘Does the auction-market model imply the

characteristic leptokurtosis seen in empirical security price

changes?’’. The computerization of markets that was

about to take place when this research was published—

Toronto’s CATSy opened a year later in 1977—motivated

many following papers on the subject. As an example, let

us cite Hakansson et al. (1985), who built a model to

choose the right mechanism for setting clearing prices in a

multi-securities market.

2.2.3. Zero intelligence. In the models of Stigler (1964)

and Garman (1976), orders are submitted in a purely

random way on the grid of possible prices. Traders do not

observe the market and do not act according to a given

strategy. Thus, these two contributions clearly belong to

the class of ‘zero-intelligence’ models. To our knowledge,

Gode and Sunder (1993) were the first to introduce the

expression ‘zero intelligence’ in order to describe non-

strategic behavior of traders. It is applied to traders that

submit random orders in a double auction market. The

expression has since been widely used in agent-based

modeling, sometimes with a slightly different meaning

(see more recent models described in this review). Gode

and Sunder (1993) study two types of zero-intelligence

traders. The first are unconstrained zero-intelligence

traders. These agents can submit random orders at

random prices, within the allowed price range

{1, . . . ,L}. The second are constrained zero-intelligence

traders. These agents also submit random orders, but with

the constraint that they cannot cross their given reference

price pRi : constrained zero-intelligence traders are not

allowed to buy or sell at a loss. The aim of the authors

was to show that double auction markets exhibit an

intrinsic ‘allocative efficiency’ (the ratio between the total

profit earned by the traders divided by the maximum

possible profit) even with zero-intelligence traders. An

interesting fact is that, in this experiment, price series

resulting from actions by zero-intelligence traders are

much more volatile than those obtained with constrained

traders. This fact will be confirmed in future models

where ‘fundamentalists’ traders, having a reference price,

are expected to stabilize the market (see Lux and

yComputer Assisted Trading System.
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Marchesi (2000) and Wyart and Bouchaud (2007) below).

Note that the results were criticized by Cliff and Bruten

(1997), who show that the observed convergence of the

simulated price towards the theoretical equilibrium price

may be an artefact of the model. More precisely, the

choice of traders’ demands carries a lot of constraints that

alone explain the observed results.

Modern works in Econophysics owe a lot to these early

models or contributions. Starting in the mid-1990s,

physicists have proposed simple order book models

directly inspired from Physics, where the analogy

‘order� particle’ is emphasized. Three main contributions

are presented in the next section.

2.3. Order-driven market modeling in Econophysics

2.3.1. The order book as a reaction–diffusion model. A

very simple model taken directly from Physics was

presented by Bak et al. (1997). The authors consider a

market with N noise traders able to exchange one share of

stock at a time. Price p(t) at time t is constrained to be an

integer (i.e. the price is quoted in the number of ticks)

with an upper bound �p: 8t, pðtÞ 2 f0, . . . , �pg. Simulation is

initiated at time 0 with half of the agents asking for one

share of stock (buy orders, bid) with price

p
j
b ð0Þ 2 f0, �p=2g, j ¼ 1, . . . ,N=2, ð1Þ

and the other half offering one share of stock (sell orders,

ask) with price

p j
s ð0Þ 2 f �p=2, �pg, j ¼ 1, . . . ,N=2: ð2Þ

At each time step t, agents revise their offer by exactly one

tick, with equal probability of going up or down.

Therefore, at time t, each seller (respectively buyer)

agent chooses his new price as

p j
s ðtþ 1Þ ¼ p j

s ðtÞ � 1 (respectively p
j
b ðtþ 1Þ ¼ p

j
b ðtÞ � 1Þ:

ð3Þ

A transaction occurs when there exists (i, j)2 {1, . . . ,N/2}2

such that pibðtþ 1Þ ¼ p j
s ðtþ 1Þ. In such a case the orders

are removed and the transaction price is recorded as the

new price p(t). Once a transaction has been recorded, two

orders are placed at the extreme positions on the grid:

pibðtþ 1Þ ¼ 0 and p j
s ðtþ 1Þ ¼ �p. As a consequence, the

number of orders in the order book remains constant and

equal to the number of agents. Figure 1 shows an

illustration of these moving particles.

As pointed out by the authors, this process of simula-

tion is similar to the reaction–diffusion model AþB!;
in Physics. In such a model, two types of particles are

inserted on each side of a pipe of length �p and move

randomly with steps of size one. Each time two particles

collide, they are annihilated and two new particles are

inserted. The analogy is summarized in table 1. Following

this analogy, it can thus be shown that the variation Dp(t)

of the price p(t) follows

DpðtÞ � t1=4 ln
t

t0

� �� �1=2

: ð4Þ

Thus, on long time scales, the series of price increments

simulated in this model exhibit a Hurst exponent H¼ 1/4.

As for the stylized fact H� 0.7, this sub-diffusive behav-

ior appears to be a step in the wrong direction compared

with the random walk H¼ 1/2. Moreover, Slanina (2008)

points out that no fat tails are observed in the distribution

of the returns of the model, but rather it fits the empirical

distribution with an exponential decay. Other drawbacks

of the model can be mentioned. For example, the

reintroduction of orders at each end of the pipe leads to

an unrealistic shape of the order book, as shown in

figure 2. Actually, this is the main drawback of the model:

‘moving’ orders is highly unrealistic as for modeling an

order book, and since it does not reproduce any known

financial exchange mechanism, it cannot be the basis for

any larger model. Therefore, attempts by the authors to

build several extensions of this simple framework, in

order to reproduce ‘stylized facts’ by adding fundamental

traders, strategies, trends, etc. are not of interest to us in

this review. However, we feel that the basic model as such

is very interesting because of its simplicity and its

‘particle’ representation of an order-driven market that

has opened the way for more realistic models.

2.3.2. Introducing market orders. Maslov (2000) keeps

the zero-intelligence structure of the (Bak et al. 1997)

model, but adds more realistic features to order placement

and evolution of the market. First, limit orders are

submitted and stored in the model, without moving.

Second, limit orders are submitted around the best

quotes. Third, market orders are submitted to trigger

transactions. More precisely, at each time step, a trader is

chosen to perform an action. This trader can either

submit a limit order with probability ql or submit a

Figure 1. Illustration of the Bak, Paczuski and Shubik model:
white particles (buy orders, bid) moving from the left, black
particles (sell orders, ask) moving from the right. Reproduced
from Bak et al. (1997).

Table 1. Analogy between the AþB!; reaction model and
the order book of Bak et al. (1997).

Physics Bak et al. (1997)

Particles Orders
Finite pipe Order book
Collision Transaction

1016 A. Chakraborti et al.
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market order with probability 1� ql. Once this choice is

made, the order is a buy or sell order with equal

probability. All orders have a one-unit volume.

As usual, we denote p(t) as the current price. In the case

where the submitted order at time step tþ 1 is a limit ask

(respectively bid) order, it is placed in the book at price

p(t)þD (respectively p(t)�D), D being a random variable

uniformly distributed in ]0; DM¼ 4]. In the case where the

submitted order at time step tþ 1 is a market order, one

order at the opposite best quote is removed and the price

p(tþ 1) is recorded. In order to prevent the number of

orders in the order book from increasing significantly,

two mechanisms are proposed by the author: either

keeping a fixed maximum number of orders (by discard-

ing new limit orders when this maximum is reached), or

removing them after a fixed lifetime if they have not been

executed. Numerical simulations show that this model

exhibits non-Gaussian heavy-tailed distributions of

returns. Figure 3 plots the empirical probability density

of the price increments for several time scales.

For a time scale �t¼ 1, the author fit the tails

distribution with a power law with exponent 3.0, i.e.

this is reasonable compared with the empirical value.

However, the Hurst exponent of the price series is still

H¼ 1/4 in this model. It should also be noted that Slanina

(2001) proposed an analytical study of the model using a

mean-field approximation (see section 2.5). This model

introduces very interesting innovations in order book

simulation: an order book with (fixed) limit orders,

market orders, and the necessity of canceling orders

waiting too long in the order book. These features are of

prime importance in any following order book model.

2.3.3. The order book as a deposition–evaporation

process. Challet and Stinchcombe (2001) continued the

work of Bak et al. (1997) and Maslov (2000) and

developed the analogy between the dynamics of an

order book and an infinite one-dimensional grid, where

particles of two types (ask and bid) are subject to three

types of events: deposition (limit orders), annihilation

(market orders) and evaporation (cancelation). Note that

annihilation occurs when a particle is deposited on a site

occupied by a particle of another type. The analogy is

summarized in table 2.

Hence, the model proceeds as follows. At each time

step, a bid (respectively ask) order is deposited with

probability � at a price n(t) drawn according to a

Gaussian distribution centred on the best ask a(t)

(respectively best bid b(t)) and with variance depending

linearly on the spread s(t)¼ a(t)� b(t): �(t)¼K s(t)þC. If

n(t)4a(t) (respectively n(t)5b(t)), then it is a market

order: annihilation takes place and the price is recorded.

Otherwise, it is a limit order and it is stored in the book.

Finally, each limit order stored in the book has a

probability � of being canceled (evaporation). Figure 4

shows the average return as a function of the time scale. It

appears that the series of price returns simulated with this

0 100 200 300 400 500

p

0

2

4

6
N

Figure 2. Snapshot of the limit order book in the Bak, Paczuski
and Shubik model. Reproduced from Bak et al. (1997).
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Figure 3. Empirical probability density functions of the price
increments in the Maslov model. Inset: log–log plot of the
positive increments. Reproduced from Maslov (2000).

Table 2. Analogy between the deposition–evaporation process
and the order book of Challet and Stinchcombe (2001).

Physics Challet and Stinchcombe (2001)

Particles Orders
Infinite lattice Order book
Deposition Limit orders submission
Evaporation Limit orders cancelation
Annihilation Transaction

Econophysics review: II. Agent-based models 1017
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model exhibit a Hurst exponent H¼ 1/4 for short time

scales, and that tends to H¼ 1/2 for larger time scales.

This behavior might be the consequence of the random

evaporation process (which was not modelled by Maslov

(2000), where H¼ 1/4 for large time scales). Although

some modifications of the process (more than one order

per time step) seem to shorten the sub-diffusive region, it

is clear that no over-diffusive behavior is observed.

2.4. Empirical zero-intelligence models

The three models presented in section 2.3 have succes-

sively isolated the essential mechanisms that are to be

used when simulating a ‘realistic’ market: one order is the

smallest entity of the model; the submission of one order

is the time dimension (i.e. event time is used, not an

exogenous time defined by market clearing and ‘tatonne-

ment’ on exogenous supply and demand functions);

submission of market orders (such as in Maslov (2000),

as ‘crossing limit orders’ as in Challet and Stinchcombe

(2001)); and cancelation of orders is taken into account.

On the one hand, one may try to describe these

mechanisms using a small number of parameters, using

a Poisson process with constant rates for order flows,

constant volumes, etc. This might lead to analytically

tractable models, as will be described in section 2.5. On

the other hand, one may try to fit more complex empirical

distributions to market data without analytical concern.

This type of modeling is best represented by Mike and

Farmer (2008). It is the first model that proposes an

advanced calibration on the market data as for order

placement and cancelation methods. As for volume and

time of arrivals, the assumptions of previous models still

hold: all orders have the same volume, and discrete event

time is used for simulation, i.e. one order (limit or market)

is submitted per time step. Following Challet and

Stinchcombe (2001), there is no distinction between

market and limit orders, i.e. market orders are limit

orders that are submitted across the spread s(t). More

precisely, at each time step, one trading order is

simulated: an ask (respectively bid) trading order is

randomly placed at n(t)¼ a(t)þ �a (respectively

n(t)¼ b(t)þ �b) according to a Student distribution with

scale and degrees of freedom calibrated on market data. If

an ask (respectively bid) order satisfies �a5�s(t)¼
b(t)� a(t) (respectively �b4s(t)¼ a(t)� b(t)), then it is a

buy (respectively sell) market order and a transaction

occurs at price a(t) (respectively b(t).

During a time step, several cancelations of orders may

occur. The authors propose an empirical distribution for

cancelation based on three components for a given order.

. The position in the order book, measured as the

ratio y(t)¼D(t)/D(0), where D(t) is the distance

of the order from the opposite best quote at

time t.

. The order book imbalance, measured by

the indicator Nimb(t)¼Na(t)/(Na(t)þNb(t))

(respectively Nimb(t)¼Nb(t)/(Na(t)þNb(t))) for

ask (respectively bid) orders, where Na(t) and

Nb(t) are the number of orders at the ask and

bid in the book at time t.

. The total number N(t)¼Na(t)þNb(t) of orders

in the book.

Their empirical study led them to assume that the

cancelation probability has an exponential dependence on

y(t), a linear dependency on Nimb and finally decreases

approximately as 1/Nt(t) as for the total number of

orders. Thus, the probability P(C | y(t), Nimb(t), Nt(t)) to

cancel an ask order at time t is formally written as

PðC j yðtÞ,NimbðtÞ,NtðtÞÞ¼Að1� e�yðtÞÞðNimbðtÞþBÞ 1

NtðtÞ
,

ð5Þ

where the constants A and B are to be fitted to market

data. Figure 5 shows that this empirical formula provides

quite a good fit to market data. Finally, the authors

mimic the observed long memory of order signs by

1 10 100 1000 10000

Δt
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Δ
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Figure 4. Average return hrDti as a function of Dt for different
sets of parameters and simultaneous depositions allowed in the
Challet and Stinchcombe model. Reproduced from Challet and
Stinchcombe (2001).
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Figure 5. Lifetime of orders for simulated data in the Mike and
Farmer model compared with the empirical data used for fitting.
Reproduced from Mike and Farmer (2008).
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simulating a fractional Brownian motion. The autocovar-

iance function �(t) of the increments of such a process

exhibits a slow decay:

�ðkÞ � Hð2H� 1Þt2H�2, ð6Þ

and it is therefore easy to reproduce exponent � of the

decay of the empirical autocorrelation function of order

signs observed on the market with H¼ 1��/2. The

results of this empirical model are quite satisfying with

respect to the return and spread distribution. The

distribution of returns exhibits fat tails that are in

agreement with empirical data, as shown in figure 6.

The spread distribution is also very well reproduced. As

their empirical model was constructed on the data of only

one stock, the authors test their model on 24 other data

sets of stocks in the same market and find, for half of

them, good agreement between empirical and simulated

properties. However, the bad results of the other half

suggest that such a model is still far from being

‘universal’.

Despite these very nice results, some drawbacks have to

be pointed out. The first is the fact that the stability of the

simulated order book is far from ensured. Simulations

using empirical parameters may produce situations where

the order book is emptied by large consecutive market

orders. Thus, the authors require that there is at least two

orders on each side of the book. This exogenous trick

might be important, since it is activated precisely in the

case of rare events that influence the tails of the

distributions. Also, the original model does not focus on

volatility clustering. Gu and Zhou (2009) propose a

variant that tackles this feature. Another important

drawback of the model is the way order signs are

simulated. As noted by the authors, using an exogenous

fractional Brownian motion leads to correlated price

returns, which is in contradiction with empirical stylized

facts. We also find that, on long time scales, it leads to a

dramatic increase in the volatility. As we have seen in the

first part of this review, the correlation of trade signs can,

at least partly, be seen as an artefact of execution

strategies. Therefore, this element is one of the numerous

factors that should be taken into account when ‘pro-

gramming’ the agents of the model. In order to do so, we

have to leave the (quasi) ‘zero-intelligence’ world and see

how modeling based on heterogeneous agents might help

to reproduce non-trivial behavior. Prior to this develop-

ment, discussed in section 2.6, we briefly review some

analytical studies on ‘zero-intelligence’ models.

2.5. Analytical treatment of zero-intelligence models

In this section we present analytical results obtained for

zero-intelligence models where processes are kept suffi-

ciently simple so that a mean-field approximation may be

derived (Slanina 2001) or probabilities conditional on the

state of the order book may be computed (Cont et al.

2008). The key assumptions here are such that the process

describing the order book is stationary. This allows us

either to write a stable density equation, or to fit the

model in a nice mathematical framework such as ergodic

Markov chains.

2.5.1. Mean-field theory. Slanina (2001) proposes an

analytical treatment of the model introduced by Maslov

(2000) and reviewed above. Let us briefly described the

formalism used. The main hypothesis is the following: on

each side of the current price level, the density of limit

orders is uniform and constant (�þ on the ask side, �� on

the bid side). In that sense, this is a ‘mean-field’ approx-

imation since the individual position of a limit order is not

taken into account. Assuming we are in a stable state, the

arrival of a market order of size s on the ask (respectively

bid) side will make the price change by xþ¼ s/�þ (respec-

tively x�¼ s/��). It is then observed that the transforma-

tions of the vector X¼ (xþ, x�) occurring at each event

(new limit order, new buy market order, new sell market

order) are linear transformations that can easily and

explicitly be written. Therefore, an equation satisfied by

the probability distribution P of the vector X of price

changes can be obtained. Finally, assuming further

simplifications (such as �þ¼ ��), one can solve this

equation for a tail exponent and find that the distribution

behaves as P(x)� x�2 for large x. This analytical result is

slightly different from that obtained by simulation Maslov

(2000). However, the numerous approximations make the

comparison difficult. The main point here is that some sort

of mean-field approximation is natural if we assume the

existence of a stationary state of the order book, and thus

may help handle order book models.

Smith et al. (2003) also propose some sort of mean-field

approximation for zero-intelligence models. In a similar

model (but including a cancelation process), mean-field

theory and dimensional analysis produce interesting

results. For example, it is easy to see that the book

depth (i.e. the number of orders) Ne( p) at a price p far

away from the best quotes is given by Ne( p)¼ �/�, where
� is the rate of arrival of limit orders per unit of time and

per unit of price, and � the probability of an order being

canceled per unit of time. Indeed, far from the best

quotes, no market orders occur, so that if a steady

10
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10
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R

10
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10
0

P
(|

r|
 >

 R
)

real data
Simulation IV.

Figure 6. Cumulative distribution of returns in the Mike and
Farmer model compared with the empirical data used for fitting.
Reproduced from Mike and Farmer (2008).
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state exists, the number of limit orders per time step �

must be balanced by the number of cancelations �Ne( p)

per unit of time, hence the result.

2.5.2. Explicit computation of probabilities conditional on

the state of the order book. Cont et al. (2008) reported an

original attempt at an analytical treatment of limit order

books. In their model, the price is constrained to be on a

grid {1, . . . ,N}. The state of the order book can then be

described by the vector X(t)¼ (X1(t), . . . ,XN(t)), where

jXi(t)j is the quantity offered in the order book at price i.

Conventionally, Xi(t), i¼ 1, . . . ,N, is positive on the ask

side and negative on the bid side. As usual, limit orders

arrive at level i at a constant rate �i, and market orders

arrive at a constant rate �. Finally, at level i, each order

can be canceled at a rate �i. Using this setting, Cont et al.

(2008) show that each event (limit order, market order,

cancelation) transforms the vector X in a simple linear

way. Therefore, it is shown that, under reasonable

conditions, X is an ergodic Markov chain, and thus

admits a stationary state. The original idea is then to use

this formalism to compute conditional probabilities on

the processes. More precisely, it is shown that, using a

Laplace transform, one may explicitly compute the

probability of an increase of the mid price conditionally

on the current state of the order book.

This original contribution could allow explicit evalua-

tion of strategies and open up new perspectives on high-

frequency trading. However, it is based on a simple model

that does not reproduce empirical observations such as

volatility clustering. Complex models trying to include

market interactions will not fit into these analytical

frameworks. We review some of these models in the

next section.

2.6. Towards non-trivial behavior: Modeling market

interactions

In all the models we have reviewed thus far, flows of

orders are treated as independent processes. Under

certain (strong) modeling constraints, we can see the

order book as a Markov chain and look for analytical

results (Cont et al. 2008). In any case, even if the process

is empirically detailed and not trivial (Mike and Farmer

2008), we work with the assumption that orders are

independent and identically distributed. This very strong

(and false) hypothesis is similar to the ‘representative

agent’ hypothesis in Economics: orders being successively

and independently submitted, we may not expect any-

thing but regular behavior. Following the work of

economists such as Kirman (1992, 1993, 2002), one has

to translate the heterogeneous property of the markets

into agent-based models. Agents are not identical, and

not independent.

In this section we present toy models implementing

mechanisms that aim at bringing heterogeneity: herding

behavior on markets (Cont and Bouchaud 2000), trend-

following behavior (Lux and Marchesi 2000, Preis et al.

2007), and threshold behavior (Cont 2007). Most of the

models reviewed in this section are not order book

models, since a persistent order book is not kept during

the simulations. They are rather price models, where the

price changes are determined by the aggregation of excess

supply and demand. However, they identify essential

mechanisms that may clearly explain some empirical data.

Incorporating these mechanisms in an order book model

has not yet been achieved, but is certainly a future

possibility.

2.6.1. Herding behavior. The model presented by Cont

and Bouchaud (2000) considers a market with N agents

trading a given stock with price p(t). At each time step,

agents choose to buy or sell one unit of stock, i.e. their

demand is 	i(t)¼�1, i¼ 1, . . . ,N, with probability a, or

they are idle with probability 1� 2a. The price change is

assumed to be linked linearly to the excess demand

DðtÞ ¼
PN

i¼1 	iðtÞ with factor � measuring the liquidity of

the market:

pðtþ 1Þ ¼ pðtÞ þ 1

�

XN

i¼1

	iðtÞ: ð7Þ

� can also be interpreted as the market depth, i.e. the

excess demand needed to move the price by one unit. In

order to evaluate the distribution of stock returns from

equation (7), we need to know the joint distribution of the

individual demands (	i(t))1�i�N. As pointed out by the

authors, if the distribution of the demand 	i is indepen-

dent and identically distributed with finite variance, then

the Central Limit Theorem stands and the distribution of

the price variation Dp(t)¼ p(tþ 1)� p(t) will converge to a

Gaussian distribution as N goes to infinity.

The idea here is to model the diffusion of the

information among traders by randomly linking their

demand through clusters. At each time step, agents i and j

can be linked with probability pij¼ p¼ c/N, c being a

parameter measuring the degree of clustering among

agents. Therefore, an agent is linked to an average

number of (N� 1)p other traders. Once clusters have been

determined, the demands are forced to be identical among

all members of a given cluster. Denoting by nc(t) the

number of clusters at a given time step t, Wk the size of

the kth cluster, k¼ 1, . . . , nc(t), and 	k¼�1 its investment

decision, the price variation can then be straightforwardly

written as

DpðtÞ ¼ 1

�

XncðtÞ

k¼1

Wk	k: ð8Þ

This modeling is a direct application to the field of finance

of the random graph framework studied by Erdos and

Renyi (1960). Kirman (1983) previously suggested it in

economics. Using these previous theoretical works, and

assuming that the size of a cluster Wk and the decision

taken by its members 	k(t) are independent, the authors

are able to show that the distribution of the price variation

at time t is the sum of nc(t) independent identically

distributed random variables with heavy-tailed
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distributions:

DpðtÞ ¼ 1

�

XncðtÞ

k¼1

Xk, ð9Þ

where the density f(x) of Xk¼Wk	k is decaying as

f ðxÞ �jxj!1
A

jxj5=2
e�ðc�1Þjxj=W0 : ð10Þ

Thus, this simple toy model exhibits fat tails in the

distribution of price variations, with a decay reasonably

close to empirical data. Therefore, Cont and Bouchaud

(2000) show that taking into account a naive mechanism

of communication between agents (herding behavior) is

able to drive the model out of Gaussian convergence and

produce non-trivial shapes of distributions of price

returns.

2.6.2. Fundamentalists and trend followers. Lux and

Marchesi (2000) proposed a model very much in line

with agent-based models in behavioral finance, but where

the trading rules are kept sufficiently simple so that they

can be identified with the presumably realistic behavior of

agents. This model considers a market with N agents who

can be part of two distinct groups of traders: nf traders are

‘fundamentalists’, who share an exogenous idea pf of the

value of the current price p, and nc traders are ‘chartists’

(or trend followers), who make assumptions concerning

the price evolution based on the observed trend (mobile

average). The total number of agents is constant, so that

nfþ nc¼N at any time. At each time step, the price can be

moved up or down with a fixed jump size of �0.01

(a tick). The probability of going up or down is directly

linked to the excess demand ED through coefficient �.

The demand of each group of agents is determined as

follows.

. Each fundamentalist trades a volume Vf pro-

portional (with coefficient 
) to the deviation of

the current price p from the perceived funda-

mental value pf: Vf¼ 
( pf� p).

. Each chartist trades a constant volume Vc.

Denoting by nþ the number of optimistic

(buyer) chartists and n� the number of pessi-

mistic (seller) chartists, the excess demand by

the whole group of chartists is written as

(nþ� n�)Vc.

Therefore, assuming that there exist noise traders on

the market with random demand �, the global excess

demand can be written as

ED ¼ ðnþ � n�ÞVc þ nf
ð pf � pÞ þ �: ð11Þ

The probability that the price goes up (respectively down)

is then defined to be the positive (respectively negative)

part of �ED.

As observed by Wyart and Bouchaud (2007), funda-

mentalists are expected to stabilize the market, while

chartists should destabilize it. In addition, following Cont

and Bouchaud (2000), the authors expect the non-trivial

features of the price series to results from herding

behavior and transitions between groups of traders.

Also referring to Kirman’s work, mimicking behavior

among chartists is thus proposed. The nc chartists can

change their view of the market (optimistic, pessimistic),

their decision being based on a clustering process modeled

by an opinion index x¼ (nþ� n�)/nc representing the

weight of the majority. The probabilities �þ and �� of

switching from one group to the other are formally

written as

�� ¼ v
nc

N
e�U, U ¼ �1xþ �2p=v, ð12Þ

where v is a constant, and �1 and �2 reflect, respectively,

the weight of the majority’s opinion and the weight of the

observed price in the chartists’ decision. Transitions

between fundamentalists and chartists are also allowed,

decided by a comparison of the expected returns (see Lux

and Marchesi (2000) for details).

The authors show that the distribution of returns

generated by their model has excess kurtosis. Using a Hill

estimator, they fit a power law to the fat tails of the

distribution and observe exponents grossly ranging from

1.9 to 4.6. They also check for evidence of volatility

clustering: absolute returns and squared returns exhibit a

slow decay of the autocorrelation, while raw returns do

not. It thus appears that such a model can grossly fit some

‘stylized facts’. However, the number of parameters

involved, as well as the complicated transition rules

between agents, make clear identification of the sources of

the phenomena and calibration to market data difficult

and intractable.

Alfi et al. (2009a, b) provide a somewhat simplifying

view of the Lux–Marchesi model. They clearly identify

the fundamentalist behavior, the chartist behavior, the

herding effect and the observation of the price by the

agents as four essential effects of an agent-based financial

model. They show that the number of agents plays a

crucial role in a Lux–Marchesi-type model: more pre-

cisely, the stylized facts are reproduced only with a finite

number of agents, not when the number of agents increase

asymptotically, in which case the model remains in a

fundamentalist regime. There is a finite-size effect that

may prove important for further studies.

The role of the trend-following mechanism in produc-

ing non-trivial features in price time series was also

studied by Preis et al. (2007). The starting point is an

order book model similar to Challet and Stinchcombe

(2001) and Smith et al. (2003): at each time step, liquidity

providers submit limit orders at rate � and liquidity takers

submit market orders at rate �. As expected, this

zero-intelligence framework does not produce fat tails in

the distribution of (log-)returns, nor an over-diffusive

Hurst exponent. Then, a stochastic link between order

placement and market trend is added: it is assumed that

liquidity providers observing a trend in the market will

consequently act and submit limit orders at a wider depth

in the order book. Although the assumption behind such

a mechanism may not be confirmed empirically (ques-

tionable symmetry in order placement is assumed) and
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should be discussed further, it is sufficiently interesting

that it directly provides fat tails in the log-return

distributions and an over-diffusive Hurst exponent

H� 0.6–0.7 for medium time-scales, as shown in figure 7.

2.6.3. Threshold behavior. We finally review a model

focusing primarily on reproducing the stylized fact of

volatility clustering, while most of the previous models we

have reviewed were mostly focused on fat tails of log

returns. Cont (2007) proposes a model with a rather

simple mechanism to create volatility clustering. The idea

is that volatility clustering characterizes several regimes of

volatility (quite periods versus bursts of activity). Instead

of implementing an exogenous change of regime, the

author defines the following trading rules. At each period,

an agent i2 {1, . . . ,N} can issue a buy or a sell order:

	i(t)¼�1. Information is represented by a series of i.i.d.

Gaussian random variables (
t). This public information


t is a forecast for the value rtþ1 of the return of the stock.

Each agent i2 {1, . . . ,N} decides whether or not to act on

this information according to a threshold �i40 repre-

senting its sensitivity to public information:

	iðtÞ ¼
1, if 
iðtÞ4 �iðtÞ,
0, if j
iðtÞj5 �iðtÞ,
�1, if 
iðtÞ5��iðtÞ:

8
<
: ð13Þ

Then, once every choice is made, the price evolves

according to the excess demand DðtÞ ¼
PN

i¼1 	iðtÞ in a

way similar to Cont and Bouchaud (2000). At the end of

each time step t, thresholds are asynchronously updated.

Each agent has a probability s of updating their threshold

�i(t). In such a case, the new threshold �i(tþ 1) is defined

to be the absolute value jrtj of the return just observed.

In brief,

�iðtþ 1Þ ¼ 1fuiðtÞ5sgjrtj þ 1fuiðtÞ4sg�iðtÞ: ð14Þ

The author shows that the time series simulated with such

a model exhibits some realistic facts with respect to

volatility. In particular, long-range correlations of abso-

lute returns are observed. The strength of this model is

that it directly links the state of the market to the decision

of the trader. Such a feedback mechanism is essential in

order to obtain non-trivial characteristics. Of course, the

model presented by Cont (2007) is too simple to be fully

calibrated on empirical data, but its mechanism could be

used in a more elaborate agent-based model in order to

reproduce the empirical evidence of volatility clustering.

2.7. Remarks

Let us attempt to make some concluding remarks

concerning these developments of agent-based models

for order books. In table 3 we summarize some key

features of some of the order book models reviewed in

this section. Among the important elements for future

modeling, we mention the cancelation of orders, which is

the least realistic mechanism implemented in existing

models, the order book stability, which is always exog-

enously enforced (see our review of Mike and Farmer

(2008) above), and the dependence between order flows

(see, e.g., Muni Toke (2010) and reference therein).

Empirical estimation of these mechanisms is still

challenging.

Emphasis has been placed in this section on order book

modeling, a field that is at the crossroads of many larger

disciplines (market microstructure, behavioral finance

and physics). Market microstructure is essential since it

defines in many ways the goal of the modeling. We have

pointed out that it is not a coincidence that the work of

Garman (1976) was published when computerization of

exchanges was about to make the electronic order book

the key of all trading. The regulatory issues that

motivated early studies are still very important today.

Realistic order book models could be an invaluable tool

in testing and evaluating the effects of regulations such as

the 2005 Regulation NMSy in the USA, or the 2007

MiFIDz in Europe.

3. Agent-based modeling for wealth distributions:

Kinetic theory models

The distribution of money, wealth or income, i.e. how

such quantities are shared among the population of a

given country and among different countries, is a topic

that has been studied by economists for a long time. The

relevance of the topic here is twofold: from the point of

view of the science of complex systems, wealth distribu-

tions represent a unique example of a quantitative

outcome of collective behavior that can be directly

compared with the predictions of theoretical models and

numerical experiments. Also, there is a basic interest in

wealth distributions from the social point of view, in

Figure 7. Hurst exponent found in the Preis model for different
numbers of agents when including random demand perturbation
and dynamic limit order placement depth. Reproduced from
Preis et al. (2007).

yNational Market System.
zMarkets in Financial Instruments Directive.
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particular their degree of (in)equality. To this aim, the

Gini coefficient (or the Gini index, if expressed as a

percentage), developed by the Italian statistician Corrado

Gini, represents a concept commonly employed to mea-

sure inequality of wealth distributions or, in general, how

uneven a given distribution is. For a cumulative distribu-

tion function F( y) that is piecewise differentiable, has a

finite mean �, and is zero for y50, the Gini coefficient is

defined as

G ¼ 1� 1

�

Z 1

0

dy ð1� Fð yÞÞ2 ¼ 1

�

Z 1

0

dy Fð yÞð1� Fð yÞÞ:

ð15Þ

It can also be interpreted statistically as half the relative

mean difference. Thus the Gini coefficient is a number

between 0 and 1, where 0 corresponds to perfect equality

(where everyone has the same income) and 1 corresponds

to perfect inequality (where one person has all the income,

and everyone else has zero income). Some values of G for

some countries are listed in table 4.

Let us start by considering the basic economic quan-

tities: money, wealth and income.

3.1. Money, wealth and income

A common definition of money suggests that it is the

‘‘[c]ommodity accepted by general consent as medium of

economics exchange’’.y In fact, money circulates from

one economic agent (which can represent an individual,

firm, country, etc.) to another, thus facilitating trade. It is

‘‘something which all other goods or services are traded

for’’ (for details, see Shostak (2000)). Throughout history,

various commodities have been used as money, termed

‘commodity money’, which include, for example, rare

seashells or beads and cattle (such as cows in India).

Recently, ‘commodity money’ has been replaced by other

forms referred to as ‘fiat money’, which have gradually

become the most common, such as metal coins and paper

notes. Nowadays, other forms of money, such as

electronic money, have become the most frequent form

used to carry out transactions. In any case, the most

relevant points concerning the money employed are its

basic functions, which, according to standard economic

theory, are:

. to serve as a medium of exchange that is

universally accepted in trade for goods and

services;

. to act as a measure of value, making possible

the determination of prices and the calculation

of costs, or profit and loss;

. to serve as a standard of deferred payments, i.e.

a tool for the payment of debt or the unit in

which loans are made and future transactions

are fixed; and

. to serve as a means of storing wealth not

immediately required for use.

A related feature relevant to the present investigation is

that money is the medium in which prices or the values of

all commodities as well as costs, profits, and transactions

can be determined or expressed. Wealth is usually

understood as things that have economic utility (mone-

tary value or value of exchange), or material goods or

property; it also represents the abundance of objects of

value (or riches) and the state of having accumulated

these objects. For our purposes, it is important to bear in

mind that wealth can be measured in terms of money.

Also income, defined by Case and Fair (2008) as ‘‘the sum

of all the wages, salaries, profits, interests payments, rents

and other forms of earnings received . . . in a given period

of time’’, is a quantity that can be measured in terms of

money (per unit time).

3.2. Modeling wealth distributions

It was first observed by Pareto (1897) that, in an

economy, the higher end of the distribution of income

f (x) follows a power-law,

f ðxÞ � x�1��, ð16Þ

with �, now known as the Pareto exponent, estimated

by him to be �� 3/2. For the last 100 years the value of

�� 3/2 seems to have changed little in time and across the

various capitalist economies (see Yakovenko and Rosser

(2009) and references therein).

Gibrat (1931) clarified that Pareto’s law is valid only

for the high-income range, whereas for the middle-income

range he suggested that the income distribution is

Table 4. Gini indices (in percent) of some countries (from
Human Development Indicators of the United Nations Human
Development Report, 2004, pp. 50–53. Available at http://
hdr.undp.org/en/reports/global/hdr2004. More recent data are

also available from their website).

Denmark 24.7
Japan 24.9
Sweden 25.0
Norway 25.8
Germany 28.3
India 32.5
France 32.7
Australia 35.2
UK 36.0
USA 40.8
Hong Kong 43.4
China 44.7
Russia 45.6
Mexico 54.6
Chile 57.1
Brazil 59.1
South Africa 59.3
Botswana 63.0
Namibia 70.7

yEncyclopædia Britannica. Retrieved 17 June 2010 from Encyclopædia Britannica Online.
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described by a log-normal probability density

f ðxÞ � 1

x
ffiffiffiffiffiffiffiffiffiffi
2p�2

p exp � log2ðx=x0Þ
2�2

� �
, ð17Þ

where log(x0)¼hlog(x)i is the mean value of the loga-

rithmic variable and �
2¼h[log(x)� log(x0)]

2i the corre-

sponding variance. The factor � ¼ 1=
ffiffiffiffiffiffiffiffi
2�2

p
, also know an

the Gibrat index, measures the equality of the

distribution.

More recent empirical studies on income distribution

have been carried out by physicists, e.g. those by

Dragulescu and Yakovenko (2001a, b) for the UK and

US, by Fujiwara et al. (2003) for Japan, and by Nirei and

Souma (2007) for the US and Japan. For an overview, see

Yakovenko and Rosser (2009). The distributions

obtained have been shown to follow either the log-normal

(Gamma-like) or power-law types, depending on the

range of wealth, as shown in figure 8.

One of the current challenges is to write down the

‘microscopic equation’ that governs the dynamics of

the evolution of wealth distributions, possibly predicting

the observed shape of wealth distributions, including the

exponential law at intermediate values of wealth as well as

the century-old Pareto law. To this aim, several studies

have been performed to investigate the characteristics of

the real income distribution and provide theoretical

models or explanations (see, e.g., reviews by Lux (2005),

Chatterjee and Chakrabarti (2007) and Yakovenko and

Rosser (2009)).

The model of Gibrat (1931) and other models formu-

lated in terms of a Langevin equation for a single wealth

variable, subject to multiplicative noise (Mandelbrot

1960, Levy and Solomon 1996, Sornette 1998, Burda

et al. 2003), can lead to equilibrium wealth distributions

with a power-law tail, since they converge towards a

log-normal distribution. However, the fit of real wealth

distributions does not turn out to be as good as that

obtained using, for example, a � or � distribution, in

particular due to the too large asymptotic variances

(Angle 1986). Other models use a different approach and

describe the wealth dynamics as a wealth flow due to

exchanges between (pairs of) basic units. In this respect,

such models are basically different from the class of

models formulated in terms of a Langevin equation for a

single wealth variable. For example, Solomon and Levy

(1996) studied the generalized Lotka–Volterra equations

in relation to a power-law wealth distribution. Ispolatov

et al. (1998) studied random exchange models of wealth

distributions. Other models describing wealth exchange

have been formulated using matrix theory (Gupta 2006),

the master equation (Bouchaud and Mezard 2000,

Dragulescu and Yakovenko 2000, Ferrero 2004), the

Boltzmann equation approach (Dragulescu and

Yakovenko 2000, Slanina 2004, Cordier et al. 2005,

Repetowicz et al. 2005, Düring and Toscani 2007,

Matthes and Toscani 2007, Düring et al. 2008), or

Markov chains (Scalas et al. 2006, 2007, Garibaldi et al.

2007). It should be mentioned that one of the earliest

modeling efforts was that of Champernowne (1953). Since

then, many economists (Gabaix (1999) and Benhabib and

Bisin (2009), among others) have also studied mechanisms

for power laws, and distributions of wealth.

In the two following sections we consider in greater

detail a class of models usually referred to as kinetic

wealth exchange models (KWEM), formulated through

finite-time difference stochastic equations (Angle 1986,

2002, 2006, Chakraborti and Chakrabarti 2000,

Dragulescu and Yakovenk 2000, Chakraborti 2002,

Hayes 2002, Chatterjee et al. 2003, Das and Yarlagadda

2003, Iglesias et al. 2003, 2004, Scafetta et al. 2004,

Ausloos and Pekalski 2007). From the studies carried out

using wealth-exchange models, it emerges that it is

possible to use them to generate power-law distributions.
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3.3. Homogeneous kinetic wealth exchange models

Here and in the following section we consider KWEMs,

which are statistical models for a closed economy. Their

goal, rather then describing the market dynamics in terms

of intelligent agents, is to predict the time evolution of the

distribution of some main quantity, such as wealth, by

studying the corresponding flow process among individ-

uals. The underlying idea is that however complicated the

detailed rules of wealth exchanges are, their average

behavior can be described in a relatively simple way and

will share some universal properties with other transport

processes, due to the general conservation constraints and

the effect of the fluctuations due to the environment or

associated with individual behavior. Here, there is a clear

analogy with the general theory of transport phenomena

(e.g. of energy).

In these models the states of agents are defined in terms

of the wealth variables {xn}, n¼ 1, 2, . . . ,N. Evolution of

the system is carried out according to a trading rule

between agents, which, to obtain the final equilibrium

distribution, can be interpreted as the actual time

evolution of the agent states as well as a Monte Carlo

optimization. The algorithm is based on a simple update

rule performed at each time step t, when two agents i and

j are extracted randomly and an amount of wealth Dx is

exchanged,

x0i ¼ xi � Dx,

x0j ¼ xj þ Dx:
ð18Þ

Note that the quantity x is conserved during single

transactions, x0i þ x0j ¼ xi þ xj, where xi¼ xi (t) and

xj¼ xj (t) are the agent wealth values before the transac-

tion, whereas x0i ¼ xiðtþ 1Þ and x0j ¼ xj ðtþ 1Þ are the

final wealth values after the transaction. Several rules

have been studied for the model defined by equation (18).

It is noteworthy that although this theory was originally

derived from the entropy maximization principle of

statistical mechanics, it has recently been shown that the

same rule could also be derived from the utility maximi-

zation principle, following a standard exchange model

with Cobb–Douglas utility function (as explained below),

which brings physics and economics together.

3.3.1. Exchange models without saving. In a simple

version of KWEM considered in the studies of Bennati

(1988a, b, 1993) and also studied by Dragulescu and

Yakovenko (2000), the money difference Dx in equation

(18) is assumed to have a constant value, Dx¼Dx0.

Together with the constraint that transactions can take

place only if x0i 4 0 and x0j 4 0, this leads to an equilib-

rium exponential distribution (see the curve for �¼ 0 in

figure 9).

Various other trading rules were studied by Dragulescu

and Yakovenko (2000), choosing Dx as a random fraction

of the average money between the two agents,

Dx¼ 
(xiþ xj)/2, corresponding to Dx¼ (1� 
)xi� 
xj in
equation (18), or of the average money of the whole

system, Dx¼ 
hxi.

The models mentioned, as well as more complicated

models (Dragulescu and Yakovenko 2000), lead to an

equilibrium wealth distribution with an exponential tail

f ðxÞ � � expð��xÞ, ð19Þ

with the effective temperature 1/� of the order of the

average wealth, ��1¼hxi. This result is largely indepen-

dent of the details of the model, e.g. the multi-agent

nature of the interaction, the initial conditions, and the

random or consecutive order of extraction of the inter-

acting agents. The Boltzmann distribution is character-

ized by a majority of poor agents and a few rich agents

(due to the exponential tail), and has a Gini coefficient

of 0.5.

3.3.2. Exchange models with saving. As a generalization

and more realistic version of the basic exchange models, a

saving criterion can be introduced. Angle (1983), moti-

vated by the surplus theory, introduced a unidirectional

model of wealth exchange, in which only a fraction of

wealth smaller than one can pass from one agent to the

other, with Dx¼ 
xi or (�!xj), where the direction of the

flow is determined by the agent wealth (Angle 1983,

1986). Later, Angle introduced the One-Parameter

Inequality Process (OPIP) where a constant fraction

 0
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Figure 9. Probability density for wealth x. The curve for �¼ 0 is
the Boltzmann function f (x)¼hxi�1 exp(�x/hxi) for the basic
model of section 3.3.1. The other curves correspond to the
global saving propensity �40 (see section 3.3.2.)
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1�! is saved before the transaction (Angle 2002) by the

agent whose wealth decreases, defined by an exchanged

wealth amount Dx¼!xi or �!xj, again with the direction

of the transaction determined by the relative difference

between the agents’ wealth.

A ‘saving parameter’ 05�51, representing the fraction

of wealth saved, was introduced in the model of

Chakraborti and Chakrabarti (2000). In this model

(CC), wealth flows simultaneously to and from each

agent during a single transaction, the dynamics being

defined by the equations

x0i ¼ �xi þ 
ð1� �Þðxi þ xj Þ,
x0j ¼ �xj þ ð1� 
Þð1� �Þðxi þ xj Þ,

ð20Þ

or, equivalently, by Dx in (18), given by

Dx ¼ ð1� �Þ½ð1� 
Þxi � 
xj 	: ð21Þ

These models, apart from the OPIP model of Angle which

has the remarkable property of leading to a power law in a

suitable range of !, can be well-fitted by a � distribution.

The � distribution is characterized by a mode xm40, in

agreement with real data of wealth and income distribu-

tions (Dragulescu and Yakovenko 2001a, Sala-i Martin

2002, Sala-i Martin and Mohapatra 2002, Aoyama et al.

2003, Ferrero 2004, Silva and Yakovenko 2005).

Furthermore, the limit for small x is zero, i.e.

P(x! 0)! 0 (see the example in figure 9). In the

particular case of the model of Chakraborti

and Chakrabarti (2000), the explicit distribution is

well-fitted by

f ðxÞ ¼ nhxi�1
nðnx=hxiÞ

¼ 1

�ðnÞ
n

hxi
nx

hxi

� �n�1

exp � nx

hxi

� �
, ð22Þ

nð�Þ � D�

2
¼ 1þ 3�

1� � , ð23Þ

where 
n(�) is the standard � distribution. This particular

functional form was conjectured on the basis of the

excellent fitting provided to numerical data (Angle 1983,

1986, Patriarca et al. 2004a, b, Heinsalu et al. 2009). For

more information and a comparison of similar fittings for

different models, see Patriarca et al. (2010). Very recently,

Lallouache et al. (2010) showed, using the distributional

form of the equation and moment calculations, that,

strictly speaking, the Gamma distribution is not the

solution of equation (20), confirming the earlier results of

Repetowicz et al. (2005). However, the Gamma distribu-

tion is a very very good approximation.

The ubiquitous presence of � functions in the solutions

of kinetic models (see also heterogeneous models below)

suggests a close analogy with the kinetic theory of gases.

In fact, interpreting D�¼ 2n as an effective dimension, the

variable x as kinetic energy, and introducing the effective

temperature �
�1�T�¼hxi/2D� according to the equi-

partition theorem, equations (22) and (23) define the

canonical distribution �
n(�x) for the kinetic energy of a

gas in D�¼ 2n dimensions (see Patriarca et al. (2004a)

for details). The analogy is illustrated in table 5 and the

dependencies of D�¼ 2n and of ��1¼T� on the saving

parameter � are shown in figure 10.

The exponential distribution is recovered as a special

case, for n¼ 1. In the limit �! 1, i.e. for n!1, the

distribution f(x) tends to a Dirac � function, as shown by

Patriarca et al. (2004a) and illustrated qualitatively in

figure 9. This shows that a large saving criterion leads to a

final state in which economic agents tend to have similar

amounts of money and, in the limit �! 1, exactly the

same amount hxi.
The equivalence between a kinetic wealth-exchange

model with saving propensity �
 0 and an N-particle

system in a space with dimension D�
 2 is suggested by

Table 5. Analogy between the kinetic theory of gases and the
kinetic exchange model of wealth.

Kinetic model Economy model

Variable K (kinetic energy) x (wealth)
Units N particles N agents
Interaction Collisions Trades
Dimension Integer D Real number D�
Temperature definition kBT¼ 2hK i/D T�¼ 2hxi/D�
Reduced variable �¼K/kBT �¼ x/T�
Equilibrium distribution f (�)¼ 
D/2(�) f ð�Þ ¼ 
D�=2ð�Þ

 1

 10

 100

0.01 0.1 1

D
λ

λ

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1

T
λ
/〈

x
〉

λ

Figure 10. Effective dimension D� and temperature T as a
function of the saving parameter �.
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simple considerations concerning the kinetics of collision

processes between two molecules. In one dimension,

particles undergo head-on collisions in which all the

kinetic energy can be exchanged. In a larger number of

dimensions the two particles will, in general, not travel

along exactly the same line, in opposite verses, and only a

fraction of the energy can be exchanged. It can be shown

that, during a binary elastic collision in D dimensions,

only a fraction 1/D of the total kinetic energy is

exchanged, on average, for kinematic reasons (see

Chakraborti and Patriarca (2008) for details). The same

1/D dependence is in fact obtained by inverting equation

(23), which provides for the fraction of exchanged wealth

1� �¼ 6/(D�þ 4).

Not all homogeneous models lead to distributions with

an exponential tail. For instance, in the model studied by

Chakraborti (2002) an agent i can lose all his wealth, thus

becoming unable to trade again: after a sufficient number

of transactions, only one trader survives in the market

and owns the entire wealth. The equilibrium distribution

has a very different shape, as explained below.

In the toy model it is assumed that both economic

agents i and j invest the same amount xmin, which is taken

as the minimum wealth between the two agents,

xmin¼min{xi, xj}. The wealth after the trade is

x0i ¼ xi þ Dx and x0j ¼ xj � Dx, where Dx¼ (2
� 1)xmin.

We note that once an agent has lost all his wealth, he is

unable to trade because x_min has become zero. Thus, a

trader is effectively driven out of the market once he loses

all his wealth. In this way, after a sufficient number of

transactions, only one trader survives in the market with

the entire amount of wealth, whereas the rest of the

traders have zero wealth. In this toy model, only one

agent has the entire money of the market and the rest of

the traders have zero money, which corresponds to a

distribution with Gini coefficient equal to unity.

A situation is said to be Pareto-optimal ‘‘if by

reallocation you cannot make someone better off without

making someone else worse off’’. In Pareto’s own words:

‘‘We will say that the members of a collectivity enjoy

maximum ophelimity in a certain position when it is

impossible to find a way of moving from that position

very slightly in such a manner that the ophelimity

enjoyed by each of the individuals of that collectivity

increases or decreases. That is to say, any small

displacement in departing from that position neces-

sarily has the effect of increasing the ophelimity

which certain individuals enjoy, and decreasing that

which others enjoy, of being agreeable to some, and

disagreeable to others.’’— Vilfredo Pareto, Manual of

Political Economy, 1906, p. 261.

However, as Sen (1971) notes, an economy can be

Pareto-optimal, yet still ‘perfectly disgusting’ by any ethical

standards. It is important to note that Pareto-optimality is

merely a descriptive term, a property of an ‘allocation’,

and there are no ethical propositions concerning the

desirability of such allocations inherent within that

notion. Thus, in other words, there is nothing inherent

in Pareto-optimality that implies the maximization of

social welfare.

This simple toy model thus also produces a

Pareto-optimal state (it will be impossible to raise the

wellbeing of anyone except the winner, i.e. the agent with

all the money, and vice versa), but the situation is

economically undesirable as far as social welfare is

concerned! Note also that, as mentioned above, the

OPIP model of Angle (2006, 2002), for example, depend-

ing on the model parameters, can also produce a power-

law tail. Another general way to produce a power-law tail

in the equilibrium distribution seems to be by diversifying

the agents, i.e. to consider heterogeneous models, dis-

cussed below.

3.4. Heterogeneous kinetic wealth exchange models

3.4.1. Random saving propensities. The models consid-

ered above assume that all the agents have the same

statistical properties. The corresponding equilibrium

wealth distribution has, in most cases, an exponential

tail, a form that well interpolates real data at small and

intermediate values of wealth. However, it is possible to

conceive generalized models that lead to even more

realistic equilibrium wealth distributions. This is the

case when agents are diversified by assigning different

values of the saving parameter. For instance, Angle (2002)

studied a model with a trading rule where diversified

parameters {!i} occur,

Dx ¼ !i
xi or �!j
xj, ð24Þ

with the direction of wealth flow determined by the

wealth of agents i and j. Diversified saving parameters

were independently introduced by Chatterjee et al. (2003,

2004) by generalizing the model introduced by

Chakraborti and Chakrabarti (2000):

x0i ¼ �ixi þ 
½ð1� �iÞxi þ ð1� �j Þxj 	,
x0j ¼ �xj þ ð1� 
Þ½ð1� �iÞxi þ ð1� �j Þxj 	,

ð25Þ

corresponding to

Dx ¼ ð1� 
Þð1� �iÞxi � 
ð1� �j Þxj: ð26Þ

The surprising result is that if the parameters {�i} are

suitably diversified, a power law appears in the equilib-

rium wealth distribution (see figure 11). In particular, if

the �i are uniformly distributed in (0, 1), the wealth

distribution exhibits a robust power-law tail,

f ðxÞ / x���1, ð27Þ

with the Pareto exponent �¼ 1 largely independent of the

details of the � distribution. It should be noted that

the exponent value of unity is strictly for the tail end of

the distribution and not for small values of the income

or wealth (where the distribution remains exponential).

Also, for finite number N of agents, there is always an

exponential (in N ) cut-off at the tail end of the distribu-

tion. This result is supported by independent theoretical

considerations based on various approaches, such as a
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mean-field theory approach (Mohanty 2006) (see below

for further details) or the Boltzmann equation (Das and

Yarlagadda 2003, 2005, Chatterjee et al. 2005a,

Repetowicz et al. 2005). For a derivation of the Pareto

law from variational principles, using the KWEM con-

text, see Chakraborti and Patriarca (2009).

3.4.2. Power-law distribution as an overlap of Gamma

distributions. A remarkable feature of the equilibrium

wealth distribution obtained from heterogeneous models,

reported by Chatterjee et al. (2004), is that the individual

wealth distribution fi(x) of the generic ith agent with

saving parameter �i has a well-defined mode and expo-

nential tail, in spite of the resulting power-law tail of the

marginal distribution f (x)¼
P

i fi(x). In fact, Patriarca

et al. (2005) found by numerical simulation that the

marginal distribution f(x) can be resolved as an overlap of

individual Gamma distributions with �-dependent param-

eters; furthermore, the mode and the average value of the

distributions fi(x) both diverge for �! 1 as hx(�)i �
1/(1� �) (Chatterjee et al. 2004, Patriarca et al. 2005).

This fact was justified theoretically by Mohanty (2006).

Consider the evolution equations (25). In the mean-field

approximation, one can consider that each agents i has an

(average) wealth hxii¼ yi and replace the random number


 by its average value h
i ¼ 1/2. Denoting by yij the new

wealth of agent i, due to the interaction with agent j, from

equations (25) one obtains

yij ¼ ð1=2Þð1þ �iÞ yi þ ð1=2Þð1� �j Þ yj: ð28Þ
At equilibrium, for consistency, averaging over all the

interactions must return yi,

yi ¼
X

j

yij=N: ð29Þ

Then summing equation (28) over j and dividing by the

number of agents N, one has

ð1� �iÞ yi ¼ hð1� �Þ yi, ð30Þ

where h(1� �)yi¼
P

j(1� �j)yj/N. Since the right-hand

side is independent of i and this relation holds for

arbitrary distributions of �i, the solution is

yi ¼
C

1� �i
, ð31Þ

where C is a constant. Besides proving the dependence of

yi¼hxii on �i, this relation also demonstrates the

existence of a power-law tail in the equilibrium distribu-

tion. If, in the continuous limit, � is distributed in (0, 1)

with density 	(�) (0� �51), then using (31) the (average)

wealth distribution is given by

f ð yÞ ¼ 	ð�Þd�
dy

¼ 	ð1� C=xÞ C
y2
: ð32Þ

Figure 12 illustrates the phenomenon for a system of

N¼ 1000 agents with random saving propensities uni-

formly distributed between 0 and 1. The figure confirms

the importance of agents with � close to 1 for producing a

power-law probability distribution (Chatterjee et al. 2004,

Heinsalu et al. 2009).

However, when considering values of � sufficiently

close to 1, the power law can break down for (at least) two

reasons. The first, illustrated in figure 12 (bottom right), is

that the power law can be resolved into almost disjoint

contributions representing the wealth distributions of

single agents. This follows from the finite number of

agents used and the fact that the distance between the

average values of the distributions corresponding to two

consecutive values of � increases faster than the corre-

sponding widths (Chatterjee et al. 2005b, Patriarca et al.

2005). The second reason is due to the finite cut-off �M,

always present in a numerical simulation. However, to

study this effect, one has to consider a system with a

sufficiently large number of agents that it is not possible

to resolve the wealth distributions of single agents for the

sub-intervals of � considered. This was done by Patriarca

et al. (2006) using a system with N¼ 105 agents with

saving parameters distributed uniformly between 0 and

�M. The results are shown in figure 13, where the curves

from left to right correspond to increasing values of the

cut-off �M from 0.9 to 0.9997.

The transition from an exponential to a power-law tail

takes place continuously as the cut-off �M is increased

beyond a critical value �M� 0.9 towards �M¼ 1, through

enlargement of the x interval in which the power-law is

observed.

3.4.3. Relaxation process. Relaxation in systems with

constant � has already been studied by Chakraborti and

Chakrabarti (2000), where a systematic increase of the

relaxation time with �, and eventually a divergence for

�! 1, was found. In fact, for �¼ 1, no exchanges occurs

and the system is frozen.

The relaxation time scale of a heterogeneous system has

been studied by Patriarca et al. (2007). The system is

observed to relax towards the same equilibrium wealth

distribution from any given arbitrary initial distribution

of wealth. If time is measured by the number of

Figure 11. Results for randomly assigned saving parameters.
Reproduced and adapted from Chakrabarti and Chatterjee
(2003). Available at arXiv:cond-mat/0302147.
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transactions nt, the time scale is proportional to the

number of agents N, i.e. defining time t as the ratio

t¼ nt/N between the number of trades and the total

number of agents N (corresponding to one Monte Carlo

cycle or one sweep in molecular dynamics simulations),

and the dynamics and the relaxation process become

independent of N. The existence of a natural time scale

independent of the system size provides a foundation for

using simulations of systems with finite N in order to infer

properties of systems with continuous saving propensity

distributions and N!1.

In a system with uniformly distributed �, the wealth

distribution of each agent i with saving parameter �i
relaxes towards different states with characteristic shapes

fi(x) (Chatterjee et al. 2005b, Patriarca et al. 2005, 2006)

with different relaxation times �i (Patriarca et al. 2007).

The differences in the relaxation processes can be related

to the different relative wealth exchange rates, which by

direct inspection of the evolution equations appear to be

proportional to 1� �i. Thus, in general, higher saving

propensities are expected to be associated with

slower relaxation processes with a relaxation time

/1/(1� �).
It is also possible to obtain the relaxation time

distribution. If the saving parameters are distributed in

(0, 1) with density 	(�), it follows from probability

conservation that ~fð �xÞd �x ¼ 	ð�Þd�, where �x � hxi� and
~f ð �xÞ is the corresponding density of the average wealth

values. In the case of uniformly distributed saving

propensities, one obtains

~fð �xÞ ¼ 	ð�Þ d�ð �xÞ
d �x

¼ 	 1� k

�x

� �
k

�x2
, ð33Þ

showing that a uniform saving propensity distribution

leads to a power law ~f ð �xÞ � 1= �x2 in the (average) wealth

distribution. In a similar way it is possible to obtain the

associated distribution of relaxation times  (�) for the

global relaxation process from the relation �i / 1/(1� �i),

 ð�Þ ¼ 	ð�Þ d�ð�Þ
d�

/ 	 1� �
0

�

� �
�0

�2
, ð34Þ
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Figure 12. Wealth distribution in a system of 1000 agents with saving propensities uniformly distributed in the interval 05�51.
Top left: marginal distribution. Top right: marginal distribution (dotted line) and distributions of wealth of agents with �2 ( jD�,
( jþ 1)D�), D�¼ 0.1, j¼ 0, . . . , 9 (continuous lines). Bottom-left: the distribution of wealth of agents with �2 (0.9, 1) has been further
resolved into contributions from subintervals �2 (0.9þ jD�, 0.9þ ( jþ 1)D�), D�¼ 0.01. Bottom-right: the partial distribution of the
wealth of agents with �2 (0.99, 1) has been further resolved into those from subintervals �2 (0.99þ jD�, 0.99þ ( jþ 1)D�),
D�¼ 0.001. Reproduced from Patriarca et al. (2006).
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where �0 is a proportionality factor. Therefore,  (�) and
~f ð �xÞ are characterized by power-law tails in � and �x,

respectively, with the same Pareto exponent.

In conclusion, the role of the � cut-off is also related to

the relaxation process. This means that the slowest

convergence rate is determined by the cut-off and is

/1� �M. In numerical simulations of heterogeneous

KWEMs, as well as in real wealth distributions, the cut-

off is necessarily finite, so that the convergence is fast

(Gupta 2008). On the other hand, if considering a

hypothetical wealth distribution with a power law extend-

ing to infinite values of x, one cannot find a fast

relaxation, due to the infinite time scale of the system,

owing to the agents with �¼ 1.

3.5. Microeconomic formulation of kinetic theory

models

Very recently, Chakrabarti and Chakrabarti (2009) stud-

ied the framework based on microeconomic theory from

which kinetic theory market models can be addressed.

They derived the moments of the model of Chakraborti

and Chakrabarti (2000) and reproduced the exchange

equations used in the model (with fixed savings param-

eter). In the framework considered, the utility function

deals with the behavior of the agents in an exchange

economy. They start by considering two exchange econ-

omies, where each agent produces a single perishable

commodity. Each of these goods is different and money

exists in the economy to simply facilitate transactions.

Each of these agents is endowed with an initial amount of

money M1¼m1(t) and M2¼m2(t). Let agent 1 produce

Q1 amount of commodity 1 only, and agent 2 produce Q2

amount of commodity 2 only. At each time step t, the two

agents meet randomly to carry out transactions according

to their utility maximization principle.

The utility functions are defined as follows. For agent

1, U1ðx1, x2,m1Þ ¼ x�11 x�22 m�m
1 , and for agent 2,

U2ð y1, y2,m2Þ ¼ y�11 y�22 m�m
2 , where the arguments in both

of the utility functions are consumption of the first (i.e. x1
and y1) and second good (i.e. x2 and y2) and the amount

of money in their possession, respectively. For simplicity,

they assume that the utility functions are of the above

Cobb–Douglas form with the sum of the powers normal-

ized to 1, i.e. �1þ�2þ �m¼ 1.

Let the commodity prices to be determined in the

market be denoted by p1 and p2. The budget constraints

are as follows. For agent 1 the budget constraint is

p1x1þ p2x2þm1�M1þ p1Q1, and similarly for agent 2

the constraint is p1y1þ p2y2þm2�M2þ p2Q2, which

means that the amount that agent 1 can spend on

consuming x1 and x2 added to the amount of money that

he holds after trading at time tþ 1 (i.e. m1) cannot exceed

the amount of money that he has at time t (i.e. M1) added

to what he earns by selling the good he produces (i.e. Q1),

and the same is true for agent 2.

The basic idea is that both of the agents try to maximize

their respective utility subject to their respective budget

constraints and the invisible hand of the market, that is the

price mechanism works to clear the market for both

goods (i.e. total demand equals total supply for both

goods at the equilibrium prices), which means that agent

1’s problem is to maximize his utility subject to his budget

constraint, i.e. maximize U1(x1,x2,m1) subject to

p1 � x1þ p2 � x2þm1¼M1þ p1 �Q1. Similarly, for agent 2

the problem is to maximize U1( y1, y2,m2) subject to

p1 � y1þ p2 � y2þm2¼M2þ p2 �Q2. Solving those two

maximization exercises by a Lagrange multiplier and

applying the condition that the market remains in

equilibrium, the competitive price vector ( p̂1, p̂2)

is found as p̂i ¼ ð�i=�mÞðM1 þM2Þ=Qi for i¼ 1, 2

(Chakrabarti and Chakrabarti 2009).

The outcomes of such a trading process are as follows.

(1) At optimal prices ð p̂1, p̂2Þ, m1(t)þm2(t)¼
m1(tþ 1)þm2(tþ 1), i.e. demand matches supply

in all markets at the market-determined price in

equilibrium. Since money is also treated as a

commodity in this framework, its demand (i.e.

the total amount of money held by the two persons

after the trade) must be equal to what was supplied

(i.e. the total amount of money held by them

before the trade).

(2) If a restrictive assumption is made such that �1 in

the utility function can vary randomly over time

with �m remaining constant, it readily follows that

�2 also varies randomly over time with the restric-

tion that the sum of �1 and �2 is a constant

(1��m). Then in the derived money demand

equations, if we assume �m is � and �1/(�1þ �2)
is 
, it is found that the money evolution equations

become

m1ðtþ 1Þ ¼ �m1ðtÞ þ 
ð1� �Þðm1ðtÞ þm2ðtÞÞ,
m2ðtþ 1Þ ¼ �m2ðtÞ þ ð1� 
Þð1� �Þðm1ðtÞ þm2ðtÞÞ:

For a fixed value of �, if �1 (or �2) is a random

variable with uniform distribution over the domain

[0, 1� �], then 
 is also uniformly distributed over

the domain [0, 1]. This limit corresponds to the

Chakraborti and Chakrabarti (2000) model, dis-

cussed earlier.

(3) For the limiting value of �m in the utility function

(i.e. �m! 0, which implies �! 0), the money

transfer equation describing the random sharing

of money without saving is obtained, which was

studied by Dragulescu and Yakovenko (2000)

mentioned earlier.

This actually demonstrates the equivalence of the two

maximization principles of entropy (in physics) and utility

(in economics), and is certainly noteworthy.

4. Agent-based modeling based on games

4.1. Minority game models

4.1.1. The El Farol Bar problem. Arthur (1994) intro-

duced the ‘El Farol Bar’ problem as a paradigm of

complex economic systems. In this problem, a population

Econophysics review: II. Agent-based models 1031
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of agents have to decide whether to go to the bar opposite

Santa Fe every Thursday night. Due to a limited number

of seats, the bar cannot entertain more than X% of the

population. If less than X% of the population go to the

bar, the time spent in the bar is considered to be satisfying

and it is better to attend the bar rather than stay at home.

But if more than X% of the population go to the bar, then

it is too crowded and people in the bar have an

unsatisfying time. In this second case, staying at home is

considered to be a better choice than attending the bar.

Therefore, in order to optimize their own utility, each

agent has to predict what everybody else will do.

In particular, Arthur was also interested in agents who

have bounds on ‘rationality’, i.e. agents who:

. do not have perfect information about their

environment, and, in general, they will only

acquire information through interaction with

the dynamically changing environment;

. do not have a perfect model of their

environment;

. have limited computational power, so they

cannot determine all the logical consequences

of their knowledge; and

. have other resource limitations (e.g. memory).

In order to take these limitations into account, each

agent is randomly given a fixed menu of models poten-

tially suitable for predicting the number of people who

will go to the bar given past data (e.g. the same as two

weeks ago, the average of the past few weeks, etc.). Each

week, each agent evaluates these models with respect to

the past data. He chooses the one that was the best

predictor for these data and then uses it to predict the

number of people who will go to the bar this time. If this

prediction is less than X, then the agent also decides to go

to the bar. If its prediction is greater than X, the agent

stays at home. Thus, in order to make decisions on

whether or not to attend the bar, all the individuals are

equipped with a certain number of ‘strategies’ that

provide them with predictions concerning attendance in

the bar next week based on the attendance in the past few

weeks. As a result the number who go to the bar oscillates

in an apparently random manner around the critical X%

mark.

This was one of the first models that proceeded in a

different way from traditional economics.

4.1.2. Basic minority game. Minority games (MGs)

(Challet et al. 2004) refer to the multi-agent models of

financial markets with the original formulation intro-

duced by Challet and Zhang (1997), and all other variants

(Lamper et al. 2002, Coolen 2005), most of which share

the principal features that the models are repeated games

and agents are inductive in nature. The original formu-

lation of the minority game by Challet and Zhang (1997)

is sometimes referred as the ‘Original Minority Game’ or

the ‘Basic Minority Game’.

The basic minority game consists of N (an odd natural

number) agents, who choose between one of two decisions

in each round of the game, using their own simple

inductive strategies. The two decisions could be, for

example, ‘buying’ or ‘selling’ commodities/assets, denoted

by 0 or 1, at a given time t. An agent wins the game if he is

one of the members of the minority group, and thus in

each round, the minority group of agents win the game

and rewards are given to those strategies that predict the

winning side. All the agents have access to a finite amount

of public information, which is a common bit-string

‘memory’ of the M most recent outcomes, composed of

the winning sides in the past few rounds. Thus the agents

with finite memory are said to exhibit ‘bounded rational-

ity’ (Arthur 1994).

Consider, for example, memory M¼ 2, then there are

P¼ 2M¼ 4 possible ‘history’ bit strings: 00, 01, 10 and 11.

A ‘strategy’ consists of a response, i.e. 0 or 1, to each

possible history bit string. Therefore, there are

G ¼ 2P ¼ 22
M ¼ 16 possible strategies that constitute the

‘strategy space’. At the beginning of the game, each agent

randomly picks k strategies, and after the game assigns

one ‘virtual’ point to a strategy that would have predicted

the correct outcome. The actual performance r of the

player is measured by the number of times the player

wins, and the strategy by which the player wins obtains a

‘real’ point. A record of the number of agents who have

chosen a particular action, say ‘selling’ denoted by 1,

A1(t), as a function of time is kept (see figure 14). The

fluctuations in the behavior of A1(t) actually indicate the

system’s total utility. For example, we can have a

situation where only one player is in the minority and

all the other players lose. The other extreme case is when

(N� 1)/2 players are in the minority and (Nþ 1)/2 players

lose. The total utility of the system is obviously greater for

the latter case and, from this perspective, the latter

situation is more desirable. Therefore, the system is more

efficient when there are smaller fluctuations around the

mean than when the fluctuations are larger.

As in the El Farol bar problem, unlike most traditional

economics models that assume agents are ‘deductive’ in

nature, here also a ‘trial-and-error’ inductive thinking

approach is implicitly implemented in the process of

decision-making when agents make their choices in the

games.

4.1.3. Evolutionary minority games. Challet and Zhang

(1997, 1998) generalized the basic minority game men-

tioned above to include Darwinian selection: the worst

player is replaced by a new one after some time steps, and

the new player is a ‘clone’ of the best player, i.e. it inherits

all the strategies but with the corresponding virtual

capitals reset to zero (analogous to a new-born baby,

and although having all the predispositions from the

parents, it does not inherit their knowledge). To keep a

certain diversity, they introduced the possibility of muta-

tion when cloning. They allowed one of the strategies of

the best player to be replaced by a new one. Since

strategies are no longer just recycled among the players,

the whole strategy phase space is available for selection.

They expected this population to be capable of ‘learning’
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since bad players are weeded out with time, and fighting

is among the so-to-speak ‘best’ players. Indeed, from

figure 15 they observed that learning emerged over time.

Fluctuations are reduced and saturated, implying that the

average gain for everybody is improved but never reaches

the ideal limit.

Li et al. (2000a, b) also studied the minority game in the

presence of ‘evolution’. In particular, they examined the

behavior in games in which the dimension of the strategy

space, m, is the same for all agents and fixed for all time.

They found that, for all values of m, not too large,

evolution results in a substantial improvement in overall

system performance. They also showed that, after evolu-

tion, the results obeyed a scaling relation among games

played with different values of m and different numbers of

agents, analogous to that found in the non-evolutionary,

adaptive games (see remarks in section 4.1.5). The best

system performance still occurred, for a given number of

agents, at mc, the same value of the dimension of the

strategy space as in the non-evolutionary case, but system

performance was nearly an order of magnitude better

than the non-evolutionary result. For m5mc, the system

evolved to states in which average agent wealth was better

than in the random choice game. As m became large,

overall systems performance approached that of the

random choice game.

Li et al. (2000a, b) continued the study of evolution in

minority games by examining games in which agents with

poorly performing strategies can trade in their strategies

for new ones from a different strategy space, which means

allowing for strategies that use information from different

numbers of time lags, m. They found in all the games that,

after evolution, wealth per agent is high for agents with

strategies drawn from small strategy spaces (small m), and

low for agents with strategies drawn from large strategy

spaces (large m). In the game played with N agents, wealth

per agent as a function of m was very nearly a step

function. The transition was found to be at m¼mt, where

mt’mc� 1, and mc is the critical value of m at which N

agents playing the game with a fixed strategy space (fixed

m) have the best emergent coordination and the best

utilization of resources. They also found that, overall,

system-wide utilization of resources is independent of N.

Furthermore, although overall system-wide utilization of

resources after evolution varied somewhat depending on
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Figure 14. Attendance fluctuation and performances of players in the basic minority game. Plots of (a) attendance and
(b) performance of the players (the five curves are: the best, the worst and three chosen randomly) for the basic minority game with
N¼ 801, M¼ 6, k¼ 10 and T¼ 5000. Reproduced from Sysi-Aho et al. (2003b).
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Figure 15. Temporal attendance A for the genetic approach
showing a learning process. Reproduced from Challet and
Zhang (1997).
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certain aspects of the evolutionary dynamics, in the best

cases utilization of resources was on the order of the best

results achieved in evolutionary games with fixed strategy

spaces.

4.1.4. Adaptive minority games. Sysi-Aho et al.

(2003a, b, c, 2004) presented a simple modification of

the basic minority game where the players modify their

strategies periodically after every time interval �, depend-

ing on their performance: if a player finds that he is

among the fraction n (where 05n51) who are the worst

performing players, he adapts himself and modifies his

strategies. They proposed that the agents use hybridized

one-point genetic crossover mechanism (as shown in

figure 16), inspired by genetic evolution in biology, to

modify the strategies and replace the bad strategies. They

studied the performances of the agents under different

conditions and investigated how they adapted themselves

in order to survive or to be the best by finding new

strategies using the highly effective mechanism.

They also studied the measure of total utility of the

system U(xt), which is the number of players in the

minority group; the total utility of the system is maximum

Umax if the highest number of winning players is

(N� 1)/2. The system is more efficient when the devia-

tions from the maximum total utility Umax are smaller or,

in other words, the fluctuations in A1(t) around the mean

become smaller. Interestingly, the fluctuations disappear

totally and the system stabilizes to a state where the total

utility of the system is at a maximum, since, at each time

step, the largest number of players win the game (see

figure 17). As expected, the behavior depends on the

parameter values for the system (Sysi-Aho et al. 2003b,

2004). They used the utility function to study the

efficiency and dynamics of the game, as shown in

figure 18.

If the parents are chosen randomly from the pool of

strategies, then the mechanism represents a ‘one-point

genetic crossover’ and if the parents are the best strate-

gies, then the mechanism represents a ‘hybridized

genetic crossover’. The children may replace parents or

the two worst strategies and accordingly four different

interesting cases arise: (a) one-point genetic crossover

with parents ‘killed’, i.e. the parents are replaced by the

children; (b) one-point genetic crossover with parents

‘saved’, i.e. the two worst strategies are replaced by the

children but the parents are retained; (c) hybridized

genetic crossover with parents ‘killed’; and (d) hybridized

genetic crossover with parents ‘saved’.

In order to determine which mechanism is the most

efficient, we performed a comparative study of the four

cases mentioned above. We plot the attendance as a

function of time for the different mechanisms in figure 19.

In figure 20 we show the total utility of the system in each

of the cases (a)–(d), where we have plotted the results of

the average over 100 runs and each point in the utility

curve represents a time average taken over a bin of length

50 time-steps. The simulation time is doubled from those

in figure 19 in order to expose the asymptotic behavior

better. On the basis of figures 19 and 20, we find that case

(d) is the most efficient.

In order to investigate what happens at the level of the

individual agent, we created a competitive surrounding

‘test’ situation where, after T¼ 3120 time-steps, six

players begin to adapt and modify their strategies such

that three are using the hybridized genetic crossover

mechanism and the other three the one-point genetic

crossover mechanism, where children replace the parents.

The rest of the players play the basic minority game. In

this case it turns out that, in the end, the best players are

those who use the hybridized mechanism, the second best

are those using the one-point mechanism, and the bad

players are those who do not adapt at all. In addition, it

turns out that the competition amongst the players who

adapt using the hybridized genetic crossover mechanism is

severe.

It should be noted that the mechanism of evolution of

strategies is considerably different from earlier attempts

such as those of Challet and Zhang (1997) and Li et al.

(2000a, b). This is because, in this mechanism, the

strategies are changed by the agents themselves and

even though the strategy space evolves continuously, its

size and dimensionality remain the same.

Due to the simplicity of these models (Sysi-Aho et al.

2003a, b, c, 2004) a lot of freedom is found in modifying

the models to make the situations more realistic and

applicable to many real dynamical systems, and not only

financial markets. Many details of the model can be fine-

tuned to imitate real markets or the behavior of other

complex systems. Many other sophisticated models based

on these games can be set up and implemented and show

great potential with respect to the commonly adopted

statistical techniques in analyses of financial markets.

4.1.5. Remarks. For modeling purposes, the minority

game models were meant to serve as a class of simple

models that could produce some macroscopic features

observed in real financial markets, including the

fat-tail price return distribution and volatility clustering

0

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

0

1

1

0

0

1

1

1

1

1

1

1

1

1

Breaking
point

Parents Children

ssss
lkji

One−point crossover

Figure 16. Schematic diagram illustrating the mechanism of
one-point genetic crossover for producing new strategies.
Strategies si and sj are the parents. We choose the breaking
point randomly and using this one-point genetic crossover the
children sk and sl are produced and substitute for the parents.
Reproduced from Sysi-Aho et al. (2003b).
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(Challet et al. 2004, Coolen 2005). Despite the hectic

activity (Challet and Zhang 1998, Challet et al. 2000),

they have failed to capture or reproduce the most

important stylized facts of real markets. However, in the

physicists’ community, they have become an interesting

and established class of models concerning the physics of

disordered systems (Cavagna et al. 1999, Challet et al.

2000), providing much physical insight (Savit et al. 1999,

Martino et al. 2004). Since, in the BMG model, a

Hamiltonian function can be defined and analytic solu-

tions developed in certain regimes of the model, the model

was viewed from a more physical perspective. In fact, it is

characterized by a clear two-phase structure with very

different collective behavior in the two phases, as in many

known conventional physical systems (Cavagna et al.

1999, Savit et al. 1999).

Savit et al. (1999) first found that the macroscopic

behavior of the system does not depend independently on

the parameters N andM, but instead depends on the ratio

� � 2M

N
¼ P

N
, ð35Þ

which serves as the most important control parameter in

the game. The variance in the attendance (see also Sysi-

Aho et al. (2003c)), or volatility �2/N, for different values

of N and M depends only on the ratio �. Figure 21 shows

a plot of �2/N versus the control parameter �, where the

data collapse of �2/N for different values of N and M is

clearly evident. The dotted line in figure 21 corresponds

to the ‘coin-toss’ limit (random choice or pure chance

limit), in which agents play by simply making random

decisions (by coin-tossing) in every round of the game.

This value of �2/N in the coin-toss limit can be obtained

by simply assuming a binomial distribution of the agents’

binary actions, with probability 0.5, such that

�
2/N¼ 0.5(1� 0.5) � 4¼ 1. When � is small, the value of

�
2/N of the game is larger than the coin-toss limit, which

implies that the collective behaviors of the agents are

worse than the random choices. In the early literature,

this was popularly called the worse-than-random regime.

When � increases, the value of �2/N decreases and enters

a region where agents are performing better than the

random choices, which was popularly called the

better-than-random regime. The value of �2/N reaches a

minimum value that is substantially smaller than the coin-

toss limit. When � increases further, the value of �2/N

again increases and approaches the coin-toss limit. This

allowed one to identify two phases in the minority game

separated by the minimum value of �2/N in the graph.

The value of � where the rescaled volatility was minimum

was denoted �c, which represented the phase transition

point; �c has been shown to have a value of 0.3374. . . (for

k¼ 2) by analytical calculations (Challet et al. 2000).

Besides these collective behaviors, physicists also

became interested in the dynamics of the games such as

the crowd versus anti-crowd movement of agents, peri-

odic attractors, etc. (Johnson et al. 1999a, b, Hart et al.

2001). In this way, the minority games serve as a useful

tool and provide a new direction for physicists in viewing

and analysing the underlying dynamics of complex

evolving systems such as financial markets.
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Figure 17. Plot showing the time variations of the number of players A1 who choose action 1, with parameters N¼ 1001, m¼ 5,
s¼ 10 and t¼ 4000 for (a) the basic minority game and (b) the adaptive game, where �¼ 25 and n¼ 0.6. Reproduced from Sysi-Aho
et al. (2003a).
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Figure 18. Plot showing the variation of the total utility of the
system with time for the basic minority game for N¼ 1001,
m¼ 5, s¼ 10 and t¼ 5000, and the adaptive game for the same
parameters but different values of � and n. Each point represents
a time average of the total utility for separate bins of size 50
time-steps of the game. The maximum total utility (¼(N� 1)/2)
is shown as the dashed line. (*) Data for the basic minority
game. (þ) Data for �¼ 10 and n¼ 0.6. (�) Data for �¼ 50 and
n¼ 0.6. (�) Data for �¼ 10 and n¼ 0.2. (i) Data for �¼ 50 and
n¼ 0.2. The ensemble average over 70 different samples was
taken in each case. Reproduced from Sysi-Aho et al. (2003a).
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4.2. The Kolkata Paise Restaurant (KPR) problem

The KPR problem (Chakrabarti et al. 2009, Ghosh and

Chakrabarti 2009, Ghosh et al. 2010a, b) is a repeated

game played between a large number N of agents having

no interaction amongst themselves. In the KPR problem,

prospective customers (agents) choose from N restaurants

each evening simultaneously (in parallel decision mode);

N is fixed. Each restaurant has the same price for a meal

but a different rank (agreed upon by all customers) and

can serve only one customer any evening. Information

regarding the customer distributions for earlier evenings

is available to everyone. Each customer’s objective is to

go to the restaurant with the highest possible rank while

avoiding the crowd so as to be able to get dinner there. If

more than one customer arrives at any restaurant on any

evening, one of them is randomly chosen (each of them
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Figure 19. Plots of the attendance when choosing parents randomly (a, b), and using the best parents in a players’ pool (c, d).
In (a) and (c), parents are replaced by children, and in (b) and (d), children replace the two worst strategies. Simulations were
performed with N¼ 801, M¼ 6, k¼ 16, t¼ 40, n¼ 0.4 and T¼ 10,000. Reproduced from Sysi-Aho et al. (2003b).

Figure 20. Plots of the scaled utilities of the four different
mechanisms compared with that of the basic minority game.
Each curve represents an ensemble average over 100 runs and
each point on a curve is a time average over a bin of length 50
time-steps. Inset: the quantity (1�U ) is plotted versus the
scaled time on a double logarithmic scale. Simulations were
performed with N¼ 801, M¼ 6, k¼ 16, t¼ 40, n¼ 0.4 and
T¼ 20,000. Adapted from Sysi-Aho et al. (2003b).
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Figure 21. Simulation results for the variance in attendance
�2/N as a function of the control parameter �¼ 2M/N for games
with k¼ 2 strategies for each agent, with the ensemble averaged
over 100 sample runs. The dotted line shows the value of the
volatility in the random choice limit. The solid line shows the
critical value of �¼�c� 0.3374. Reproduced from Yeung and
Zhang (arxiv:0811.1479).
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are treated anonymously) and is served. The rest do not

get dinner that evening.

In Kolkata, there were very cheap and fixed-rate ‘Paise

Restaurants’ that were popular among the daily laborers

in the city. During lunch hours, the laborers used to walk

(to save the transport costs) to one of these restaurants

and would miss lunch if they got to a restaurant where

there were too many customers. Walking down to the

next restaurant would mean failing to report back to work

on time! Paise is the smallest Indian coin and there were

indeed some well-known rankings of these restaurants, as

some of them would offer tastier items than the others.

A more general example of such a problem would be

when society provides hospitals (and beds) in every

locality but the local patients go to hospitals of (com-

monly perceived) better rank elsewhere, thereby compet-

ing with the local patients of those hospitals. The

unavailability of treatment in time may be considered as

a lack of service for those people and consequently as a

(social) wastage of service by those unattended hospitals.

A dictator’s solution to the KPR problem is the

following: the dictator asks everyone to form a queue

and then assigns each one a restaurant with rank

matching the sequence of the person in the queue on the

first evening. Then each person is told to go to the next

ranked restaurant on the following evening (for the

person in the last ranked restaurant this means going to

the first ranked restaurant). This shift then proceeds

continuously for successive evenings. This is clearly one of

the most efficient solutions (with a utilization fraction �f of

the services by the restaurants equal to unity) and the

system arrives at this solution immediately (from the first

evening). However, in reality, this cannot be the true

solution of the KPR problem, where each agent decides

on his own (in parallel or democratically) every evening,

based on complete information about past events. In this

game, the customers try to evolve a learning strategy to

eventually obtain dinner at the best possible ranked

restaurant, avoiding the crowd. It can be seen that the

evolution of these strategies takes a considerable time to

converge and even then the eventual utilization fraction �f

is far less than unity.

Let the symmetric stochastic strategy chosen by each

agent be such that, at any time t, the probability pk(t) of

arriving at the kth ranked restaurant is given by

pkðtÞ ¼
1

z
k� exp � nkðt� 1Þ

T

� �� �
,

z ¼
XN

k¼1

k� exp � nkðt� 1Þ
T

� �� �
,

ð36Þ

where nk(t) denotes the number of agents arriving at the

kth ranked restaurant in period t, T40 is a scaling factor

and �
 0 is an exponent.

For any natural number � and T!1, an agent goes to

the kth ranked restaurant with probability pk(t)¼ k�/P
k�, which means that, in the limit T!1 in (36),

pk(t)¼ k�/
P

k�. If an agent selects any restaurant with

equal probability p, then the probability that a single

restaurant is chosen by m agents is given by

DðmÞ ¼ N

m

� �
pmð1� pÞN�m: ð37Þ

Therefore, the probability that a restaurant with rank k is

not chosen by any of the agents will be given by

Dkðm ¼ 0Þ ¼
N

0

� �
ð1� pkÞN, pk ¼

k�P
k�

’ exp
�k�N

eN

� �
as N ! 1, ð38Þ

where eN ¼
PN

k¼1 k
� ’

RN

0
k� dk ¼ N�þ1=ð�þ 1Þ. Hence,

Dkðm ¼ 0Þ ¼ exp � k�ð�þ 1Þ
N�

� �
: ð39Þ

Therefore, the average fraction of agents receiving dinner

in the kth ranked restaurant is given by

�fk ¼ 1� Dkðm ¼ 0Þ: ð40Þ

Naturally, for �¼ 0, the problem corresponding to

random choice �fk ¼ 1� e�1 gives �f ¼
P

�fk=N ’ 0:63 and

for �¼ 1, �fk ¼ 1� e�2k=N gives �f ¼
P

�fk=N ’ 0:58.

In summary, in the KPR problem the decision made by

each agent on each evening t is independent and is based

on information concerning the rank k of the restaurants

and their occupancy given by nk(t� 1), . . . , nk(0). For

several stochastic strategies, only nk(t� 1) is utilized and

each agent chooses the kth ranked restaurant with

probability pk(t) given by equation (36). The utilization

fraction fk of the kth ranked restaurant on every evening

was studied and their average (over k) distributions D( f )

were studied numerically, as well as analytically, and it

was found (Chakrabarti et al. 2009, Ghosh and

Chakrabarti 2009, Ghosh et al. 2010a) that their distri-

butions are Gaussian with the most probable utilization

fraction �f ’ 0:63, 0.58 and 0.46 for cases with �¼ 0,

T!1; �¼ 1, T!1; and �¼ 0, T! 0, respectively. For

the stochastic crowd-avoiding strategy discussed by

Ghosh et al. (2010b), where pk(tþ 1)¼ 1/nk(t) for k¼ k0,

the restaurant visited by the agent the last evening, and

¼1/(N� 1) for all other restaurants (k 6¼ k0), one obtains

the best utilization fraction �f ’ 0:8, and the analytical

estimates for �f in these limits agree very well with the

numerical observations. Also, the time required to con-

verge to the above value of �f is independent of N.

The KPR problem has similarities to the Minority

Game Problem (Arthur 1994, Challet et al. 2004) as, in

both the games, herding behavior is punished and

diversity is encouraged. Also, both involve agents learning

from past successes, etc. Of course, KPR has some simple

exact solution limits, a few of which are discussed here.

The real challenge is, of course, to design algorithms for

learning mixed strategies (e.g., from the pool discussed

here) by the agents so that the fair social norm eventually

emerges (in N0 or ln N order time) even when everyone

decides on the basis of their own information indepen-

dently. As we have seen, some naive strategies give better

values of �f than most of the ‘smarter’ strategies such as
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strict crowd-avoiding strategies, etc. This observation in

fact compares well with earlier observations of minority

games (see, e.g., Satinover and Sornette (2007)).

It may be noted that all the stochastic strategies, being

parallel in computational mode, have the advantage that

they converge to a solution in smaller time steps (�N0 or

ln N ), whereas for deterministic strategies the conver-

gence time is typically of order N, which renders such

strategies useless in the truly macroscopic (N!1) limits.

However, deterministic strategies are useful when N is

small and rational agents can design appropriate punish-

ment schemes for the deviators (Kandori 2008).

Study of the KPR problem shows that while a dictated

solution leads to one of the best possible solutions to the

problem, with each agent obtaining his dinner at the best

ranked restaurant in a period of N evenings, and with a

best possible value of �f (¼1) starting from the first

evening, the parallel decision strategies (employing evolv-

ing algorithms used by the agents and past information,

for example n(t)), which are necessarily parallel among

the agents and stochastic (as in a democracy), are less

efficient ( �f 
 1; the best is discussed by Ghosh et al.

(2010b), giving �f ’ 0:8 only). Note here that the time

required is not dependent on N. We also note that most of

the ‘smarter’ strategies lead to much lower efficiency.

5. Conclusions and outlook

Agent-based models of order books are a good example

of the interactions between ideas and methods that are

usually linked either to Economics and Finance (micro-

structure of markets, agent interaction) or to Physics

(reaction–diffusion processes, the deposition–evaporation

process, kinetic theory of gases). Today, the existing

models exhibit a trade-off between ‘realism’ and calibra-

tion of the mechanisms and processes (empirical models

such as that of Mike and Farmer (2008)) and the

explanatory power of simple observed behavior (see

Cont and Bouchaud (2000) and Cont (2007), for exam-

ple). In the first case, some of the ‘stylized facts’ may be

reproduced, but using empirical processes that may not

be linked to any behavior observed in the market. In

the second case, these are only toy models that cannot be

calibrated to data. The mixing of many features, as in Lux

and Marchesi (2000) and as is usually the case in

behavioral finance, leads to poorly tractable models

where the sensitivity to one parameter is hardly under-

standable. Therefore, no empirical model can tackle

properly empirical facts such as volatility clustering.

Importing toy model features to explain volatility clus-

tering or market interactions in order book models has

yet to be determined. Finally, let us also note that, to our

knowledge, no agent-based model of order books deals

with the multidimensional case. Implementing agents

trading several assets simultaneously in a way that

reproduces empirical observations on correlation and

dependence remains an open challenge.

We believe that this type of modeling is crucial for

future developments in finance. The financial crisis that

occurred in 2007–2008 is expected to create a shock in

classic modeling in Economics and Finance. Many

scientists have expressed their views on this subject (e.g.

Bouchaud (2008), Farmer and Foley (2009) and Lux and

Westerhoff (2009)) and we also believe that the agent-

based models presented here will be at the core of future

modeling. As examples, we mention Iori et al. (2006), who

model the interbank market and investigate systemic risk,

Thurner et al. (2009), who investigate the effects of the use

of leverage and margin calls on the stability of a market,

and Yakovenko and Rosser (2009), who provide a brief

overview of the study of wealth distributions and

inequalities. No doubt these will be followed by many

other contributions.
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