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Ecosystem-based fisheries management forestalls
climate-driven collapse
K. K. Holsman 1,2✉, A. C. Haynie1, A. B. Hollowed1,2, J. C. P. Reum1,2,3, K. Aydin1,2, A. J. Hermann 4,5,

W. Cheng 4,5, A. Faig 2, J. N. Ianelli1,2, K. A. Kearney 1,4 & A. E. Punt 2

Climate change is impacting fisheries worldwide with uncertain outcomes for food and

nutritional security. Using management strategy evaluations for key US fisheries in the

eastern Bering Sea we find that Ecosystem Based Fisheries Management (EBFM) measures

forestall future declines under climate change over non-EBFM approaches. Yet, benefits are

species-specific and decrease markedly after 2050. Under high-baseline carbon emis-

sion scenarios (RCP 8.5), end-of-century (2075–2100) pollock and Pacific cod fisheries

collapse in >70% and >35% of all simulations, respectively. Our analysis suggests that

2.1–2.3 °C (modeled summer bottom temperature) is a tipping point of rapid decline in gadid

biomass and catch. Multiyear stanzas above 2.1 °C become commonplace in projections from

~2030 onward, with higher agreement under RCP 8.5 than simulations with moderate carbon

mitigation (i.e., RCP 4.5). We find that EBFM ameliorates climate change impacts on fisheries

in the near-term, but long-term EBFM benefits are limited by the magnitude of anticipated

change.
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M
arine ecosystems face an unknown future1–5. Multiple
studies predict large ecosystem reorganization con-
comitant with future climate change6; postulations

which are increasingly observed in a variety of marine
ecosystems1,2,4. While evidence of potential and realized climate
change impacts in marine systems is widespread, implementation
of climate-adaptive strategies for maritime societies and econo-
mies is less commonplace7,8. This reflects the naturally dynamic
nature of marine systems and the challenge of designing and
implementing policies that can address impacts and risk from
both rapid and chronic climate-driven change. Marine capture
fisheries are especially vulnerable to climate change impacts5,9–11

as marine organisms are often sensitive to small shifts in ocean
temperature, circulation, and chemistry3,12.

Presently, climate-adaptive measures are largely missing from
fisheries management policies and approaches5,13,14. Inter-
governmental and national climate assessments have highlighted
the need to evaluate existing fishery management plans for
maladaptation to climate change4,5,15. Most of these assessments
point to an ecosystem management (EM) approach to promote
resilient marine ecosystems and fisheries13,16,17. EM ranges from
an ecosystem approach to single-species management (i.e., EM as
context for management focused on optimizing a single species)
to full ecosystem-based management (i.e., EM applied across
sectors to manage the entire ecosystem). Ecosystem-based fishery
management (EBFM, i.e., EM applied to the fishery sector) is
intermediate to these approaches, and expands classic adaptive
management strategies to additionally utilize ecosystem infor-
mation to manage multiple species across the ecosystem16,18.
Intuitively, the more holistic EBFM approach should impart cli-
mate resilience to fisheries, yet few studies have demonstrated the
performance of EBFM under climate change (but see ref. 17).

Here we use scenario analyses and management strategy eva-
luation (Fig. 1)19,20 to assess the future performance of EBFM
fisheries policies as implemented in the Eastern Bering Sea,
Alaska, for the past two decades21. This highly productive system
supports the largest fishery in the United States (walleye pollock,

Gadus chalcogrammus) with ~1.4 million ton yr−1 and $1.34 bil-
lion USD first wholesale value in 2017. Pacific cod (G. micro-
cephalus) is also important in this region and is one of the most
economically valuable groundfish fisheries in the USA22. These
fisheries operate under policies that are among the most well
established and successful examples of fisheries EBFM21. A key
feature of regional EBFM is an over-arching 2 million ton annual
combined groundfish catch limit (hereafter 2 MT cap) aimed at
preserving ecosystem function21. Managers reduce annual harvest
limits for individual stocks to conform to the 2 MT cap based on
multiple management objectives, including maximizing sustain-
able yield, reducing the risk of exceeding directed and incidental
catch limits (which can close a fishery for the season), other
ecosystem considerations and impacts, and meeting distributional
objectives and mandates21.

Current EBFM in the eastern Bering Sea has sustained high
fisheries yield over the last three decades despite considerable
environmental variability and with few instances of
overfishing21,23. However, the management system is yet untested
against the unidirectional and potentially large changes antici-
pated under climate change. Indeed, recent and extreme warming
and loss of sea ice in the Eastern Bering Sea (especially during
recent unprecedented multiyear marine heatwaves between 2014
and 2019) has led to the rapid poleward redistribution of Pacific
cod and declines in recruitment and productivity of several
groundfish species24–26. Observed recent warming, sea ice loss,
and biophysical responses in the Bering Sea27,28 are consistent
with previous projections of impacts of climate change, yet were
not anticipated to manifest until mid-century29. Marine species
have exhibited responses that are both consistent with predictions
(e.g., rapid northward distributional shifts of multiple benthic
species, declines in fish recruitment, declines in large lipid-rich
zooplankton species)29,30 and unanticipated (e.g., near-term cli-
mate resilience of pollock26 or sudden widespread sea bird
mortality events31).

The most recent biophysical projections29 indicate that further
warming and reduced lower trophic level production in the

Annual indices

Cold pool area

Bottom temp.

Zooplankton

ROMSNPZ

Multi-species model

Walleye pollock

Pacific cod

Arrowtooth flounder

CMIP 5 

Carbon 

Scenarios

RCP 4.5

RCP 8.5

GFDL

CESM

MIROC

GFDL

CESM

MIROC

Socio-economic

model

Catch

ABC

Sloping HCR

Annual loop

GCMs

Climate scenarios Regional oceanography

Population dynamicsManagement dynamics

A

“No cap”

Adjusted 

ABC

“No HCR”
“2 MT cap”

B

C

Fig. 1 Model coupling framework. a Regional downscaling where three global climate models driven by the IPCC AR5 CMIP5 emission scenarios

determine boundary conditions of the coupled ROMSNPZ high resolution oceanographic model for the Bering Sea, AK. b Biological downscaling of annual

indices from the ROMSNPZ were used to drive thermal parameters in the CEATTLE model (i.e., weight-at-age and predation) as well as climate-enhanced

spawner-recruitment relationships. c Annual harvest recommendations (ABC) from the assessment model which were translated into annual catch using

the ATTACH social-economic model of the effect of EBFM policies on harvest.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18300-3

2 NATURE COMMUNICATIONS |         (2020) 11:4579 | https://doi.org/10.1038/s41467-020-18300-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Bering sea is probable, with uncertain outcomes for major fish-
eries. Previous simulation studies in the region have focused on
individual stocks and ignored inter-species and inter-fishery
interactions or evaluated multispecies or multi-fleet projections
without also resolving climate impacts on population dynamics.
Consequently, they provide limited utility in evaluating the per-
formance of status quo EBFM policies under climate change (but
see refs. 19,32). Here we use coupled climate-enhanced multi-
species assessment and fishery management models to evaluate if
EBFM reduces future risk of fishery declines, alters thermal tip-
ping points for fisheries, and imparts increased stability and
sustainability in harvest under climate change.

We find that EBFM policies help ameliorate climate change
impacts on fisheries in the eastern Bering Sea in the near-term,
yet benefits are limited after mid-century when climate-driven
declines exceed adaptive capacity. Under representative con-
centration pathway (RCP) 8.5 (i.e., high-baseline carbon emis-
sions33), end-of-century (2075–2100) pollock and Pacific cod
fisheries collapse in >70 and >35% of all simulations, respectively.
Our analysis suggests that 2.1–2.3 °C (modeled summer bottom
temperature) is a tipping point of rapid decline in gadid biomass
and catch across climate emission scenarios and management
approaches investigated. Multiyear stanzas above 2.1 °C become
commonplace in projections from ~2030 onward, with higher
agreement under RCP 8.5 than simulations with moderate carbon
mitigation (i.e., RCP 4.5). We therefore conclude that EBM
represents a climate-resilient approach for managing marine
living resources in the near-term, but with the caveat that
adaptation through EBFM is limited by socioeconomic con-
straints and the magnitude of change anticipated by mid-century
under high emission scenarios.

Results
Projected changes in environmental conditions. Increases in
summer bottom temperature indices are projected for the EBS
under both representative concentration pathway (RCP) 4.5 and
8.5, but are consistently highest for RCP 8.5 (i.e., high-baseline
carbon emissions). Under RCP 4.5 (i.e., moderate carbon miti-
gation), two of the three GCMs project warming of ~1–2.5 °C
over the next 80 years, and increases of 2–4.5 °C are projected
under RCP 8.5 for all three GCMs by end of the century (Fig. 2).

Projected changes in unfished spawning biomass. Under all 3
RCP 8.5 projections, and 2 of 3 RCP 4.5 runs, the combined

effects of increased metabolic demand, reduced availability of
lipid-rich prey26,29 (Supplementary Fig. 1), and increased overlap
with juvenile gadid predators, resulted in reduced survival and
overwintering success of juvenile gadids and led to long-term
declines in groundfish populations (Figs. 3, S2). Unfished
spawning biomass for pollock and cod declined under both RCP
4.5 and 8.5 projection scenarios, with greater and more consistent
declines projected for pollock and cod under RCP 8.5 (Fig. 3b, d).
Relative to the persistence scenario (where future climate was
held constant at average 2006–2017 hindcast conditions), under
RCP 4.5 and RCP 8.5, end-of-century (2075–2100) unfished
pollock spawning stock biomass declined on average by 47% and
70%, respectively, cod declined 23% and 41%, respectively, and
arrowtooth flounder increased 7% and declined 6%, respectively.
Notably, under RCP 8.5 more than a third of all simulations
resulted in >90% declines in pollock unfished spawning biomass
by end-of-century (relative to the persistence scenario).

Effect of the EBFM 2 MT cap on projected catch. In the absence
of the EBFM 2 MT cap, declines in fished spawning stock biomass
were projected for all species (Supplementary Fig. 2). Imple-
mentation of the 2 MT cap stabilized pollock catch (up to mid-
century) and ameliorated climate-driven declines in pollock catch
and biomass in all scenarios, despite substantial variation among
projections (Figs. 4, S2). These effects were greatest for scenarios
where warming was minimal and spawning biomass remained
relatively high; benefits of the 2 MT cap were reduced after mid-
century in projections with significant warming.

The 2 MT cap had little effect on Pacific cod, which is managed
close to the target fishing mortality rate (Supplementary Fig. 3).
However, to provide for other groundfish fisheries under the 2
MT cap, fishing mortality for pollock at high stock sizes was
reduced when stocks were above the target spawning biomass34

(https://github.com/amandafaig/catchfunction) resulting in a
reduction in the spawning exploitation rate (Supplementary
Fig. 3). A similar pattern of reduced exploitation rate at higher
biomass was also emergent for arrowtooth flounder simulations
(Supplementary Fig. 3) resulting in a large benefit of the 2 MT cap
for arrowtooth flounder catch, especially in RCP 8.5 scenarios
where catch under the 2 MT cap was stable as compared to
declines in scenarios without the 2 MT cap (Fig. 4).

The effect of the EBFM 2 MT cap on pollock catch and
biomass varied with the magnitude of climate-driven change. The
2 MT cap reduced the risk of decline in catch or biomass relative
to the same scenarios without the 2 MT cap early in the
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projection period for RCP 8.5 for pollock (Fig. 5a, b;
Supplementary Fig. 4A). However, risk of decline increased
within each successive 25-yr period and there was no reduction of
risk after 2080 under the 2 MT cap when declines were imminent
regardless of EBFM policies. The beneficial effect of the 2 MT cap
on reducing risk of declines in catch was greater under moderate
mitigation scenarios (RCP 4.5) relative to the high baseline (RCP
8.5) for pollock. Yet, regardless of management scenario (i.e., with
or without the 2 MT cap), under RCP 8.5 roughly 70% of
simulations resulted collapse of pollock catch (i.e., >80% decline
relative to the persistence scenario) by end-of-century and ~90%
of simulations exhibited severe declines in catch (i.e., >50%
decline).

Risk of fishery collapse under climate change. Similar to pol-
lock, the 2 MT cap also reduced the risk of decline (i.e., >10%
decline relative to the persistence scenario) in arrowtooth floun-
der catch, yet unlike pollock, reduction in risk of declines in
arrowtooth catch under the 2 MT cap was greater under RCP 8.5
than RCP 4.5 (Supplementary Table 1). The 2 MT cap had little
effect on Pacific cod catch in general, thus reduction in risk of
declines in Pacific cod catch under the 2 MT cap (as compared to
no cap scenarios) were marginal (Supplementary Fig. 4). Across
all scenarios, by end-of-century roughly a third of simulations
exhibited collapse of Pacific cod catch and ~65% of simulations
resulted in severe declines in catch (i.e., >50%).

Thermal tipping points for fishery collapse. Threshold analysis
suggests that a summer survey average bottom temperature of
2.1–2.3 °C is a tipping point for changes in catch (relative to the

persistence scenario) from stable (or increasing) to rapid decline
for Pacific cod and pollock (Fig. 6, Supplementary Fig. 5). In
contrast to scenarios without the 2 MT cap, warming is associated
with an increase (rather than a decrease) in arrowtooth catch
relative to the climate persistence scenario. Multiyear warm
stanzas with five consecutive years above the putative 2.1 °C
threshold occurred in only one period of the hindcast
(2004–2005) but become commonplace in projections from 2033
onward in all three models under RCP 8.5, and two of the models
under RCP 4.5 (Fig. 2, Supplementary Fig. 6).

Discussion
EBFM policies, such as the system-wide 2 MT cap on cumulative
annual groundfish harvest (and the attendant reduction in
exploitation rate at high stock sizes) may forestall declines in
biomass and catch under climate change and provide fisheries
and fishers a critical window of opportunity to prepare for and
adapt to change. Implemented over 35 years ago, the 2 MT cap
was not specifically designed to enable resilience to climate
change. However, it provides an important stabilizing role in
maintaining consistently high catches and spawning biomass of
pollock in the EBS despite climate-driven change. That said, we
also found that climate-driven changes may exceed the adaptive
capacity of current fisheries management after 2050 and sig-
nificant declines of >80% (relative to the persistence scenario)
were projected for pollock and cod after 2075 in most simulations
under the warmest scenarios regardless of management approa-
ches trialed.

EBFM policies interact with climate sensitivity to impact spe-
cies differently. In this example, the EBFM 2 MT cap tips the
balance for arrowtooth flounder such that future catch is stable
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and sometimes increases under future climate change. Yet for
Pacific cod, the 2 MT cap EBFM policy has little effect on catch
and therefore does not alter the outcome of declines under cli-
mate change. This reflects historical precedent of the effect of the

2 MT cap for maximizing catch of the most valuable species in
the aggregate complex34 (i.e., Pacific cod; https://github.com/
amandafaig/catchfunction). Contrasting effects of the 2 MT cap
across species suggest that EBFM harvest policies that reduce the
spawning exploitation rate at high abundances should buffer
stocks and reduce vulnerability to climate-induced collapse, at
least in the near-term. Of note, the benefit of the EBFM 2 MT cap
scales with rate of warming, with collapse occurring before 2050
in the fastest warming simulations even under the 2 MT cap.

In contrast to previous analyses23,35 we do not find support for
potential increased yield under climate change for Alaska fish-
eries. Our results are more consistent with regional and species-
specific analyses that project declines for many Bering sea
species36,37. The risk of declines in spawning biomass and catch
for the species in our model increases between RCP 4.5 and 8.5
and over time, with projected declines diverging from the per-
sistence scenario by 2050, even with the 2 MT cap. Prior to 2050,
the general trend is a decline relative to the persistence scenario,
but there is considerable variability among GCMs due to
process error.

Our study identified a critical ~2.1–2.3 °C summer bottom
temperature (i.e., ~0.2 °C warming relative to the 1979–2017 per-
iod) threshold for declines in catch that can inform regional fish-
eries management, especially if combined with climate forecasting
tools38. Projected declines in fall zooplankton biomass are asso-
ciated with increasing bottom temperatures (Supplementary Fig. 1)
29,30 and retrospective analyses also suggest that recent historical
warm stanzas were associated with multi-trophic responses in the
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Bering Sea, including declines in fall zooplankton and reduced
survival of upper-trophic level consumers26,31,39. Across projec-
tions, such conditions become commonplace in 2033, but occur as
early as 2025 in some model trajectories (MIROC RCP 8.5) or not
at all (GFDL RCP 4.5).

Few studies to date have confronted the assumption that tools
developed to promote stability under the assumption of statio-
narity in biological processes will perform well under climate
change. Current management tools may perform poorly in
increasingly volatile climate conditions40. For example, catch
shares programs that incentivize long-term stewardship through
stock ownership increase the safe operating space for fisheries
management, but can abruptly fail at low biomass levels40. Others
have found potential for climate change to erode confidence in
the management process even in well-managed systems41.
Finally, management measures aimed at stabilizing resources over
time can increase long-term instability42–44. Indeed, we found
that the EMFB 2 MT cap stabilized fisheries in the near-term but
increased the risk of sudden collapse of pollock catch at the end of
the century (i.e., collapse occurs rapidly without preceding
declines in catch). Concurrent climate-driven declines in
spawning stock biomass preceded collapse, reinforcing the
importance of fishery-independent estimates of biomass for early
warnings of impending fishery declines. Hyperstability is an

inherent risk in decoupled harvest and biomass dynamics45 and is
a potential outcome of the EBFM cap which should be explored
in future management strategy evaluations. Climate-resilient
fisheries management may require transformative approaches
that embrace variability rather than target biological
stability40,43,44 in order to ensure future fisheries and food
security under climate change46.

Increasing flexibility in fisheries management is often advo-
cated as an approach to help fisheries adapt to climate-driven
change14,47,48. We found that fixed management measures,
especially those with an EBFM focus such as the 2 MT cap on
harvest, also impart benefits to future fisheries through stabilizing
catch, at least to a point. It appears new methods, or potentially
adaptive methods, may be required as systems are put under
increasing stress beyond mid-century. Sustainable harvest limits
combined with sloping harvest control rules, a common single-
species management tool, induced large oscillations in biomass
that could destabilize fisheries when used alone (i.e., without an
ecosystem 2 MT cap on total yield; Fig. 4). In practice, a portfolio
of management approaches that integrate both flexible and fixed
management measures is likely needed to promote adaptation
across multiple scales of impact13,14,17.

We focused our analyses on status quo EBFM policy perfor-
mance under future conditions, yet these polices were not
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1000 bootstrap replicates. Scenarios without the 2 MT cap (a, c, e); scenarios with the 2 MT cap (b, d, f). Rows correspond to each species. The thick

white and orange lines indicate areas where the 95% CI of the first derivative (s(x)′) of the smoothing functions do not include zero; orange bar indicates

indicate where the 95% CI of the second derivative (s(x)″) does not overlap zero; on each line, red circles indicate the best estimate of the tipping point

(i.e., s(x)″ is most different from zero).
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implemented to specifically address climate change. Our frame-
work enables consideration of a much broader set of scenarios,
for instance, implementation of adaptive or climate-informed
alternatives to the 2 MT cap, EBM policies that optimize eco-
system productivity (sensu17), or policies that favor climate-
informed single-species management over current climate-naive
ecosystem caps on total allowable catch (TAC). When considered
with the current scenario suite, such scenarios could further
characterize the effectiveness of EBFM in facilitating climate
adaptation and represent important next steps for evaluation.

Methods
Regionally-downscaled climate change projections. We used a management
strategy evaluation (MSE) applied to ensemble projections of a climate-enhanced
multispecies stock assessment within the integrated modeling framework of the
Alaska Climate Change Integrated Modeling project (ACLIM)19. For this, six high
resolution downscaled projections of oceanographic and lower trophic level con-
ditions in the Bering Sea (using the Regional Ocean Modeling System49,50) were
coupled to the BESTNPZ nutrient-phytoplankton-zooplankton model51; we refer
to this model complex throughout this paper as the Bering10K ROMSNPZ, or just
ROMSNPZ, model. Boundary conditions were driven by three global general cir-
culation models (GFDL-ESM2M52, CESM153, and MIROC-ESM54)
projected (2006–2099) under the high-baseline emission scenario Representative
Concentration Pathway 8.5 (RCP 8.5) and midrange global carbon mitigation
(RCP 4.5; note, that for CESM under RCP 4.5, projections from 2080–2100 were
unavailable so conditions from 2080–2099 were held constant at 2080 condi-
tions for that scenario only) future scenarios from the Coupled Model Inter-
comparison Project phase 5 (CMIP5)29,55. Hermann et al.30,56 also report on
downscaled hindcasts of oceanographic and lower trophic conditions in the EBS
from 1970–2012 (see refs. 30,56,57 for detailed descriptions of model evaluation and
performance). For each downscaled model simulation, we replicated the National
Marine Fisheries Service Alaska Fisheries Science Center annual summer bottom-
trawl survey in time and space in the ROMSNPZ model (using historical mean
survey date at each latitude and longitude of each gridded survey station) to derive
estimates of sea surface and bottom temperatures (Fig. 1). We additionally used a
polygon mask of the survey area to estimate the average zooplankton abundance in
the system during spring, summer, winter, and fall months. These indices were
derived for each climate projection scenario, as well as a persistence scenario where
conditions were held constant at the average of those for 2006–2017 from a
hindcast simulation. All index projections were bias corrected to the 2006–2017
hindcast period using the delta method assuming unequal variance in the GCM
projections and hindcast58 such that:

T
fut
0

;y
¼ �T

hind;ref
!þ

σ
hind;ref

!

σ
fut;ref
!

Tfut;y � �T
fut;ref
!

� �

ð1Þ

where T
fut
0

;y
is the bias-corrected projected timeseries, Tfut;y is the raw projected

timeseries, �T
hind;ref

! is the mean of the hindcast during the reference years ref
�!

(2006–2017), �T
fut;ref
! is the mean of the raw projected timeseries during the

reference years ref
�!

, σ
hind;ref

! is the standard deviation of the hindcast during the

reference years ref
�!

, σ
fut;ref
! is the standard deviation of the raw projection time-

series during the reference years ref
�!

.

Climate-enhanced multispecies stock assessment model. Bias-corrected indices
were then used as covariates in the climate-enhanced multispecies stock assessment
model for the Bering Sea (hereafter CEATTLE)59 to evaluate the performance of
alternative management approaches on future fish biomass and catch. CEATTLE is
a climate-enhanced multispecies statistical age-structured assessment model with
parameters for growth that are functions of temperature (i.e., temperature-specific
average weight-at-age) and predation that are functions of temperature (via a
bioenergetics-based predation sub-model)59–61. Since 2016, the model has been
used operationally in the Bering sea as a supplement to the annual BSAI pollock
stock assessment61. Various configurations of CEATTLE are possible; for this study
we chose one where temperature-specific predator and prey interactions influenced
natural mortality, temperature influenced weight-at-age, and the spawner-recruit
relationship was a function of physical and biological future conditions as well as
random variability (i.e., a climate-informed multispecies model). We fit the model
using penalized maximum likelihood to survey biomass, diet, and fishery harvest
data for three groundfish species pollock, Pacific cod, and arrowtooth flounder
from the EBS in the EBS over the period 1979–2017. We also used the Bering10K
ROMSNPZ model to produce detailed hindcasts of temperature for the period
1970–2017. We used hindcast-extracted timeseries from the ROMSNPZ model and
CEATTLE model estimates of recruitment (Ri;y;l) and spawning biomass (Bi;y�1) in

hindcast year y for each species i to fit a climate-enhanced logistic recruitment per

spawner model36, such that:

ln R̂i;y

� �

¼ αi � β0;iBi;y�1 þ ln Bi;y�1

� �

þ BiX þ εi;y ð2Þ

where BiXl is the summed product of each covariate parameter βij and the cor-

responding environmental covariate Xj;y for each bias-corrected environmental

index j ¼ ð1; 2:::njÞ. We selected indices representative of ecological conditions

important for groundfish recruitment in the Bering sea39; spring and fall large
zooplankton abundances, survey replicated bottom temperature, and extent of the
residual cold pool of extremely dense and cold sea water that persists across the
EBS shelf following spring sea ice retreat. We assumed normally distributed (in log

space) residual errors for each species (εi;y � N 0; σ2i
� �

). The CEATTLE model was

then projected forward where ROMSNPZ indices from individual projections
drove growth, predation, and recruitment in each future simulation year36,62.

Evaluation of harvest management approaches. Previous authors have defined
EM (i.e., the incorporation of ecosystem information into marine resource man-
agement) as a continuum between two paradigms of management and focus18. On
one end is within-sector single-species management that considers ecosystem
information (EAFM) and on the other is cross-sectoral whole of ecosystem man-
agement (i.e., EBM). EBFM is intermediate between these and is defined by
quantitative incorporation of ecosystem interactions into assessment models and
target setting (EBFM). Most fisheries management in the Bering Sea can be
characterized as EBFM or EAFM, with increasing trends toward cross-sectoral
coordination at the scale of EBM. Here we focus on one aspect on this scale of
potential management options, operational EBFM and EAFM as captured through
the CEATTLE multispecies stock assessment model and harvest policies decisions
made annually under the constraint of the 2 MT cap (modeled via the ATTACH
model).

MSE is a process of “assessing the consequences of a range of management
strategies or options and presenting the results in a way which lays bare the
tradeoffs in performance across a range of management objectives”63. MSE has
been frequently used to evaluate alternative management strategies based on single-
species estimation methods64. It is increasingly used to evaluate ecosystem
management performance, although these evaluations are far less commonplace
due to the complexity of modeling and assessing the performance of ecosystem
level metrics64. Importantly, MSE “does not seek to proscribe an optimal strategy
or decision”63, rather it aims to describe the uncertainty and tradeoffs inherent in
alternative strategies and scenarios. In this case, through a series of workshops, we
worked with managers and stakeholders to identify priority scenarios and
outputs19. From this, risk, sensitivity, and uncertainty under contrasting climate
scenarios were requested outputs of the analysis, as was the performance of current
climate-naive EBFM policies.

A key component of MSE is identifying and quantifying uncertainty (i.e.,
process, observation, estimation, model, and implementation error) and
representing it using an operating model. In the case of this MSE, the focus was on
process error uncertainty due to variation in recruitment about the fitted stock-
recruitment relationship, one major source of model error in the form of
alternative climate scenarios, and implementation error. The MSE does not account
for estimation error (uncertainty in the parameters of the operating model) nor
observation error. This is because the estimates of recruitment and spawning
biomass from CEATTLE for the BSAI are very precise (see Fig. 10 in ref. 60) and
the estimation and operating models are therefore very similar. Thus, CEATTLE is
the operating model for this MSE and implicitly the estimation method. In this
approach we assume that while allowing for observation error would have
increased overall error, the effect would have been minor compared to the
investigated uncertainties. Future analyses using a full MSE (i.e., separate operating
and estimation models) could evaluate the effect of observation error, but perhaps
more importantly, the potential for model error, whereby the population dynamics
model (on which the estimation method is based) differs from that of the operating
model such that the estimates on which management decisions are made are biased
relative to the true values in the operating model.

Given this we summarized the relative change in catch and biomass for the
three species in the model under the following fishing scenarios (Fig. 1): (a)
projections without harvest (Fi;y ¼ 0) in each year y of scenario l for each species i,

(b) projections under target harvest rate (Supplementary Fig. 7 left) and with a
sloping harvest control rule (HCR) (Supplementary Fig. 7 right), (c) as in 2 but
with the constraint of a 2 MT cap applied dynamically to the three focal
species only.

Under the North Pacific Fishery Management Council (NPFMC) constraint of
the 2 MT cap on cumulative total annual catch, realized harvest (i.e., catch) and
specification of individual species harvest limits known as Total Allowable Catch
(TAC; metric tons) are a function of the acceptable biological catch (ABC) for the
given species, as well as ABC of other valuable species in the aggregate complex19,34

(https://github.com/amandafaig/catchfunction). TAC must be set at or below ABC
for each species, therefore TAC of individual species are traded-off with one
another to avoid exceeding the 2 MT cap. From 1981 to 1983, the TAC of pollock
was reduced significantly below the ABC and in 1984 the 2 MT cap became part of
the BSAI fishery management plan21,34,65. Pacific cod regulations have changed
markedly over recent decades and it was only in the 1990s that in many years the
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catch and TAC approached its ABC. Thus, we used the socioeconomic ATTACH
model (the R package ATTACHv1.6.0 is available with permission at https://
github.com/amandafaig/catchfunction34) to model realized catch in each
simulation year as a function of CEATTLE assessment estimates of ABC (tons) for
pollock, Pacific cod, and arrowtooth flounder under future projections
(2018–2100). This entailed three steps for each future simulation year y:

1. project the population forward from y � 1 to y using estimated parameters
from the multispecies mode of the CEATTLE model fit to data from 1979 to
2017 and recruitment based on biomass in simulation year y and future
environmental covariates from the ROMSNPZ model downscaled projec-
tions (see “Methods” above) to determine ABCi;y;l for each species (i) under
each scenario (l) given the sloping harvest control rule for pollock, Pacific
cod, and arrowtooth flounder in each simulation year y;

2. use ABCi;y;l of each species from step 1 as inputs to the ATTACH model in
order to determine the North Pacific Marine Fishery Council Total
Allowable Catch (TACi,y,l) for the given simulation l year y;

3. use TACi,y,l from step 2 to estimate catch (tons) in the simulation year
(Fig. 1); remove catch from the population and advance the simulation
forward 1 year.

Determine the annual ABC. We used end-of-century projections (2095–2099) to
derive a maximum sustainable yield (MSY) proxy for future harvest recommen-
dations (ABCi,y,l) for each scenario l. To replicate current management, we used a
climate-specific harvest control rule that uses climate-naive unfished and target
spawning biomass reference points (B0;i and Btarget;i , respectively) and corre-

sponding harvest rates (Fi;y ¼ 0 and Fi;y ¼ Ftarget and Bi;y;l in each simulation l year

y for each species i

ABCi;y;l ¼
X
Ai

a

Si;aFABC;i;y;l

Zi;a;y;l

1� e�Zi;a;y;l
� �

Ni;a;y;lWi;a;y;l

 !

ð3Þ

where Wi;a;y;l , Ni;a;y , and Zi;a;y;l is the climate-simulation specific annual weight,

number, and mortality (i.e., influenced through temperature effects on recruitment,
predation, and growth) at age a for Ai ages in the model, and Si;a is the average

fishery age selectivity from the estimation period 1979–201759,60. FABC;i;y;l and was

determined in each simulation timestep using an iterative approach66 whereby we:
(i) first determined average B0;i values in years 2095–2099 by projecting the model

forward without harvest (i.e., Fi;y ¼ 0) for each species under the persistence

scenario. We then (ii) iteratively solved for the harvest rate that results in an
average spawning biomass (Bi;y) during 2095–2099, that is, 40% of B0;i (i.e., Ftarget;i)

for pollock and Pacific cod simultaneously, with arrowtooth flounder Fi;y set to the

historical average (as historical F for arrowtooth flounder ≪F40%); once Ftarget;i for

pollock and Pacific cod were found, we then iteratively solved for Ftarget;i for

arrowtooth flounder (Supplementary Fig. 7 left panel)59,60. Last, (iii) to derive a
climate-informed ABCi;y;l in each simulation year, the North Pacific Marine

Fisheries Council (hereafter, “Council”) Tier 3 sloping harvest control rule with an
ecosystem cutoff at B20% was applied to adjust FABC;i;y;l lower than Ftarget;i if the

simulation specific (climate-informed) Bi;y;l was lower than 40% of the climate-

naive B0;i at the start of a given year or set to 0 if Bi;y;l < 20%B0;i; FABC;i;y ¼ Ftarget;i;y
for the remainder of the simulations where Bi;y;l ≥ 40%B0;i)

21.

This approach follows the status quo Council reviewed multispecies assessment
methodology60 and represents a precautionary approach that minimizes inflation
of ABC due to predator release59 and also minimizes potential non-intuitive
compound effects of climate change and fishing under declining conditions (i.e.,
whereby a climate-informed B0 declines with climate change and produces a lower
target (B40%) biomass). While beyond the scope of this study, future simulations
might further explore the performance of alternative B0 approaches (e.g.,
periodically updated climate-informed B0 , annually varying B0 with climate-
penalized B40%).

Simulate TAC. ATTACH estimates the TAC that would be set by the North Pacific
Fishery Management Council, and the subsequent catch that would be harvested by
the commercial fishery, based on historical data and assuming current policies and
priorities remain relatively unchanged in projections. The impacts of existing
policies such as Amendment 80 (i.e., A80, which created multispecies coopera-
tives), the American Fisheries Act (i.e., AFA, which created pollock cooperatives),
and large spatial closures are included and evaluated in the retrospective analysis.
Future scenarios will explore relaxation or alteration of these underlying
assumptions19. ATTACH first estimates the TAC from the specified ABC through
an ensemble of three log-linear regressions and seemingly unrelated regressions

(SUR) where normally distributed error terms εTACi;y are independent across time,

but may have cross-equation contemporaneous correlations67. Specifically, the
models are statistically fit to historical ABC and TAC data from 1992 to 2017 such

that:

ln TACi;y

� �

¼ αi þ βiln ABCi;y

� �

þ
X
Nj

j¼1

γijABCj;y þ
X
Nk

k¼1

θikIk þ εTACi;y ;

where εTACi;y � N 0; σTACi

� �

ð4Þ

where the harvest limit for species i in a given historical year y (TACi;y) is a

function of the assessment model-based ABC (ABCi;y , in metric tons) for the

species i, αi is the log-linear intercept and βi , γij , and θik are coefficients for ABC

and policy covariates Ik (e.g., closures, A80, AFA). ε
TAC
i;y is the residual error and is

log-normally distributed. The residuals of equations estimated as a SUR system are
assumed to be correlated, and this is used to more efficiently estimate the
regression coefficients. This parameterization assumes exogenous shocks affect all
included species to varying degrees. The mean relationship between TAC and ABC
(Eq. 4) was used to simulate TACi,y,l in each projection year using inputs of ABCi,y,l

from the CEATTLE model (Eq. 3). Historically, in all but two years the sum of
TAC across species has equaled 2 MT exactly, thus we imposed an addition
constraint; if the cumulative predicted TACs from the ensemble exceeded 2 MT,
the TACi;y;l of each species was proportionally reduced to satisfy the constraint of a

2 MT limit on the sum of all TACi;y;l . Of note, this step simulates the current

management regime, and is not an optimization.

Simulate annual harvest (catch). Similarly, ATTACH uses an ensemble of three
models to estimate catch biomass (Ci;y ; tons) for a given target species i as a

function of TACi,y and sometimes the TACj,y of 1 to 2 additional species j, as well
as relevant policy/events in a given year:

ln Ci;y

� �

¼ αi þ βi ln TACi;y

� �

þ
X
Nj

j¼1

γijTACj;y þ
X
Nk

k¼1

θikIk þ εCi;y ;

where εCi;y � N 0; σCi
� �

ð5Þ

The three models in the ensemble differ in their error structure for catch: model
1 assumes each of the log-linear equations are independent, model 2 has two
groups of linked SUR (representing species that are caught concurrently), and
model 3 has three groups of linked SUR (representing a third group, on top of the
two of model 2, of species whose catches are linked). As in (Eq. 4), αi is the log-
linear intercept and βi, γij , and θik are coefficients for TAC and policy covariates Ik
and εCi;y is the residual error and is log-normally distributed and assumed to be

correlated across linked SUR.
The authors of the ATTACH model evaluated the performance of the TAC and

catch prediction models using leave-one-out cross-validation (LOO-CV)34. For
each year, they estimated the coefficients of each model using data from all but that
year, and then used those estimators to predict the TAC or catch of the omitted
year. They then calculated the difference between the predicted and actual catch for
each year (1992–2017) to evaluate the models using a variety of metrics: simple
sum of differences, sum of percent differences, sum of squared differences
(weighted by value, ABC, TAC, and catch, respectively), the sum of squared
percent differences. They also evaluated those metrics for the final models (trained
on the entire data set). They found that the ATTACH model performed best for
species targeted by directed fisheries, as is the case for the species in this study,
while predictive skill of the model was weaker for less economically valuable
species. In all species, however, the ATTACH model performed better than
assuming catch is equal to ABC (Supplementary Fig. 8).

For the MSE application in this study ABCi;y;l and ABCj;y;l of pollock, Pacific

cod, and arrowtooth flounder output from the CEATTLE model were used as
inputs into the ATTACH function for each simulation year, while the ABCj;y of the

remaining non-CEATTLE species were set to their respective historical averages
(1992–2017). Pollock, Pacific cod, and arrowtooth flounder ABCs were used to
predict TACi;y;l for each species, which in turn was used to predict catch Ci;y;l using

estimated coefficients from the regressions described above (Eq. 4, 5). The Ci;y;l of

pollock, Pacific cod, and arrowtooth were then removed from the population of
each species in the simulation year y (by calculating the effective harvest rate Fi;y;l
given the input catch Ci;y;l) and the simulation was rolled forward 1 timestep.

Under this approach, TAC and catch estimates from ATTACH change solely in
response to changes in pollock, Pacific cod, and arrowtooth flounder input ABCs.
This assumption is significant but difficult to assess without considering alternative
models that resolve the population dynamics of the remaining species managed
under the 2 MT cap along with their biological interactions and potential future
changes in relative harvest values. That said, the three species in CEATTLE are
known to strongly interact, account for a large proportion of total EBS fish
biomass, and strongly drive TAC allocation. Future sensitivity analyses, possibly
using more speciose food web models32,68 would be useful to quantify this
sensitivity.

Evaluating management performance and risk. We evaluated the performance
of these various management strategies under moderate and high-baseline climate
futures. We explored temporal patterns in risk defined as the probability of a 10%
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decline in biomass or catch relative to the persistence baseline scenario for each
harvest scenario. We also evaluated the probability of severe decline and collapse,
defined as a greater than 50 and 80% decline (respectively) in biomass or catch in
climate change scenarios (relative to the persistence scenario).

Threshold and tipping point analysis. We use ecosystem threshold analyses69,70

to identify thresholds and tipping points for each species in the non-linear rela-
tionship between catch (response) and temperature (pressure). Using the multi-
species model estimates of recruitment for each species (i) for each future year (y)
of the simulation and each future scenario (l) we drew random samples from the
log-normally distributed parameter estimate for climate-enhanced recruitment
relationships and projected the model forward under the 2 MT cap management
scenario. This formed 100 replicates of each future scenario for each species under
no fishing and no cap simulations, and 30 replicates under the 2 MT cap. We
calculated the change in catch (ΔCi;y;l) relative to the persistence scenario (l ¼ 1)

as:

ΔCi;y;l ¼ Ci;y;l � Ci;y;l¼1

� �

=Ci;y;l¼1 ð6Þ

We then pooled the full set of ΔCi;y;l and corresponding bottom temperatures

(T) to estimate the threshold for the ΔCi;y;l � f Tð Þ relationship. Following

Samhouri et al.69, we fit general additive models using thin plate regression spline
smoothing terms, using the mgcv71 package in R, with the basis dimension set to 4
to avoid overfitting. We then calculated the first and second derivative of the
smoothing function s(x), as well as the 95% CI (as the 2.75 and 0.975 quantiles) of
the smoothing and its second derivative by bootstrapping (n= 1000) the residuals.
Last, the inflection or tipping point was defined as the temperature whereby the
second derivative (s(x)'') changed sign and the 95% CI of the second derivative
(smoothed with a local polynomial regression smoother using the loess() function
in R with the span set to 10%) was most different from zero69.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All simulation and supporting data for these analyses have been archived and are

available for download at https://doi.org/10.6084/m9.figshare.12568625.v1.

Code availability
Code used to generate intermediate or final data and figures is available for download by

Holsman et al.62. Ecosystem-based fisheries management forestalls climate-driven

collapse analysis and figures code v1.0 (Version v1.0). Zenodo. http://doi.org/10.5281/

zenodo.3965248 and https://github.com/kholsman/EBM_Holsman_NatComm. The

ATTACH model v1.6.0 and supporting documentation34 is available for download from

the following archived code repository: https://doi.org/10.5281/zenodo.3966545; updated

versions can be found at https://github.com/amandafaig/catchfunction.
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