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Abstract

The enegy consumptionof computes has recently been
widelyrecanizedio bea major challenge of systemslesign.
Our focusin this paperis to investigatenvhatrole the oper

ating systentanplayin improving enegy usage withoutde-

pendingon applicationsoftwae beingrewritten to become
enegy-awae. Enegy, with its globalimpacton thesystem,
is a compellingreasonfor unifying resouce manajement.
Thuswe proposethe Currentcy Model that unifies enegy

accountingover diverse hardware componentsnd enables
fair allocationof availableenegy amongapplications.Our

particular goal is to extendbattery lifetime for mobile de-

vices. We haveimplementedc COSystema modifiedLinux,

thatincorporatesour currentcymodeland demonstatesthe

feasibility of explicit control of the batteryresouce Experi-

mentalresultsshowthat ECOSystemanhit a targetbattery
lifetimeg and for reasonabldargets,can do sowith accept-
ableperformance

1

Oneof the emeging challengef computersystemdesign
is the managemenand conseration of enegy. This goal
manifestsitself in a numberof ways. The goal may be to
extendthe lifetime of the batteriesin a mobile/wirelesgle-
vice. The processingpower, memory and network band-
width of suchdevicesareincreasingapidly, oftenresulting
in anincreasdn demandfor power, while batterycapacity
is improving at only a modestpace. Othergoalsmaybeto
limit the coolingrequirement®f a machineor to reducethe
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economiccostsof poweringalargecomputingfacility. Each
scenaridhasslightly differentimplications.In this work, we
focuson batterylifetime which allows us to exploit certain
characteristicsf batterytechnology

Ideally, the problemof managingthe enegy consumed
by computingdevices shouldbe addressedt all levels of
systemdesign- from low-power circuitsto applicationsca-
pableof adaptingto the available enegy source. Many re-
searchandindustrialefforts arecurrentlyfocusingon devel-
oping low-power hardware. We have previously adwocated
thevalueof including enegy-awvareapplicationsoftwareas
asignificantiayerin thedesignof enepgy efficientcomputing
systemg8]. It is now awidely heldview in the community
thatapplicationinvolvementis important; however, the ne-
cessityof applicationinvolvementfor achievzing enegy sav-
ingsvia softwarehasnotyetbeenshavn. Thus,animportant
guestionto askis whatthe operatingsystemcando within
its own resourcemanagemenfunctionsto improve enegy
usagewithoutassumingary explicit cooperatiorfrom appli-
cations. Our scientificobjectie in this paperis to explore
the degreeto which enegy-relatedgoalscanbe achiezed at
the OS-level, exploiting existing, state-of-the-arhardware
featuresput requiringno application-specifiknowledgeor
theability of applicationgo adaptto enegy constraintsThis
pointof view alsohaspracticalimplicationssincewe cannot
dependon mary currentapplicationsheingrewritten to be-
comeenegy-avare,atleastuntil it is demonstratethatthe
effort neededwill producedramaticallybetterresultsthan
systems-basedpproache®r until a suitableinfrastructure
is availableto facilitateandsupportsuchredesign.

One of the major contrikutions of our work is the intro-
ductionof anenegy accountingnodel,calledthe currentcy
mode] that unifiesresourcananagemenfor differentcom-
ponentsof the systemandallows enegy itself to be explic-
itly managedUnifying resourcenanagementasoftenbeen
mentionedhsadesirablegoal,butafocusonenegy provides



a compellingmotivationto seriouslypursuethis idea. En-
ergy hasaglobalimpacton all of thecomponent®f theen-
tire system.In our model,applicationscanspencheir share
of enepgy on processingpn disk I/O, or on network com-
munication- with suchexpenditureson differenthardware
componentgepresentedy a commonmodel. A unified
modelmakesenegy usetradeofs amonghardwarecompo-
nentsmoreexplicit.

In generaltherearetwo problemsto considerat the OS-
level for attackingmostof the specificenegy-relatedgoals
describedabore. The first is to develop resourcemanage-
ment policies that eliminate wasteor overheadand make
usingthe device aseneqy efficient aspossible. An exam-
ple is a disk spindavn policy that usesthe minimal enegy
wheneer the diskis idle. This hasbeenthe traditionalap-
proachandhastypically beenemployedin apiecemealper
device fashion. We believe our currenty modelwill pro-
vide a frameawork to view suchalgorithmsfrom amoresys-
temwideperspectie. The secondapproachs to changehe
offeredworkloadto reducethe amountof work to be done.
Thisis theunderlyingstratey in applicationadaptionwhere
the amountof work is reduced,often by changingthe fi-

formancedegradation. Our proportionalsharingsenesto
distribute the performancémpactamongcompetingacti-
tiesin aneffective way.

Thepaperis organizedasfollows. In the next sectionwe
outline the underlyingassumption®f this work, including
thepowerbudget thecharacteristicef batteriesandthena-
ture of the expectedworkloadof applications.In Section3,
we presentthe currenty modeland the designof the cur
rentg allocator In Sectiond, we describehe prototypeim-
plementatiorandin Section5, we presenthe resultsof ex-
perimentgo assesthebenefitof thisapproachWe discuss
relatedwork in the next sectionandthenconclude.

In future work, after exploring the possibilitiesfor OS-
centricenegy managementye canbegin to identify com-
plementarywaysin which applicationscaninteractwith OS
policiesto enhanceheir effectiveness We planto consider
how chaging policiesfor the useof differentdeviceswill
suggestappropriateinteractionswith applicationsthat can
be includedin an effective API thatis consistentwith our
model.

delity of objectsaccessedpresumablyin an undetectable 2 Background and Motivation

or acceptablydegradedmannerfor the userof the applica-

tion. Unfortunately without the benefitof application-based For the usersof mobile computing patterylifetime is anim-

knowledge otherwaysof reducingworkloaddemandsnust
be found. Our currenty model provides a frameawvork in

which to formulatepoliciesintendedto selectvely degrade
thelevel of serviceto presere enegy capacityfor moreim-

portantwork. Assumingthat previous work on perdevice
power managemeroliciesprovidesanadequatéaseupon
whichto designexperimentsye concentratéirstontheless-
exploredsecondoroblem—formulatingstratgyiesfor adjust-
ing the quality of servicedeliveredto applications. Later,

we will returnto thefirst issueandrevisit suchpolicies,ex-

pressedn termsof our model.

Observingthatthe lifetime of a batterycanbe controlled
by limiting the dischagerate[20, 26], the enegy objectve
we considerin this work for our enegy managemenpoli-
ciesis to controlthe dischage rateto meeta specifiedbat-
tery lifetime goal. The first level allocationdecisionis to
determinéhow muchcurrenty canbeallocatedo all theac-
tive tasksin the next time interval so asto throttle to some
target dischage rate. Essentially this first-level allocation

portantperformancemeasure.Typically, usersand system
designerdacea tradeof betweenmaximizinglifetime and
traditionalperformanceneasuresuchasthroughpuandre-
sponsetime. We assumea workload consistingof a mix
of interactve productvity applicationsandmultimediapro-
cessing. Dependingon the applicationsof the device, the
actualgoalmightbeto have the batterylastjustlongenough
to accomplista specifiedask(e.g.,finishtheschedulegre-
sentationon the way to the meeting)or a fixed amountof
work (e.g.,viewing aDVD movie). Thus,metricshave been
proposedhattry to capturethe tradeof betweenthe work
completedandbatterylifetime [21]. Alternatively, thework
might not be fixed, but an acceptablequality of serviceis
desiredfor aslong as possible(e.g., for an MP3 player).
Extendingbatterylifetime mustusuallybe balancedhgainst
somelossin performance. Thus, our job is twofold: to
achieve the batterylifetime goal andto find a fair way to
distributethe performancempactamongapplications.Cer
tain batterycharacteristicsnustbe consideredvhentrying

determinesheratio of active work thatcanbeaccomplished to controlbatterylifetime, asdescribedn Section2.1.

to enforceddlenesghatoffersopportunitieso powerdown
components.Then, the secondevel decisionis to propor
tionally sharethis allocationamongcompetingasks.

We have implementedan OS prototype incorporating
theseenegy allocation and accountingpolicies. Experi-
mentsquantify the batterylifetime / performancdradeofs
of this approach.We demonstrate¢hat the systemcanhit a
targetbatterylifetime. In certainregionsof thedesignspace,
thebatterylifetime goalcanbeachiezedwith acceptabl@er

OS-level enegy managementan be split acrosstwo di-
mensions. Along one dimension,thereare a wide variety
of devicesin the system(e.g.,the CPU, disks, network in-
terfacesdisplay)thatcandrav power concurrentlyandare
amenableto very different managementechniques. This
motivatesa unified modelthat canbe usedto characterize
the power/enegy consumptiorof all of thesecomponents.
In the otherdimensionthesedevicesaresharedby multiple
applications.The power usageof two simultaneoushactive
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Figure 1: Accounting challengesof multiple devices and
processes

hardwarecomponentsnaybe causedy two differentappli-
cations. For example,the disk may be active becausef an
I/O operatiorbeingperformedby a“blocked” procesavhile
anothermprocessccupieghe CPU. This presentadditional
accountingchallenges.Considerthe scenarioportrayedin
Figure 1 involving threedifferent processeand three dif-
ferentresourcegCPU, disk, andwirelesscard). During the
highestlevelsof power consumptionproces®’s disk activ-
ity, processl’s network usage and CPU processindy ary
oneof thethreeprocessesll contritute. Using a program
countersamplingtechnique asin PaverScopg10], would
inaccuratelyattribute power coststo thewrongprocesses.
Solving the accountingoroblemis a prerequisiteéo man-
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Figure2: BatteryLifetime vs. Drain Rate

dischage rate. Peulert’'s equationcan be usedto approx-
imate the lifetime of a given battery ¢, undervariousdis-
chagerates:

c
== &y

where(C' is therated capacityof a battery I is the current,
anda is a constanfor agiventypeof battery This equation
modelsthe non-linearbehaior inherentto currentbattery
technologiessuchthatincreasingl by afactorof = reduces
t by afactorof z—%. Eachbatteryhasits specifica value.
They aredifferentevenfor batterieof the sametechnology
But for a particularbattery the « is a constant.

Figure 2 shaws life time vs. drain rate curves for two
batteries. Thesetwo batterieshave the samecapacity of
C = 3.6Ah atthedrainrateof 1A. Oneof the curveshas
the a value of 1.2, which canbe found on mary currently
usedbatteriesTheothercurve hasaa valueof 0.9938.This
cunve is the bestfitting curve to the measuregointsof our
IBM ThinkpadT20battery To obtainthesepointsin theval-
idationtests microbenchmarksith powerconsumptiorval-

t

agingthe batteryresource.This involves(1) understanding uesmeasuredvith a Fluke multimeterwereused.We timed
the natureand determiningthe level of resourceconsump- how longit tookfor afully chagedbatteryto rundown com-
tion, (2) appropriatelychaging for useof thevariousdevices pletelywhile runningthe microbenchmarkhatachiezedthe
in thesystemand(3) attributing thesechagesto therespon- particulardrainrateundertest(shavn asmeasuregointsin
sibleentity. We introducethe currenty modelto coherently thefigure). This graphshaws thatwith the samedrainrate
chagefor the enegy consumptiorof mary asynchronously andratedcapacity batterylifetime canbe quite differentfor
active devicesandwe adaptresoucecontaines[1] to sene batterieof differentcharacteristicsOurresultsindicatethat
astheabstractiorto which enegy expendituresarechaged. by achieving aparticularaveragepowerconsumptiorwe can

We elaborataipontheaccountingchallengesn Section2.2.  directlydeterminghebatterylifetime, butthecharacteristics
of the batterymustbeaccuratelynodeled.

21 Battery Characteristics Peulert’s equati(_)nassumesonstant:urrent. Our cqrrent
approachonly achieves an averagepower consumptionas
Understandinghe natureof batterytechnologyis key to its an abstractionof a constantdischage rate. However, us-
managementn particular theeffective enegy capacitythat ing Peulert’s simple modelappeardo be adequatdor our
can be deliveredby a chaged batteryvariesbasedon the purposesof settinga tamget value for power consumption.



Whereadarge peaksmay causeoverly optimistic errorsin
the calculationof batterylife basedon an averagedrain
rate[22], otherwork [3, 20] suggestshat bursty dischage
patternganlengthertime until thecut-off voltageis reached
by allowing recovery in the chemicalandphysicalbehaior
of thebattery Clearly, thereis aneedfor continuingresearch
on modellingbatterybehaior. Whena moresuitablemodel
becomeswvailable,we caneasilyadoptit for usein our sys-
tem.

2.2 Energy Resource Accounting Challenges

In trying to achieve a given dischage rate, the first chal-
lengeis to accuratelydeterminethe level of resourcecon-
sumptionon a perdevice basisasa function of time. One
recentdevelopmentin the OS-directedmanagementf the
batteryresourcds the SmartBatteryinterfacein the ACPI
specificationg14] and compatiblebatterydevicesthat sup-
portit. This interfaceallows the systemto querythe sta-
tus of the battery including the presentremainingcapacity
presendrainrate,andvoltage. The SmartBatteryseemgo
be a potentiallypowerful tool in supportof enegy manage-
ment.However, ourinvestigation®f thecurrentcapabilities
of the SmartBattery have revealedlimitations for our pur-
poses. The operationof queryingthe interfaceis too slow
to be usefulfor gatheringpower consumptiordataat every
schedulingimeslicewithoutintroducingunacceptablever-
head.In addition,the averagingof power consumptiordata
returnedby the query makes attributing an accuratepower
consumptiorvalueto a particularprocesgproblematiceven
with only the CPUinvolved. Experimentsvith two synthetic
benchmarkshatindividually producea distinct,stabledrain
rateshawv thatwhenthey arescheduledogetherthereported
powerconsumptiorvaluescannot be differentiatecbetween
thetwo competingprocesses.

Even if more fine-grained,overall power consumption
datawere available, the issueof multiple componentsar
guesfor a different approachto tracking and attributing
power/enegy usage. As illustratedin Figure 1, observing
aninstantaneoupower consumptiorvalueandattributing it
to thecurrentlyrunningprocessloesnot accuratelyaccount
for thecontribution of otherdevicesto theoveralldrainrate.
As thatexampleshaws, oneprocessmay be responsibldor
the activity of the disk andanothemprocesamay be respon-
sible for power consumptiorin the network interfacewhile
the currentlyrunningprocessomputeswithin the CPU.

Our solutionis to embeda model within the operating
systemto trackthe parallelismof hardwarecomponentsnd
their enegy use.Whenthe systemusesa givencomponent,
we consultourmodelto determinenow muchenegy will be
usedby the operationand which entity is responsible.The
following sectionelaborate®n our unifiedenegy model.

3 TheCurrentcy Model

Thekey featureof our modelis the useof acommonunit—
currentcy—for enegy accountingandallocationacrossava-
riety of hardwarecomponentsindtasks.Currenty becomes
thebasisfor characterizinghepowerrequirementsndgain-
ing accesgo ary of the managedardwareresourceslt is
the mechanisnfor establishinga particularlevel of power
consumptionand for sharingthe available enegy among
competingasks.

Oneunit of currenty representshe right to consumea
certainamountof enegy within afixedamountof time. The
subtledifferencebetweena unit of currenty anda guaran-
teefor an equivalentz Joulesof enegy is a time limit on
useof the currenty which hasthe desiredeffect of pacing
consumption.

Incorporating a generalizedenegy accountingmodel
within the operatingsystemprovidesthe flexibility neces-
saryto uniformly supportarangeof devices. Themodelcan
be parameterizedccordingto the specificpowver character
istics of the hostplatform. With existing hardwaresupport,
thereis no alternatve thatcanprovide theinformationabout
thepowerconsumptiorof individual componentseededor
accounting. A side-efect of embeddingthis modelin the
systemis thatit alsomakesit possibleto vary assumptions
aboutthe system$ power budgetto emulatealternative de-
vice characteristicsThus,while ourtargetervironmentuses
enegy in a certainfashion,we canalsodesignexperiments
basedon the profile of a PDA wherethe CPU anddisplay
costsare significantly reducedand the hard drive may be
eliminatedaltogetheror replacedby a device with very dif-
ferentcharacteristice.g.,compactflashmemory

Theremainderof this sectiondescribeghe overall struc-
ture of our enegy modelandhow currenty canbe credited
to tasksand debiteduponresourceusein sucha way asto
achieve a givenbatterylifetime.

3.1 System Energy Model

Thesystempower costsarecharacterizeth two partsof our
model: Thefirst partis the basepower consumptiorthatin-
cludesthelow power stateof theexplicitly enegy-managed
devicesaswell asthe default stateof the devicesnotyet be-
ing consideredThelargerthe proportionof the systemthat
getsincludedin the basecateory, thelessopportunitythere
will beto affectimprovementontop of it. Aswe shallsee,
while our experimentalprototypewith 3 managedievices
(i.e.,theCPU,disk,andnetwork) is adequatéo demonstrate
our ability to unify multiple componentsinderthe currenty
model, the baseremainsa large, staticfactorin the range
of drain rateswe are ableto produceon the laptop. Thus,
we areinterestedn investigatinghow changingthis aspect
of the power budgetmay affect the behaior of the enegy
allocationstratgieswe propose.



The secondpart of the systemmodelis the specification
of thecostsof themoreactive statedor eachof theexplicitly
managedievices. Thus,the haltedstateof the CPUandthe
spun-devn stateof thedisk fall into the basewhile CPUac-
tivity andspinningthe disk areexplicitly modeled.Eachof
thesehigherpower statess representetby a chage policy
thatspecifieshow currenty is to bedeductedo payfor that
useof thecomponent.

The level of detailin this part of the modeldependson
theinformationthatis availableto the OS andthe manage-
mentchoicesavailableto it. The statusof the device must
be visible to the OS - eitherin termsof stateinformationor
asobsenabletransitioneventsthatcausenhigherpower use-
to allow trackingof the state.Our currentprototypeis very
coarse-graine(e.g.,CPUhaltedor active) butthemodelcan
supportfinergraininformationsuchasthat available using
eventcountersto track processobehaior assuggestedby
Bellosa[2]. Thiswould allow moreaccurateaccountinghat
could chage differently for varioustypesof instructionsor
thefrequeng of cachemisses.

3.2 Currentcy Allocation

Ouroverallgoalisto achiere auserspecifiedbatterylifetime
by limiting thedischagerate.

Therearetwo facetsto the allocationstrateyy. The first
level allocationdeterminefiow muchcurrenty canbemade
available collectively to all tasksin the system. We divide
time into enegy-epochs. At the start of eachepoch,the
systemallocatesa specifictotal amountof currenty. The
amountis determinedy the drainratenecessaryo achieve
the target batterylifetime. By distributing lessthan 100%
of the currenty requiredto drive a fully active systemdur-
ing theepoch,componentsareidled or throttled. Thereare
constrainton the accumulatiorof unspenturrenty sothat
epochsof low demanddo not amassa wealth of currenty
thatcouldresultin very highfuturedrainrates.

The secondaspeciof currentg allocationis the distribu-
tionamongcompetingasks.Whentheavailablecurrenty is
limited, it is dividedamongthecompetingasksaccordingo
userspecifiedproportions.During eachepoch anallowance
is grantedo eachtaskaccordingo its specifiedoroportional
shareof currentg. Thereis a capon the maximumamount
of currenty ary applicationcansave.

Our modelutilizes resourcecontainerq1] to capturethe
actvity of an applicationor task as it consumesenegy
throughouthe system.Resourceontainersarethe abstrac-
tion to which currenty allocationsare grantedandthe en-
tities to be chagedfor enegy consumption.They arealso
the basisfor proportionalsharingof available enegy. Re-
sourcecontainerdealwith variationsin programstructure
thattypically complicateaccountingFor example,anappli-

counting.

3.3 Currentcy Payback

Theactualresourcananagemerthatachiesesthethrottling

of drainrateis basedon a pay-as-you-ggolicy wherebya
resourcecontainergainsaccesgo a managedievice. Con-
siderthe CPU-the processchedulewill allow readypro-

cessego run aslong astheir associatedesourcecontain-
ers have currenty to pay for the time slice. Whenthere
are no processewhoseresourcecontainershave ary re-

mainingcurrenty left, eventhoughthey may be otherwise
readyto run,the processois halteduntil thenext allocation.
Similarly, 1/0 operationsthat causedisk activity resultin

currenty beingdeductedrom the associatedesourcecon-
tainer In this way, enepgy tradeofs becomeexplicit. Cur

rentg/ spenton I/O is no longer availableto pay for CPU
cycles.

Eachmanagedlevice hasits own chaging policy thatre-
flectsthe costsof the device. For example,the disk policy
may try to spreadout the paymentsfor spinupor for spin-
ning duringthetimeoutperiodprior to spindavn. Thebase
costsare not explicitly chaigedto resourcecontainers put
obviouslyfactorinto theoveralldrainratetarget. As we con-
tinueto developthe systemgelementswill migratefrom the
baseinto the category of explicitly managedand modelled
devices.

Investigatingthe designspaceof policiesthatcanbefor-
mulatedin this currenty modelis beyondthe scopeof this
paperandis a topic on on-goingresearch. However, our
implementatiorof one setof initial policiesis describedn
Section4. This allows us to demonstratéhe feasibility of
theidea,to gainexperiencewith the systemandto identify
problemsghatmotivatefutureresearch.

4 Prototype

We have implementedur currentyy modelin the Linux op-

erating systemrunning on an IBM ThinkPad T20 laptop.
This sectiondescribeour prototypeimplementatiorwhich

we have namedECOSystem for the Eneigy-CentricOper

ating System.First, we provide a discussiorof the specific
power consumptiorvaluesthatareusedto parameterizeur

modelfor the varioushardware componentsn the T20. In

the next sectionwe examinethe effects of changingthese
valuesto represenalternatie platforms(e.g.,PDA).

4.1 Platform Power Characteristics

We measurehe power characteristicef our Thinkpadhard-
wareandusetheresultingvaluesasparameterso themodel

cationconstructedf multiple processesanbe represented codedwithin the ECOSystenkernel. Within ECOSystem,

by a singleresourcecontaineffor the purpose®f enegy ac-

we currentlymodelthreeprimary devices: CPU, Disk, and



Cost | TimeOut(Sec)

Access 1.65mJ

Idlel 1600mw 0.5

Idle 2 650mw 2

Idle 3 400mw 27.5

Standby(disk down) Oomw N/A
Spinup 6000mJ
Spindown 6000mJ

Tablel: Harddisk power stateandtime-outvalues

Network Interface. All otherdevicescontrituteto the base
or backgroungowerconsumptiorof 13Wfor theplatform.

CPU

TheCPUof ourlaptopis a650MHzPlIl. In ourCPUenegy
accountingmodel, we assumehat the CPU draws a fixed
amountof power (we currentlyuse15.55W) for computa-
tion. Thisis acoarse-grainedbstractionldeally, onewould
like to chage differently for different processomehaior
(e.g.,varioustypesof instructionsor thefrequeng of cache
misses,etc.) andthis would be compatiblewith our mod-
elling approach(e.g.,by usingBellosas eventcounterd?2]).
However, in this paper we usea single CPU power con-
sumptionvalue establishedy measuringthe power while
runningaloop of integeroperations.

Disk

Most of today’s harddiskssupportthe ATA interfacewhich

usesatimeoutbasedpower managemergscheme The ATA

standardlefinesa seta power statesandtheinterfaceto con-
trol thetimeoutvaluefor eachstate.Unfortunatelythe hard
diskin our laptopis anIBM Travelstarl2GNthathasmore
power stateghanthe ATA standard.This complicateshard
diskenegy accountinginceit preventstheOSfrom reading
thetrue power stateof the disk. Furthermorethe Travelstar
power statetransitionsaremanagedy anunknowvn internal
algorithmandcannotbesetthroughthe ATA interface mak-
ing it difficult to developatimeoutbasednodel. Therefore,
we approximateour disk’s power consumptiorusingatime-

out basedmodel derived from typical hard disks. Table 1

shavsthevaluesusedin ourmodel. Thedisk modelis setto

spin down after 30 seconds.To achieze comparableffects
on timing, we alsosetthe Travelstarto spin down after 30

seconds.

Wireless Network | nterface

The network interfaceusedin our systemis an Orinoco Sil-
ver wirelessPC cardthat supportsthe IEEE 802.11bstan-
dard. This cardcanbein oneof threepower modes:Doze

(0.045W),Recieve (0.925W),andTransmit(1.425W).IEEE
802.11bsupportgwo power-utilization modes:Continuous
AwareMode andPower Save Polling Mode. In the former,
thereceveris alwayson anddrawing power, whereasn the
latter, the wirelesscard canbe in the dozemodewith the
accesgoint queuingary datafor it. Thewirelesscardwill
wake up periodicallyandgetdatafrom the basestation. In
the Paver Save Polling Mode, the wirelesscard consumes
a small fraction of the enegy comparedo the Continuous
AwareMode andmostof the poweris consumedby sending
or receving datafor the userapplication. In the ECOSys-
temprototype we alwaysusethe Paver Save Polling Mode
andthe maximumsleeptime is setto 100 milliseconds(the
defaultsleeptime).

According to 802.11b, data retransmissiormay occur
at the MAC layer as the result of datacorruption. Data
retransmissiorcan consumeadditional enegy invisible to
the OS and can affect the accurag of our enegy account-
ing. The 802.11standardspecifiesan optional Request-to-
Send/Cleato-Send(RTS/CTS)protocolat the MAC layer
Whenthis featureis enabledthe sendingstationcantrans-
mit and receve a paclet without any chanceof collision.
RTS/CTS addsadditional bandwidthoverheadto the net-
work by temporarilyreservinghemedium butit canprevent
the dataretransmissiorue to the "hidden node” problem
andmay save enegy on the wirelesscard. In our tests,we
enableRTS/CTSfor transmissiongarger than 1024 bytes.
TheMTU is 1500bytesin our system.

4.2 TheECOSystem Implementation

We modified RedHatLinux version2.4.0-test&o incorpo-
rateenepgy asa first-classresourceaccordingto the model
describedn Section3. Our changesncludea rudimentary
implementatiorof resourcecontainergo supporthetwo di-

mensionsof our model: enegy allocationand enegy ac-
counting. Below we elaborateon the kernel modifications
associateavith eachof thesedimensions.

4.2.1 Currentcy Allocation

ECOSystensupportsa simpleinterfaceto manuallysetthe
target battery lifetime and to prioritize amongcompeting
tasks Thesevaluesaretranslatednto appropriateunits for
usewith ourcurrenty model(oneunit of currenty is valued
at 0.01mJ).The target batterylifetime is usedto determine
how muchtotal currenty canbe allocatedin eachenegy
epoch. Thetasksharesare usedto distribute this available
currenty to thevarioustasks.

Each resourcecontainer has two fields: tickets and
available-currentg. Theticketsdeterminethe proportionof

1We usetheterms“task” and“resourcecontainer’interchangablyOne
or moreprocessemay compriseatask.



the currenty allocatedin eachepochto a particularcon-
tainer Currenty is allocatedto and deductedfrom the
available-currentg value of the container To performthe
perepochcurrenty allocation,we introducea new kernel
threadkenmgd thatwakesup periodicallyanddistributescur-
rentg/ appropriately We empirically determinethat a one
secondperiodfor the enegy epochis sufiicient to achieve
smoothenepy allocation. If ataskdoesnot useall its cur-
rentg/ in anepoch,it canaccumulateurrenty up to amax-
imumlevel (whichis alsoproportionato atasks share)be-
yondwhichary extra currenty is discarded.

In our currentimplementationa processs scheduledor
executiononly if its correspondingesourcecontainerhas
currenty available. We modified the Linux schedulerto
examinethe appropriataesourcecontainebeforeschedul-
ing a procesdor execution. Underthis policy, all tasksex-
pendtheir currenty as quickly as possibleduring a given
enegy epoch. This approachmay producebursty power
consumptiorandirregularresponseimesfor someapplica-
tions. Work is undervay on providing a proportionalsched-
uler basedon [23] thatwill more smoothlyspreadthe cur-
rentg/ expenditurethroughoutheentireenegy epoch.

4.2.2 Currentcy Accounting

Tasksexpendcurrenty by executingon the CPU, perform-
ing disk accessesr sending/receing messagethroughthe
network interface. The costof theseoperationss deducted
from the appropriatecontainer When the containeris in
debt(available-currentg < zero)noneof theassociategro-
cessearescheduledr otherwiseserviced. The remainder
of this sectionexplainshow we performenegy accounting
for the CPU, disk, andnetwork card.

CPU

Our CPU accountingandchaging policy is basedon a hy-
brid of samplingand standardask switch accounting.It is
easilyintegratedwith Linux’ssupportor time-sliceschedul-
ing. Accounting at a task switch provides accurateac-
countingof processotime used.However, to preventlong-
running processe$rom continuingto run with insufficient
currenty, we deductsmall chages as the task executes.
Then,if it runsoutof currenty duringits time-slice it canbe
preemptecearly Thus,we modify the timer interrupthan-
dler to chage the interruptedtaskfor the costof executing
onetick of thetimer. In our systematimer interruptoccurs
every 10msandwe assumea constantpower consumption
of 15.5Wfor CPUexecution.Therefore at eachtimerinter-
rupt, the appropriateresourcecontainers currenty will be
reducedby 15,540(155.4mJ).

Hard Disk

Enegy accountingfor hard disk actwity is very complex.
The interactionof multiple tasksusingthe disk in anasyn-
chronousmannermalkes correctly tracking the responsible
party difficult. Furthercompleities are introducedby the
relatively high costof spinningup the disk andthe large en-
ergy consumptionincurredwhile the disk is spinning. We
haveimplementedvhatwe believeto beareasonablgolicy,
howeverfutherresearclis clearlynecessargnthis complex
topic.

To track disk enegy consumptionyve instrumentffile re-
latedsystemcallsto passthe appropriateesourcecontainer
down to the buffer cache. The containerID is storedin
the buffer cacheentry. This enablesaccurateaccounting
for disk actwity that occurswell after the taskinitiated the
operation. For example,write operationscan occur asyn-
chronouslywith the actualdisk operationperformedby the
I/0 daemonWhenthe buffer cacheentryis actuallywritten
to disk, we deductan amountof currenty from the appro-
priateresourcecontainer Enegy accountingor readopera-
tionsis performedsimilarly.

We can breakdisk costinto four categories: spinup,ac-
cessspinning,andspindavn. Thecostof anaccesss easily
computedoy

active—state—power—cost(W) .
disk—accesss—bandwidth(KB/s) * bufferszze(KB).

Theenegy consumedo acces®nebuffer ondiskis 1.65mJ.
Sincea dirty buffer cacheentry may not be flushedto disk
for sometime, multiple tasksmay write to the sameentry,
Ourcurrentpolicy simply chagesthecostof thedisk access
to the last writer of that buffer. While this may not be fair
in the short-termwe believe the long-termbehaior should
averageout to befair. Theremainingdisk actwities present
moredifficult enegy accountingchallenges.

The costof spinningup anddown the disk is sharedby
all tasksusingthe disk during this sessiorbetweenspinup
andspindavn. It is chagedat the endof the sessiorandis
dividedup onthebasisof thenumberof buffersaccessetly
eachtask. We assumehatthe spinup or spindown takes?2
secondsindthatthe averagepower is 3,000mW leadingto
atotal enegy costof 6,000mJ.

The costfor the durationof time that the disk remains
spinningwaiting for the timeoutperiodto expire (30 second
minium) is sharedy thosetasksthathave recentlyaccessed
thedisk (in essencehosethatcanbeseerasresponsibldor
preventingan earlierspindavn). This is doneby incremen-
tally chaging the tasksthathave performedaccessewithin
thelast30 secondvindow in 10msintervals (timerinterrupt
intervals). Oneachtimerinterrupt,if thediskis spinningthe
enegy consumediuringthis interval, asdeterminecoy the
disk power stateandlengthof theinterval (10ms),is shared
amongthosetasksactive in thelast30 seconds.

Our presenimplementatiordoesnot handleall disk ac-
tivity. In particular inode and swap operationsare not ad-




dressedTheswapfile systemhasits own interfaceanddoes
not follow the vnodeto file systemto file cacheto block-
device hierarchy

Network I nterface

Enegy accountingor the network interfaceis implemented
in ECOSystenby monitoringthe numberof bytestransmit-
tedandreceved. Thesevaluesarethenusedto computethe
overallenegy consumptioraccordingo thefollowing equa-
tions:

Esena = (sent_bytes x transmit_power) [ bit_rate

E,.cv = (received_bytes x receive_power) [bit_rate.

Theenegy consumptioris calculatedat the device driver
accordingto the full length of the paclet including the
hearder We have instrumentedhe soclet structureandthe
TCP/IPimplementationin orderto track the taskresponsi-
ble. Whena soclet is createdfor communicationthe cre-
ator’s containerlD is storedin the soclket. For outgoing
paclet, the sourcesoclet hencethe sourcetaskis identified
at the device driver. For incomingpaclet, the enegy con-
sumptionfor receving the paclket is computedandinitially
storedwith the paclet whenit is receved. The destination
socletof this pacletwill beavailableafterit is processety
thelP layer Currenty is deductedrom thedestinatiortask
at this moment. If pacletsarereassembleth the IP layer,
the enepgy costof the reassemblegaclet is the sumof all
fragmentedpaclets.

We believe that our approachwith TCP/IP connections
can also be applied to other types of protocolssuch as
UDP/IPandIPV6. In IPV6, the destinationsoclket may be
availablebeforebeingprocessedby the IP layerwhich can
easeour job of tasktracking.

5 Experimentsand Results

This sectionpresentsxperimentalresultsusing our proto-
typeimplementationWe begin by presentingpur methodol-
ogy for evaluatingthe effectivenessf our enegy manage-
mentpolicies. Themainthrustof ourevaluationbeginsaswe
presentesultson our systems ability to throttle application
executionto achiese specifiedbatterylifetimesby maintain-
ing a particularaveragedrain rate. We examinethrottling
effectson applicationperformance.

5.1 Experimental Methodology

We usea combinationof microbenchmarksndreal appli-
cationsto evaluateour enegy managemenpolicies. The
microbenchmarkenabletargetedevaluationof varioussys-
temcomponentsTherealapplicationsve usearenetscape,
x1lamp,andthe mcf benchmarkrom the SPEC200Guite.

Theprimarymetricsarebatterylifetime andapplicationper
formance By specifyingthe batterylifetime, andhencetar-
getdrainrate,we canmeasurepplicationperformancedor
thegivenlifetime.

For eachof ourapplicationsye defineanevaluationmet-
ric that we believe correlateswith userperceved perfor
mance. Our first application,netscapeis representatie of
an entire classof interactve applicationswhere a useris
accessingnformation. The performancemetric we usefor
netscapés thetimerequiredo completehedisplayof aweb
page. We assumehe pagemustbe readfrom the network
andthatthenetscapdile caches updatedsoall threeof our
managedievicesareincluded(CPUrenderingdisk actiity,
anda network exchange).We obtainvaluesfor the perfor
mancemetricby insertinga few linesof javascriptcodeinto
thewebpagedo beloaded.For netscapeye modeldifferent
userthink timesbetweerpagerequestshathasthe effect of
allowing someamountof currenty to accumulatébetween
events.

Our next application,x11lamp,is an MP3 player This
is representatie of a popular battery-paveredapplication
with userpercevedquality constraints Sinceeachsonghas
a specificplay time, we evaluatethis applications perfor
manceby measuringary slowdown in playback. This is
done by comparingthe actualtime to completethe song
againstthe lengthof the song. Any slowvdown in playback
manifestdtself asdisruption(e.g.,silence)in thesong.

Thefinal applicationis a computationallyintensie opti-
mization codewhich could be viewed as representatie of
thekind of computationshatmightbe doneatsensomnodes.
Theperformancenetricis executiontime.

Ouir first setof resultsare obtainedusingthe power con-
sumptionvaluesfor the T20 configurationdescribedn Sec-
tion 4 as parametergo our enegy model. Thosevalues
wereobtainedusingmicrobenchmarkandmeasuringactual
power consumptiorwith a Fluke multimeter

5.2 Targeting Battery Lifetime

Achieving atargetbatterylifetime is anessentiatlesignob-
jective of ECOSystem.We performeda variety of experi-
mentsusingour CPUintegerintensive microbenchmarkAs
shavn in Figure 3, we found that thesetestsachieved the
targetbatterylifetime with little residualbatterycapacity
While thesetestsareencouragingwe areawarethatthere
exist severalpotentialsource®f errorin theenegy account-
ing thatcould causeour behaior underthemodelto deviate
from the target batterylifetime. For example,variationsin
cachebehaior thatarenot capturedoy our flat CPUchage
or the existenceof high peakloadsthatviolate assumptions
of constanturrentwould introduceerrorin our lifetime es-
timate.Oneremedialapproachthatwe have investigatedn-
volvesmakingperiodiccorrections.By regularly obtaining
the remainingbattery capacityvia the smartbatteryinter-
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face,our systemcantake correctve actionby changingthe
amountof currenty allocatedin eachenegy epoch. If we
appeato beunderchagingfor the CPU,thencurrenty can
bereducedlf it appearshatwe areoverchaging,thencur-
rentg/ canbeincreased.

To investigatethe impactof enegy accountingnaccura-

cies,we useour CPUintensize microbenchmarkbut delib-
eratelyintroduceaccountingerror for the CPU power con-
sumption(14W insteadof the measuredl5.5W). To make

of ECOSystenlies in allocatingthe limited enegy among
multiple applications. However, we first shav the battery
lifetime vs. performancdradeof for casesof our applica-
tionsrunningalonein the system.

Figures4 and 5 shav performancevs. batterylifetime
for netscapeand x11lamp,respectiely. For netscapewe
consider3 differentvaluesof think time (4, 5, and 6 sec-
onds)betweeroperations.The datapointsin the lower left
of eachgraphcorrespondo theresponséimewith nothrot-
tling. Fromtheseresultswe seethatasthetargetbatterylife-
time increasesiesponsgime generallyincreasesResponse
time staysreasonablyacceptablevhile extendingthe life-
timefrom 2 to 2.35hours;beyondthat,it risesmoresharply
Responsdime is inverselyproportionalto think time asa
resultof thetaskaccumulatingcurrenty duringthink time.
The longerthe think time, the more currenty accumulates
andthelesslikely it is thatthetaskwill bethrottled.

X11ampis notaninteractve applicationandthusdoesnot
have athink timeto vary. Figure5 shavsthe playbackiimes
for x11lampplaying a 201 secondsong (unthrottled). The
shapeof the performancedegradationis similar to that of
netscape.

5.3 Sharing Limited Capacity

We assumethat for machinessuch as the Thinkpad T20,
usersoftenwantto run multiple tasksandallocatedifferent
amountsof enegy to the variousapplications. To explore

correctionsECOSystenpolls the batteryevery 30 seconds this scenariowe run two of our benchmarksoncurrently

to obtaina new valuefor remainingcapacity With the pe-
riodic correction,ECOSystermachievesnearperfectbattery
lifetime.

The experimentsbasedon the parametersof the T20
modelaresuchthatthe potentialincreasen batterylife that
may resultfrom adjustmentsn drain ratewill not be able

We measuréheaveragepower consumptiorof eachtaskfor
variousallocationsandthe appropriateperformancenetric
for thatapplication.Theseexperimentdestthe proportional
sharingthat is invoked when currenty allocationsbecome
limited. For our enegy managemernb be successfuin this
scenariothe enegy shouldgoto the morevital taskaccord-

to overcomealossin performanceThe majoreffectiveness ing to its specifiedshare.Currenty allocationis themecha-



nismfor selectvely curtailingactvity in anappropriatevay
soasto presere batterylife for themoreimportanttasks.

To evaluateECOSystens ability to proportionallyallo-
cateenepgy accordingto userspecifiedshareswe first run
two instancef the CPU intensve SPECbenchmarkmcf.
Themetricswe usefor evaluationaretheaveragepowercon-
sumedandthe CPU utilization for eachinstanceof mcf. We
shav the sharedn termsof boththe specifiedproportionof
overall availableallocationandhow thattranslatesnto per
centageof CPU enegy. In Table 2, the available power to
be allocated(12.4W)is lessthanthat requiredfor full uti-
lization of the CPU (15.5W). The power usedandthe CPU
utilizationsmatchthe allocationgperfectlyin this case.

Table 3 shaws our resultsfor two overall allocationsof
3W and 5W and three different proportions(50% : 50%,
40%: 60%,and30%: 70%) for two instanceof Netscape
runningconcurrently Netscapes aninteractve application
involving multiple devices. The costof spinningthe disk
canbe sharedby the two instances.The pageloadingde-
lay is subjectto variationsin the conditionof the network,
but averages8.5 secondsWithoutthrottling, oneinstanceof
Netscape&iewing the CNN homepagewith a5 secondhink
time requiresan averageof 3.6 W. Runningtwo instances
requires6.7W with disk costsharing.Theseresultsof shar
ing a limited allocationshav that the power usedby each
instancedoesreflectthe proportiongiven, but not precisely
The performancéhowever is not proportionalto the enegy
sharesWith asufiicientallocationof 3.5W, Netscape with
70%of the 5W allocationachievesperformanceloseto the
network lateng. Note the pageloadinglateng of the first
andlastlinesin which Netscapd gets1.5W of 3W and5W
respectiely. The betterperformancen the lastline is ex-
plainedby Netscape sharingalargerproportionof the disk
costwith its greaterallocation.

54 Work Accomplished

Theincreasan batterylifetime is oftenaccompaniety the
degradationin performance.ln somesystemghe potential
slowdown in applicationperformanceanbelargly offsetby
theincreasen batterylifetime allowing the sameamountof
overall work to be accomplished However, for our experi-
mentalplatformthisis notthecase.

Figure6 shavs the numberof pagesa usercanview with
netscapdor a given batterylifetime andthink times of 4,
5, and6 seconds.Theseresultsshav thatreducingaverage
power consumptiorto increasebatterylifetime causedess
work to bedone. Thisis not surprisingaswe have seenthe
supetlinear increasesn pageloading delay and playback
time in Figure4 andFigure5. Thisis dueto thelarge disk
andbasepower consumption.

Thebasepower consumptiorcanaffectthe systemin two
ways. First, it canlimit the rangeover which we cancon-
trol drain rate alongthe batterylifetime curve. This is the
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casefor the T20 configuration,meaningthat thereis little

opportunityfor extendingthe batterylife. Thesecondeffect
is thatif the basepower consumptioris high relative to the
rangeof possibledrainrates,it limits how muchdifference
our managemerefforts canmake in theoveralldrainrate.

Disk power consumptioncan also influencethe overall
amountof work done. The high power costsof the disk
alongwith constrainedallocationsto the taskscan disturb
requestpatternsaffect disk spinup/devn andresultin rela-
tively moreoverheadn usingthedisk.

We seethatthe large basepower consumptiorhasnega-
tiveimpactontheamountof work thatcanbeaccomplished.
To evaluatethiswe utilize theflexibility of ourmodelto em-
ulateanentirelydifferentplatformthatis representatie of a
future device with a 2W processqr0.05W basepower, and
MEMS-basedstorage Our MEMS storagepower character
istics are basedon thosepresentedy Schlosseet al [28].
An accesgosts0.112mJtransitioningto active modecosts
5mJandis chagedonly to the taskthat causeghe transi-
tion. We assumeéhe enegy to remainactive is 100mw and
the timeoutto standbymodeis 50ms. While the device is
active, we usethe sameincrementalaccountingmethodas
before;on eachl0mstimer interruptwe chagethelasttask
to accesghe device for the entire 10msinterval. For these
experimentsve usea 3.7Whbattery

Figure7 shavs responsdime andnumberof pageviews
versusbatterylifetime for our PDA/MEMs platform. These
resultsshav that with the low power disk and low base
power consumption the pageloading time now increases
almostlinearly with the extendedbatterylifetime. We can
alsoseethatbatterylifetime canincreasesignificantly(from
8 to 16 hours),but the numberof pageviews still decreases
steadily

Figure 8 exploresthe impactof basepower consumption
on the numberof pageviews for our PDA/MEMs platform.
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Energy MCF 1 MCF 2
Share Power Ave. Power CPU Power Ave. Power CPU
(CPU %) Alloc (W) | Used (W) | util (%) | Alloc(W) | Used (W) | util (%)
50%: 50%(40%: 40%) 6.2 6.2 40% 6.2 6.2 40%
37.5%: 62.5%(30%: 50%) 4.65 4.65 30% 7.75 7.75 50%
25%: 75%(20%: 60%) 3.1 3.1 20% 9.3 9.3 60%

Table2: ProportionaEnegy Allocation: 12.4W(80% of CPU’s 15.5W); Two instance®f MCF.

Energy Netscape 1 Netscape 2
Share Power Ave. Power Page L oad Power Ave. Power Page L oad
(Total Alloc) Alloc (W) | Used (W) | Latency (sec) | Alloc (W) | Used (W) | Latency (sec)

50%: 50% (3W) 15 1.47 22.48 15 1.49 19.33
40%: 60% (3W) 1.2 1.16 29.91 1.8 1.78 15.42
30%: 70% (3W) .9 .92 53.74 2.1 2.06 12.47
50%: 50% (5W) 25 2.45 7.79 25 241 7.11
40%: 60% (5W) 2.0 1.93 11.09 3.0 2.97 5.10
30%: 70% (5W) 15 1.50 16.88 3.5 3.27 3.57

Table3: ProportionaEnegy Allocation: Two instance®f Netscape5 sec.think time.

The x-axisis normalizedbatterylifetime (lower valuescor-
respondo lessbatterylife) andthe y-axisis the numberof
pageviews. Fromtheseresultswe seethatabasepowercon-
sumptionessthan0.02Wwill nothaveasignificantnegative
impacton the numberof pageviews.

Our resultsargue for the additionalbenefitsof reducing
baselingpower consumptiorfrom the hardwareperspectie.
Not only will the baselinebatterylifetime increaseput ad-
ditional optimizationgsuchasthrottlingthe maximumdrain
rate)canleadto evenmoresignificantrelative improvements
in batterylifetime.

6 Related Work

Attentionto theissuesof enegy andpower managemens
gainingmomentunmwithin OperatingSystemgesearchRe-
centwork has madethe casefor recognizingenepy as a
first-classresourceo be explicitly managedy the Operat-
ing Systen[31, 8].

Work by FlinnandSatyanarayanasn enegy-avareadap-
tation using Odyssg [9] is closelyrelatedto our effort in
several ways. Their fundamentatechniquediffers in that
it relieson the cooperatiorof applicationgo changethe fi-
delity of dataobjectsaccesseth responseo changesn re-
sourceavailability. Thegoalof oneof theirexperimentss to
demonstratehat by monitoringenegy supplyanddemand
to trigger suchadaptationstheir systemcan meetspecified
batterylifetime goals. They do not considerthe nonlinear
characteristicof batteriesin their study but they do test
whetherthey canreachthe designatedifetime goal before

depletingafixedenepgy capacityandto do sowithouthaving

too muchresidualcapacityleftover at theendof the desired
time (whichwouldindicateanoverly conserative stratey).

They achiavea39%extensionin lifetime with lessthan1.2%
of initial capacityremaining.For theirapproachthe perfor

mancetradeof takesthe form of degradedquality of data
objects.

Therehashbeenprevious work on limiting CPU activity
levels, in particularfor the purposeof controlling proces-
sortemperatureyia the processnanagemenpoliciesin the
operatingsystem. In [27], the operatingsystemmonitors
processotemperature@ndwhenit reachesa threshold the
schedulingpolicy respondso limit activity of the“hot” pro-
cessesA processs identifiedas“hot” if it usesheCPUex-
tensiely over aperiodof time. As long asthe CPUtemper
atureremainstoo high, thesehot processearenot allowed
to consumeasmuchprocessotime asthey would normally
be entitledto use. This work only considerghe power con-
sumptionof the CPU asopposedo our total systemview.
This stratgy was implementedn Linux and resultsshav
thatpowerconstraint®rtemperatureontrolcanbesuccess-
fully enforced.Theperformancémpactis selectvely felt by
the hot processesvhich arelikely not to be the foreground
interactve ones.

Theideaof performingenegy-avareschedulingusinga
throttling threadthatwould competewith the restof theac-
tive threadshasbeenproposedby Bellosa[2]. The goalis
to lowerthe averagepower consumptiorto facilitatepassie
cooling. Baseduponhis methodof employing eventcoun-
tersfor monitoringenegy use,athrottling threadwould get
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Figure7: Netscapderformancdor PDA with MEMs-disk

activatedwhenerer CPU actiity exceededsomethreshold.
Whenthe throttling threadgetsscheduledo run, it would
haltthe CPUfor aninterval.

Theterm“throttling” (whichwe have usedin avery gen-
eralsense)s mostoftenassociatedvith the growing litera-
tureonvoltage/clockscheduling24, 25, 12, 33,11, 34, 15
for processorshat supportdynamicvoltagescaling. Here,
the“schedulingdecision”for the OSis to determinethe ap-
propriateclockfrequeng / voltageandwhenchangeshould
be performed. Interval-basedschedulingpoliciestrack re-
centload on the systemand scaleup or down accordingly
Task-basedlgorithmsassociatelock/wltagesettingswith
thecharacteristicée.g. deadlinesperiodicbehaior) of each
task.

The body of literatureon power/enegy managementas
beendominatedby consideratiorof individual components,
in isolation, rather than taking a system-wideapproach.
Thus,in additionto theCPU-basedtudiesnentionedbove,
therehave beencontributionsaddressinglisk spindavn poli-

Netscape Workload vs. Battery Lifetime (2W CPU, MEMS-based Disk, 4 sec think time)
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cies[19, 6, 5, 17, 13], memorypageallocation[18, 4], and
wirelessnetworking protocols[16, 29]. The emphasiss
most of this work hasbeenon dynamicallymanagingthe
rangeof power statesofferedby the devices. This work is
complementaryo our currenty modelandwill impactthe
chagingpoliciesfor suchdevicesunderour system.

Beyond the enegy managementiomain,therehasbeen
a desirewithin the OS researclcommunityto unify various
resourceshataretraditionally managedeparately For ex-
ample bothlotteryscheduling32, 30] andresourcesontain-
ers[1] claimto havethepotentialto beextendibleto multiple
resources.

7 Summary and Conclusions

In this paper we have tackled one of the mostimportant
problemshauntinghedesignof battery-paveredmobileand
wirelesscomputingsystems- the managemenof battery
lifetime andthe enegy/powerresourcein general We have
taken the position that the operatingsystemhasan impor-
tantroleto play in managingenegy asafirst-classesource.
We do not wish to dependon all applicationsbeingrewrit-
tento becomeenepgy-aware. Our job is twofold: (1) trying
to managethe batteryto achieve the tarmget batterylifetime
with minimal residualenegy. (2) whenit becomeseces-
saryto curtail work in orderto dealwith the limited enegy
resourceto selectvely allocatethe enegy amongmultiple
applicationdasedn proportionalsharing.

We offer the following contritutionsto this emeging re-
searcHield:

e We proposea Currenty Model that unifies diverse
hardwareresourcesindera singlemanagemerframe-
work. Becauseof the global effect that enegy/pover
hason the operationof all that hardware components,
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theneedto addresenegy managementoherentlyhas
beena compellingimpetusto developing a unifying
modelcoveringmultiple resources.

We have implementedh prototypeenepgy-centricoper
atingsystem ECOSystemthatincorporate®ur model
and demonstratetechniquedor explicit enegy man-
agementwith a total systempoint of view. We have
appliedthis systemtoward the specificproblemof ex-
tendingbatterylifetime by limiting dischagerate. This
systemprovidesatestbedor formulatingvariousother
resourcenanagemenpoliciesin termsof currentg.

We have gainedinsightsinto the complex interactions
of enegy conseration and performanceby running
experimentswith real and synthetic benchmarkson

our prototype. We demonstratesuccessfutesultson

achieving atargetbatterylifetime andon proportionally
sharingenegy amongmultiple tasks. We have identi-

fied the factorsthat affect the effectivenesof our ap-

proach.

This is a promisingfirst stepandthe creationof a power
ful infrastructureto pursueadditionalopportunitieso man-
ageenegy by theoperatingsystem By makingthetradeofs
explicit amongthe mary devicesandtasksthatconsumeen-
ergy in asystemthe Currenty Model cansene asa power-
ful “language”in which to formulatethe comple relation-
shipsinvolvedin aunifiedview of resourcananagement.

Oneinterestingavenueof futureresearcisuggestetly our

resultsis to considerthe interactionbetweenECOSystem

andthe applicationson the onehandandhardwaredevices
ontheother While anexplicit goal of our work hasbeento

understandhe potentialbenefitsof OS enegy management

with unmodifiedapplicationsand currenthardware,we be-
lievethatultimatelymaximumbenefitscanonly beachieved
througha rich interactionbetweenapplicationsthe operat- [13]
ing system,andthe hardware. In fact, oneimmediateob-
senation of our work is that reducingthe baselinepower
consumptionn futurehardwareplatforms will resultin sig-
nificantadditionaloperatingsystenopportunitieso manage [14)
enegy
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