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Abstract

Conservationists often have difficulty obtaining financial and social support for protected

areas that do not demonstrate their benefits for society. Therefore, ecosystem services

have gained importance in conservation science in the last decade, as these services pro-

vide further justification for appropriate management and conservation of natural systems.

We used InVEST software and a set of GIS procedures to quantify, spatialize and evaluated

the overlap between ecosystem services—carbon stock and sediment retention—and a

biodiversity proxy–habitat quality. In addition, we proposed a method that serves as an ini-

tial approach of a priority areas selection process. The method considers the synergism

between ecosystem services and biodiversity conservation. Our study region is the Iron

Quadrangle, an important Brazilian mining province and a conservation priority area located

in the interface of two biodiversity hotspots, the Cerrado and Atlantic Forest biomes. The

resultant priority area for the maintenance of the highest values of ecosystem services and

habitat quality was about 13% of the study area. Among those priority areas, 30% are

already within established strictly protected areas, and 12% are in sustainable use pro-

tected areas. Following the transparent and highly replicable method we proposed in this

study, conservation planners can better determine which areas fulfill multiple goals and can

locate the trade-offs in the landscape. We also gave a step towards the improvement of the

habitat quality model with a topography parameter. In areas of very rugged topography, we

have to consider geomorfometric barriers for anthropogenic impacts and for species move-

ment and we must think beyond the linear distances. Moreover, we used a model that con-

siders the tree mortality caused by edge effects in the estimation of carbon stock. We found

low spatial congruence among the modeled services, mostly because of the pattern of sedi-

ment retention distribution.
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Introduction

Ecosystem services are the benefits that natural ecosystems provide for humans [1–3]. Among

them are the provision of food, wood, water quality, climate regulation, wildlife-based tourism

and pollination of crops. This concept has garnered great importance in conservation science

in the last decade [4]. The Millennium Ecosystem Assessment has reported a widespread

decline in ecosystem services across the world [3]. This research emphasized the urgent need to

incorporate services into the decision-making process in order to ensure human well-being,

presently and in the future. In this context, the Conference of Parties (COP 10) to the Conven-

tion on Biological Diversity (CBD) established a global strategic plan for biodiversity in which,

among others, the protection and the restoration of ecosystem services are targets to be accom-

plished by 2020 [5].

Conservationists often have difficulty obtaining financial and social support for protected

areas that do not demonstrate their benefits for society [6,7]. Normally, they define as priority

areas those that are rich in species, concentrate high levels of endemism [8–10], and exist

within a well-connected and highly conserved context [11]. In most cases, the development

and implementation of this prioritization strategy is unrelated to the economic and social

debate. However, the integration of these strategies and debates could reduce the conflicts and

trade-offs among them [12]. The ecosystem services approach supports biodiversity conserva-

tion, because services provide further justification for appropriate management and conserva-

tion of natural systems as well as for more financial support for these two activities [6,13]. In

this sense, the ecosystem services approach has the potential to preserve areas outside legally

protected reserves, which is an important feature amid the global proliferation of disturbed

landscapes [3,6,14,15]. These areas are usually maintained through payments for environmen-

tal services (PES), in which beneficiaries pay landowners for the conservation and maintenance

of ecosystems and their services [16–18]. This is a promising way to align social and economic

development with protection of natural environments and their ecological processes.

The modeling and mapping of ecosystem services are important elements in a decision-

making process that aims to improve recognition and application of services [19]. Spatial prior-

itization is also considered an important step in conservation planning [20]. With spatial and

quantitative information, land use decisions could incorporate areas with the best trade-offs

and win-wins between services, biodiversity conservation and economic activities [21]. Those

are very important tools for decision-making, especially in conflict regions, where the eco-

nomic activities affect the natural surroundings. According to Seppelt et al. [22], the recent

studies on mapping and quantifying ecosystem services are concentrated in a few countries

(50% of 153 reviewed works are located in only six countries) and are lacking in research on

tropical areas. However, habitat loss and the consequent biodiversity loss is a global problem,

and it is more prominent in the tropics [3,23]. Moreover, the works that sought to analyze the

overlap between biodiversity-rich areas and areas providing services are still incipient and have

conflicting results [15,21,24–26]. This suggests a need to extend this kind of research, mostly in

places where current human activity can harm the conservation of the natural capital.

Here, we take as a region of study the Iron Quadrangle, located in southeastern Brazil.

Besides being an important mineral reserve for the country [27], the Iron Quadrangle is also a

conservation priority area [28]. Located in the interface of two Brazilian biodiversity hotspots,

Atlantic Forest and Cerrado [9], the Iron Quadrangle has a high endemism level of amphibians

and plants, high vertebrates richness, a large extension of ironstone outcrops—one of the coun-

try’s most threatened geologic formations [28,29]—and important groundwater and water-

sheds for human population.
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Therefore, the region’s biodiversity, endemism, human demand for services and economic

pressures on the environment illustrate the need to incorporate human well-being and eco-

nomic externalities into conservation science. Focusing on habitat quality (a biodiversity indi-

cator) and the ecosystem services carbon stock and sediment retention, the aims of this work

were to: 1) quantify and spatialize these ecosystem services and indicator; 2) identify which

parameters influence the ecosystem services models; 3) evaluate the overlap and the synergism

between ecosystem services and biodiversity indicator; 4) indicate priority areas for ecosystem

services and biodiversity conservation.

Methodology

Study area

The Iron Quadrangle is about 7000 km2 and is located in the southeast of Brazil (Fig 1). Its

name is due to the format of the alignments that delimit the region: Serra do Curral to the

north, Serra de Ouro Branco to the south, Serra da Moeda to the west, Serra do Gandarela and

Serra do Caraça to the east. The Iron Quadrangle is responsible for approximately 67% of Bra-

zil’s measured iron ore production [27] and is submitted to increasing global demand for iron

and steel [30]. The Iron Quadrangle is located within two of Brazil’s major watersheds, Rio

Doce and Rio São Francisco. A subtropical latitude climate prevails, characterized by a dry win-

ter and rainy summer, where places with higher rainfall indices have an annual mean of almost

2000 mm, and those with lower rainfall indices have an annual mean of 1400 mm [31]. The

altitude ranges from 586 to 2087 m.a.s.l. Many vegetation types occur in the Iron Quadrangle,

varying from tropical semi deciduous forest to rupestrian grasslands, due to the high geodiver-

sity, different soil types and altitudinal/climate gradients [32,33]. We chose the Iron Quadran-

gle as a study region due to its high levels of biodiversity and endemism, the occurrence of

relatively large natural areas, the presence of relevant watersheds providing water for one of the

largest urban centers in Brazil, and due to the increasing anthropogenic pressures associated

mostly with mining activities and urban expansion [29,30].

For the study area delimitation, we used the digital elevation model (DEM) available for the

region, obtained from the “Advanced Spaceborne Thermal Emission and Reflection Radiome-

ter” (ASTER GDEM). Using digital and automatic processing, we delimited sub-watersheds in

the region with the GRASS GIS software [34]. Each sub-watershed had a minimum area of 36

km2. During this digital processing, we generated data on flow direction, flow accumulation

and the definition of the drainage network (for more details see [35]). We then selected 80 sub-

watersheds, using the criterion of intersecting the Iron Quadrangle alignments, the availability

of maps and other necessary information for subsequent analysis. The total area summed

approximately 6500 km2 (Fig 1).

Modeling key ecosystem services

The InVEST model as baseline. For mapping and quantifying habitat quality and ecosys-

tem services, we used InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs), a

GIS tool developed by Stanford and Minnesota Universities, World Wildlife Fund and The

Nature Conservancy [36]. This geospatial tool helps to evaluate land use change impact on eco-

system services [37,38]. As cited by Nelson et al. [39] “InVEST is a suite of service models that

use production functions to convert maps of land use and land cover (LULC), land manage-

ment, and biophysical conditions into maps of service supply”. Therefore, the software has a

generalization characteristic that is important for covering different landscapes, situations and

needs. However, due to this characteristic, the InVEST software did not fulfill all our needs to

model the ecosystem services of interest (see below). Thus, we developed a set of GIS tools to
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complete the tasks, which we described in the following sections. We selected the services to

model based on the availability of data to determine them, and because they are the most used

in ecosystem services payment projects [16].

Land use and land cover map. To obtain a LULC map for the study area that would serve

as an input for all models, we mosaicked and edited maps provided by Vale S.A. company.

These maps were developed in 2008 [40]. Using ArcGIS 10.2 software [41] for visual analysis,

we chose the maps that were most consistent for each class in each sub-watershed, having as

reference LandSat 8 OLI images from 2013, obtained from United States Geological Survey

website (USGS), and RapidEye images from 2009, provided by Minas Gerais Institute of For-

estry (IEF-MG). We combined different spectral bands and produced several image

Fig 1. Map of the study area.Map representing the Iron Quadrangle’s selected sub-watersheds, the digital elevation model with its
altitude range and the main ridges. The inset illustrates the location of the study area within Brazil and Minas Gerais state.

doi:10.1371/journal.pone.0154573.g001
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compositions to facilitate visual identification of LULC classes (see the definition of classes in

Table A in the S1 Appendix). In this step, we took the 2013 LandSat 8 images as reference and

examined them for LULC changes that had occurred since 2008, the year that the Vale S.A.

company maps refer to. Therefore, we fixed a 1:20,000 scale, performed a new visual analysis

using manual edition and generated a more accurate LULC map. After all these steps, we have

created a new LULC map for the year 2013, independent of the initial ones, which we used in

all subsequent analyses.

We validated the LULC map through 471 ground truth points collected throughout the

entire region in 2014. Field routes were predetermined, aiming to cover the majority of sub-

watersheds. In order to quantify the classification’s accuracy, we generated a confusion matrix

using the cover classes from our map and from the ground truth points and calculated omis-

sion and commission errors. We aimed to have overall classification accuracy greater than

80%. Table B in the S1 Appendix presents the results of this matrix.

Habitat quality. Biodiversity per se is not considered an ecosystem service, but it is well-

recognized as being important to ecosystem processes and to the maintenance of several eco-

logical functions and services (e.g. primary production, disease and pest control) [2,42]. We

had the same assumptions as the InVEST models [36]: i) a positive relationship exists between

habitat quality and biodiversity; ii) habitat quality is a proxy for quantity and quality of avail-

able resources; iii) habitat quality decreases with the proximity of anthropogenic land use, but

the intensity of this decrease varies according to the land use class. The first necessary inputs

for the InVEST model were a habitat and threat raster. We defined LULC classes using a binary

system in which zero corresponded to a threat LULC class and one corresponded to a habitat

LULC classes. In addition, the InVEST model considers the distance between the threat’s

source and the habitat. The intensity of impact on habitat quality caused by a specific threat

decreases with distance according to a decaying exponential function (see Eq 3).

In our study, we were not interest in punctual impacts, but in the impacts that percolate the

landscape and affect biodiversity (e.g. noise and air pollution, reduction of water quality and

quantity downstream, landscape fragmentation and habitat edges effects). As the Iron Quad-

rangle has a relatively high altitudinal range, we can see its hills and mountains as geomorfo-

metric barriers to the impacts caused by some LULC threats (S1 Fig). We adapted the InVEST

model to incorporate hilly conditions as a barrier to threat propagation. As neither InVEST

nor ArcGIS currently allow this function, we coded the supplementary procedures within

GRASS GIS. First, we used the slope (in degrees, derived from a digital elevation model with

30-m spatial resolution) and its cosine to correct the impact distance from the threats (da),

accounting for the ups and downs of relief:

da ¼ 30= cosy ð1Þ

where the number 30 is due to the raster resolution, and θ is the slope in degrees (see S1 Fig).

Then, we did the maximum relief curvature analysis in GRASS GIS to identify the position

where the relief became a barrier to threat propagation. To calculate the maximum relief curva-

ture, we inputted a 500-m radius of influence around every pixel and considered the 20% high-

est curvatures as a barrier to threat propagation. We put a very high value (in this case equal to

300) on these top 20% pixels to impose a geomorfometric barrier, in which the distances fol-

lowing it would be too great for any impact to be significant. We summed the maximum curva-

ture and the “da” raster to obtain a “distance cost surface” for the subsequent analysis, i.e., we

created a new relief distance raster that attenuated the impact factor of threats where a relief

barrier exists. Lastly, with this new raster, we did a cost distance model in ArcGis software,

treating each one of the threats as a source. With this, we obtained a “cost-relief-distance” (dc)
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for each pixel. To summarize, “dc” is equal to the cost distance model (CDM; measured in

meters) of the sum of “da” and the maximum curvature raster (MCR):

dc ¼ CDMðda þMCRÞ ð2Þ

Considering the LULC raster map of the study area, the impact (irxy) of a pixel (y) with a

certain threat class (r) over a habitat pixel (x) is equal to:

irxy ¼ exp �
2:99

dmax

� �

dc

� �

ð3Þ

where “dc” is the obtained cost-relief-distance (in meters) between the pixels, and “dmax” is

the maximum influence distance (in meters). To address this maximum distance, we consulted

with 16 specialists that had knowledge about the study area and about different organism

groups (mammals, birds, amphibians, reptiles and plants). We asked them to evaluate the max-

imum influence distances of all LULC threat classes (see Table C in the S1 Appendix), i.e., the

maximum distance that a threat affect the quality of a habitat for the organisms groups. Land-

scape ecologists have increasingly used the expert knowledge information in their analyses

[43–45], particularly when empirical data are not available for all set of species. We used the

Delphimethod [46], in which we send the questionnaire with a text description of the survey to

experts via e-mail. Based on their responses, we calculated the average maximum influence dis-

tance. The experts received the summary of the initial results with a request to review their ini-

tial position. They could maintain the first answer if they were sure of it, or they were free to

change their opinion. Based on the revised information, we calculated the median values of all

distances obtained per threat. In addition, InVEST model also account for a weights raster (wr)

of the LULC classes according to their habitat quality degradation capacity (see Eq 4). We

obtained the weights values from the same expert knowledge technique, asking the specialists

about the relative intensity of degradation of a LULC threat on the quality of a habitat on an

organism (see results in Table C in the S1 Appendix).

LULC threats have little impact on protected areas, which usually have some kind of man-

agement project and administration policy for their protection. Brazil’s National System of

Conservation Units (SNUC) provides categories for protected areas established in the country’s

territory [47], which can be divided into strictly protected areas (IUCN Categories I-III) and

sustainable use protected areas (IUCN Categories IV-VI). The InVEST model has an accessi-

bility factor (βx) that reduces the impact of threats inside protected areas by a user define factor.

We chose a value of 0.5 for βx only for strictly protected areas. This factor reduced in half the

impact of external threats inside these areas. We chose this value due to the effect of known

management projects, administration policy and based in our expert judgment. We omitted

one of the strictly protected areas from this evaluation, as it is a very recently created national

park (Gandarela National Park, est. October 2014) and lacks a management project and

administration policy. Moreover, we defined all evaluated habitats LULC classes as equally sus-

ceptible to all sources of threats.

Thus, the total level of threat (Dxj) in a particular pixel (x) with a given habitat class (j) is

given by the equation:

Dxj ¼
X

R

r¼1

X

Yr

y¼1

ð
Wr

XR

r¼1
Wr

Þryirxybx ð4Þ

where r is a LULC threat, with r = 1, 2,. . ., R indexes all of the modeled degradation sources; y

indexes all of the grid cells on r’s raster map; Yr indicates the set of grid cells on r’s raster map;

irxy the result of Eq 3;wr is the weights parameter; and βx is the accessibility factor, both
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described above. The habitat quality (Qxj) in a given pixel (x) is the result of the equation:

Qxj ¼ 1�
Dxj

Dxj þ 0:5

 !

ð5Þ

Carbon stock. The natural stock of carbon benefits humans by acting as a climate regula-

tor. In this study, we modeled carbon storage according to the amount of four main reservoirs:

i) the aboveground living plant biomass; ii) belowground biomass, which includes the roots of

these plants; iii) soil organic components, which represent the largest terrestrial carbon reser-

voir [48]; iv) dead organic matter present in the litter. We used data averages available in the

literature for each LULC class (Table D in the S1 Appendix). All values were in Mg ha-1. We

sought data that were from the same watersheds or had vegetation, climate and soil features

similar to ones in the study area. We considered only terrestrial environments. For the forest

class, it is described in the literature that edge effects reduce the aboveground and belowground

biomass by increasing tree mortality in the first 100 meters [49–52]. We went beyond the

InVEST model and took forest edge effects into consideration by reducing the biomass on the

edge areas, and therefore reducing also the carbon stock ([52], and see S1 Appendix for the val-

ues of carbon stock used). In addition, the belowground biomass (BGB) of forest and urban

classes were calculated according to the equation described by Pearson et al. [53]:

BGB ¼ expð1:0587þ 0:8836� lnAGBÞ ð6Þ

where AGB is the aboveground biomass. We assumed that 50% of the stock biomass is carbon

[54].

Sediment retention. The natural control of excessive erosion can benefit humans by, for

example, increasing agricultural productivity, reducing flooding and pollutant transport,

improving water quality, reducing sediment removal in reservoirs and improving the habitat

quality for aquatic species. Therefore, it is directly related to water services, and can be used in

ecosystem services payment projects. Sediment retention was estimated using the universal soil

loss equation (USLE) [55], which consider LULC information along soil properties, rainfall

data and elevation. Thus, the annual soil loss due to water runoff (A), measured in ton/ha/year,

is the result of the equation:

A ¼ R� K � LS� C � P ð7Þ

where R is the rainfall erosivity (MJ/ha/(mm/h)); K (ton/MJ/ha/(mm/h)) is the soil erodibility

factor; LS is the slope length-gradient factor; C is the cover-management factor (accounts for

the ratio of soil loss in the specified crop/vegetation and management relative to continuously

fallow and tilled land); and P is the support practice factor (represents the ratio of soil loss by a

support practice to that of straight-row farming). The last three factors are dimensionless.

The rainfall erosivity index was calculated using the program NetErosividade [56]. The pro-

gram allows to calculate the annual erosivity for any location in the state of Minas Gerais from

data interpolation performed using neural networks. We chose the method proposed by Foster

et al. [57] to calculate the kinetic energy and the erosivity index EI30. The map had a coarse res-

olution (900 m) but it was the only available map covering the whole region. In our case, we

considered that precipitation rates did not vary significantly on a finer spatial scale than the

one obtained, but did so on a temporal scale during one year [31]. We obtained the soil erod-

ibility rate (which indicates the susceptibility of soil particles to be detached and carried by the

rain) from studies in the literature for each soil type found in the region. The soil type map,

provided by Vale S.A., had a 1:50,000 scale [40]. We also took the values for cover-management

ESModeling for Conservation

PLOS ONE | DOI:10.1371/journal.pone.0154573 May 4, 2016 7 / 19



and support practice factors from the literature (see Tables E and F in the S1 Appendix), con-

sidering areas with similar characteristics; we previously observed these practices in the field.

We obtained the LS factor from the digital elevation models cited for the delimitation of the

study area. As the vegetation also retains eroded upstream sediment, the model also predicts a

value for filtering sediments [36]. This field corresponds to the capacity of each LULC class to

retain sediment coming from above the terrain and should be understood as a relative value

(one class can retain more sediments compared to another one). We chose the values according

to the relative density of vegetation found in each LULC class.

Data analysis

We performed three steps to analyze the models’ outputs: we 1) verified the parameters that

most influenced each model; 2) checked for the overlap between the models’ output; and 3)

created a prioritization method for those areas that overlapped. We made these analyses in

ArcGIS and R software (R Core Team, 2013). For the first step, we performed a sensitivity anal-

ysis to quantify how the spatial variance of model parameters influences the ecosystem service

maps [58]. This was made through the standardized regression coefficient (SRC) analysis,

which estimates the average, standard errors and 95% confidence interval of the relative contri-

bution of each explanatory variable on each response variable: habitat quality, carbon stock

and sediment retention [58]. The SRC varies between −1 and +1, with values near zero repre-

senting variables with low or null influence in the response variable (i.e. ecosystem service

maps). We used the impact of each LULC threat and the accessibility factor as the explanatory

variables for the habitat quality model. We used each one of the carbon pools as explanatory

variables for the carbon stock model. For the sediment retention model, we used the USLE

parameters and the sediment filtration factor as explanatory variables. To prepare a table with

a response (ecosystem services) and explanatory variable (model parameters), we randomly

selected 10,000 pixels of our entire region for analysis. Therefore, although we used some fixed

parameters on the calculations of some explanatory variables, their values vary throughout

space, which made this analysis possible.

As each service uses a specific unit of measure, they were not directly comparable. In the

second step, we rescaled the three service maps from zero to 100, following the formula:

Zi ¼
Xij

Xmax
� 100 ð8Þ

where “Xij” is the value for ecosystem service “i” in pixels “j”; “Xmax” is the maximum score

for ecosystem service “i” across all pixels; and “Zi” is the new score for that pixel. We previously

log-transform the data only for the sediment retention results, because the amplitude of result

values was too high. To assess the spatial correlation between the model results, we calculated

Pearson’s correlation coefficients for each pair of services. We then assessed the ability to bun-

dle the results of each model: Following Wendland et al. [15], we summed the areas containing

an overlap of pixels with more than 0% of the highest value of each service, 15% or more, 30%

or more, and so forth up to 90% or more.

For the third step, we selected to overlap the 20% of pixels that had the biggest scores (on

the 0 to 100 range) of each model’s output. Next, we took only pixels where the overlap of at

least two models occurred. The issue was that we had regions where only few pixels fall and we

had to prioritize areas with a larger number of pixels.

In our study area, the habitat fragmentation is high and there are few natural patches with

an area large enough to maintain high biodiversity for long term. Consequentially, the connec-

tivity is important in any conservation spatial plan for the region. In these sense, we used
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functional connectivity-based approach to create a spatial aggregation index for each one of

the pixels that overlapped in the third step. Functional connectivity is the capability of land-

scape facilitate organism movements among resource patches [59]. Thus, we used a 250-m

radius focal statistical analysis, with the selected overlapped pixels in the third step as input

[60]. We gave to each one of these overlapped pixels a core equivalent to the number of neigh-

boring pixels within this radius. We chose this radius-distance due to the ocelot (Leopardus

pardalis) movement capacity in an inhospitable landscape matrix, the ocelot being a felid spe-

cies that is sensitive to the habitat loss occurring in our study region [60,61]. This species repre-

sents an approximation of the connectivity demands of vertebrate species that are sensitive to

fragmentation and are forest dependent. Therefore, we obtained a priority gradient, ranging

from low priority (pixels with low aggregation/connectivity) to high priority (pixels with high

aggregation/connectivity). We can use this gradient as an initial step for conservation and for

future projects of payments for environmental services.

Results

The LULC map had a global accuracy of 82% (S2 Fig and Table B in the S1 Appendix). We

excluded from this analysis the LULC classes with less than 2% of the total study area

(Table 1). We found that habitat classes (Cerrado, forest, rupestrian grasslands, and water bod-

ies) accounted for 70% of the study area. Nevertheless, many natural habitats are suffering

direct pressure from human-disturbed LULC classes. For instance, our study area has more

forest edge area than it has interior forests.

The three ecosystem services presented great variation in the Iron Quadrangle (Fig 2). The

habitat quality model ranged from zero to 0.99 (mean = 0.52; standard deviation ±0.35).

Despite the high anthropogenic impact of many areas devoted to eucalyptus, pastures and min-

ing activities, there are some places with relatively high habitat quality that promote appropri-

ate conditions for sensitive species like the ocelot Leopardus pardalis [60]. Carbon stock varied

from zero to 255.8 tons/ha (144.6 ±69.22). The log10 of the sediment retention model had val-

ues between 0 and 61.7 tons/ha/year (6.7 ±7), meaning that sediment retention was a diffuse

ecosystem service, with few areas providing very high rates of retention, and many areas pro-

viding medium to low rates.

Table 1. Area of the each land use and land cover (LULC) classes within Iron Quadrangle, Minas
Gerais, Brazil.

LULC name Area (Km2) Percent of the total area

Agricultures 13.44 0.21

Cerrados 962.96 14.83

Eucalyptus plantations 316.56 4.88

Forest (interiors) 1,249.63 19.24

Forest (edges) 1,637.97 25.23

Mining areas 189.80 2.92

Pastures 893.93 13.77

Roads network 120.44 1.85

Rupestrian grasslands 623.87 9.60

Urban areas 436.85 6.73

Water bodies 47.91 0.74

TOTAL 6493.36 100

In this table, we considered forest and forest edges separately.

doi:10.1371/journal.pone.0154573.t001
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Fig 2. Ecosystem services resultant maps. Iron Quadrangle’s output maps and their quantitative variation
for each one of the models: habitat quality at the top, carbon stock (tons of carbon/ha) in the center and
sediment retention (tons/ha/year) below. The three insets show the same zoomed area for its respective
model.

doi:10.1371/journal.pone.0154573.g002
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Sensitivity analysis

The pasture and urban areas classes were the main factors influencing the habitat quality

(SRC = −0.44 ±0.01 and SRC = −0.37 ±0.01, respectively), both with strong negative influence

(Fig 3A). This could be because these threat classes are spread throughout the entire landscape,

affecting almost all habitat fragments. In addition, the sensitivity analysis showed that the

accessibility layer had low or null influence (SRC = −0.06 ±0.01), mostly due to the low impact

of threat LULC classes on the strictly protected areas in the study region. For the carbon stock

model, the aboveground stock (SRC = 0.72 ±0.01) had the strongest influence in the model

results’ variation (Fig 3B), mostly because of the great differences in natural vegetation types in

the region, ranging from grass lands (low aboveground biomass) to forests (high aboveground

biomass). The results for the sediment retention model (Fig 3C) showed a stronger influence of

the LS factor (SRC = 0.3 ±0.02), and intermediate influence of the K factor (SRC = 0.2 ±0.01)

and sediment filtration (SRC = 0.17 ±0.01).

Fig 3. Sensitivity analyses of the parameters used in three models, measuring their influences on
output ecosystem services maps. (A) Standardized regression coefficient (SRC) for the habitat quality
model, where ACCESS is the accessibility parameter of anthropogenic land use land cover class impacts in
conservation units, and the others are impacts caused by eucalyptus plantations (EUC), pasture (PAS),
mining areas (MIN), urban areas (URB), the roads network (ROAD), and agriculture fields (AGR). (B) The
SRC values for the carbon stock model, where DOC is the dead organic carbon, SOC is the soil organic
carbon and BGB e AGB correspond to the carbon stock in below- and aboveground biomass. (C) The SRC
values for the sediment retention model, where FILT is the sediment filtration parameter and R, K, C, P and
LS are the USLE factors.

doi:10.1371/journal.pone.0154573.g003
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Synergism and conservation priorities

The modeled services and habitat quality had different spatial distributions, as shown by the

correlation coefficients in Table 2, although we found some areas with either a high or a low

value of multiple services. Bundling the services and habitat quality, we found weak spatial

overlap among all three after a value of 15% or more of each model output (Fig 4). This overlap

reached zero nearly 45% or more of each service. Considering the overlap between sediment

retention and the other two models separately, we found the same pattern. This is mostly

because the sediment retention model had the majority of pixels with intermediate values

spread across the landscape. Notwithstanding, there was strong spatial overlap of up to 60% for

habitat quality and carbon, showing a higher synergism of those two models’ results. This is

because the remaining forest fragments are large enough to have forest blocks that do not suffer

from edge effects and are located in regions that are topographically protected from the

impacts of anthropogenic land uses.

We produced a map that decision makers could use as a source of information for deter-

mine priority areas for conservation (Fig 5). These areas correspond to 13% (826 km2) of the

study region. About 30% of these priority areas are already in strictly protected areas (counting

the recently created Gandarela National Park), and 12.2% are in sustainable use protected

areas. As there are many kinds of sustainable use protected areas in Brazil, this study only con-

sidered the ones that assure a minimum biological conservation status [47], as do the private

reserves of natural heritage (RPPN in Portuguese acronym) and the National/State Forest

(FLONA/FLOE). Also of interest in Fig 5 is the presence of priority areas with high connectiv-

ity that are not within any existing protected areas.

Discussion

Our efforts have produced a first step for planning conservation priority areas in the Iron

Quadrangle. The outputs that are generated using the approach we propose bring valuable

Table 2. Correlation Coefficients for each pair of models.

Correlation Coefficients Habitat Quality Sediment Retention

Carbon Stock 0.55 −0.07

Habitat Quality 1 0.10

We obtained the coefficients through Pearson’s correlation.

doi:10.1371/journal.pone.0154573.t002

Fig 4. Sum of the total area that overlapped when the services are bundled together in each one of the
minimum percentiles. C is the carbon stock service, S the sediment retention and H the habitat quality.

doi:10.1371/journal.pone.0154573.g004
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information for regional planning, and this have a great potential to reduce conflicts between

socioeconomic and conservation interests. The method proposed here presents a promising

alternative to find the synergism between ecosystem services and biodiversity protection. It

provides an opportunity to consider ecosystem services as a new argument for supporting deci-

sion making in a conservation framework, while simultaneously incorporating human needs

Fig 5. Gradient of priority areas and the conservation units present in the study region. Pixels nearer the red color have a
high aggregation index, and the ones near the blue color have a low value for the same index.

doi:10.1371/journal.pone.0154573.g005
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and demands into the priority areas planning process [3,21]. Our study demonstrated that,

even with limited information available, we could quantitatively access and analyze areas with

a high capacity for providing ecosystem services throughout the space. Following the transpar-

ent and highly replicable method described in this study, conservation planners can better

determine the areas within the landscape that provide multiple goals and trade-offs. The eco-

system services approach is increasingly necessary, as the human population and economic

activities continue to grow [3].

One key aspect of this process was to determine how ecosystem services and biodiversity

could be bundled together. We found low congruence between sediment retention and the

other two models’ results—carbon stock and habitat quality. As the Iron Quadrangle has a very

rugged topography and this model is sensitive to the LS factor, we argue that it could have

reduced the spatial correlation with the other two models. Despite this fact, the sediment reten-

tion service is important because it highlights areas where landowners need to preserve riparian

vegetation and the tops of hillsides, particularly under rugged terrain conditions. The Brazilian

National Forest Code already determines the sizes for riparian forest buffers to be preserved by

landowners [62], but this is not always accomplished [63]. Thus, environmental liabilities have

a negative impact on sediment retention services.

The correlation of terrestrial carbon and habitat quality is still controversial, having differ-

ent patterns in different scales and landscapes [26,64–67]. In this study, carbon stock had a

high congruence with habitat quality when compared to sediment retention. The maintenance

of those congruent areas could be a target for economic incentives, such as the Warsaw Frame-

work for Reducing Emissions from Deforestation and Forest Degradation, known as REDD+

[68]. For this, the government and landowners have to demonstrate emission reductions

through improved carbon stocks, forest protection and/or sustainable management, in com-

parison to a “business-as-usual” scenario.

Notably, the relief-factor that we applied to the habitat quality model reduced the impact of

anthropogenic areas in the habitats LULC classes. In areas of very rugged topography such as

the Iron Quadrangle, we have to consider geomorfometric barriers for these impacts and for

species movement and we must think beyond the linear distances. We argue that we have

taken an important step towards the improvement of the InVEST habitat quality model, which

has received only a few updates of early versions ([69] compared to [36]). For this, we merely

added the digital elevation model as an input, maintaining the simplicity and replicability of

the model, since this information is readily available and already used in other InVEST models.

Among the priority areas found in our analysis, 42.2% overlapped with protected areas. The

ones that overlapped with strictly protect areas could receive financial support through pay-

ments for those ecosystem services. These reserves and parks usually lack financial support and

management projects [6], do not always restrict nearby deforestation [70], and suffer pressures

from local community because they have high opportunity cost [10,12,71,72]. Ecosystem ser-

vices are already helping to solve those problems in some parts of the world [13,72–74] and

can assist in this case. In private reserves, landowners could earn additional income based on

the valuation of social benefits derived from ecosystem services, incorporating the positive

externalities into the value of their protected areas for sustainable use. For areas that did not

overlap with any conservation units, yet have high aggregation indices, we recommend the

implementation of strictly protected natural reserves (IUCN Category Ia). Those areas are

extremely important for maintaining landscape connectivity and are large enough to conserve

high rates of ecosystem services, permitting many sensitive species to persist. The areas around

them and around those with lower connectivity indices could be sustainable use protected

areas, given adequate management aimed at future ecosystem services provision. Together, our

priorities areas and the conservation units of the Iron Quadrangle cover 20% of the study
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region, exceeding that of the eleventh terrestrial environment target established by the Aichi

Biodiversity Targets for 2020 [5].

We considered ecosystem analysis very important in the Iron Quadrangle region because of

increasing mining pressures [30] that could generate high social and economic externalities in

the region. The productive mining sector is expanding in the study area and creating new open

pit mines, leading to losses in vegetation and soil carbon stocks as well as more erosion siltation

of rivers and losses in groundwater recharge, triggering problems for populations downstream

[75,76]. This is worrying if we consider that 43% of water consumption for the state’s capital

metropolitan area depends on the flow of rivers in the region [77]. This economic activity

threats an ecosystem with very high biodiversity and with many endemic species, the rupes-

trian grasslands, a particular ecosystem found in areas with high altitude [29]. According to

your expert knowledge research (see Table C in the S1 Appendix), mining areas have intense

and long-distance impact. Therefore, if this activity rapid expand, there will be great loss in

ecosystem services and biodiversity.

Quantifying other services in the landscape is necessary to understand the opportunities for

financial and social support for conservation. Services that provide direct benefits, such as tim-

ber production or food provision, can have many trade-offs for biodiversity conservation [3].

To model other hydrological services as water retention, clean water production and ground-

water recharge would be beneficial for a conservation plan process. We could not done this in

this work due to lack of regional data availability. There is a need to model the presence of

water bodies as well.

We need a future research that uses more robust methods as spatial optimization techniques

(e.g. [12,20]) and a more direct biodiversity index (e.g. [15,65]). In addition, there were some

limitations in our models. The InVEST models used here do not account for variability in car-

bon stock and sediment retention within specific LULC and soils types. We only account the

variation in forest edges. In addition, we based the habitat quality model in expert knowledge,

and considered a new approach with geomorfometric barriers that may reduce impacts of

threats. In this sense, there is a need that researchers should validate the models to ensure their

efficacy. All methods used and proposed in the study, will depend on data availability for the

region of interest (some of our inputs were from secondary data). By sure the use of empirical

data about how landscape structure and land cover influences the species could improve the

models. Besides, the functional connectivity approach used could have its priority results

changed if someone is interested in different species or a group of species. For example, if the

function distance was smaller than the one we chose, i.e. choose a more sensitive species to

fragmentation, there will be less high-priority areas, as the search distance for aggregate/con-

nected pixels will be smaller. If the distance were higher, the opposite will occur. In the first

case, an example could be the critically endangered northern muriqui (Brachyteles hypox-

anthus), a forest dependent primate which has an unconfirmed record in Iron Quadrangle

[78]. An example of a less sensitive mammal species occurring in the Iron Quadrangle is the

tapir (Tapirs terrestris), listed as Vulnerable by IUCN [78].

Moreover, we need to account for the additionality of our priority areas [15,18], because if

they are going to be preserved or not deforested in the future, they do not need to be prioritized

and the economic resources can be allocated to other places [17]. This could be done with pro-

jections of probable future scenarios that encompass stakeholders needs and deforestation

rates [37,79–82]. Finally, it is also important to quantify and spatially analyze the demand for

services [17]. In the case of the services described here, the scale and location of service provi-

sion do not equal the scale and location of its beneficiaries. Carbon has a local supply and

global beneficiaries, and sediment retention has supply and demand in different spatial regions

of the landscape. We believe that the spatial integration of biodiversity targets, ecosystem
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services provision and direct beneficiaries of pristine habitats could provide stronger argu-

ments for conservation policies in conflict regions.

Supporting Information

S1 Appendix. Tables with data about the Land use land cover (LULC) class names and

descriptions, confusion matrix and the input dataset for each model used in this work.

(DOCX)

S1 Fig. Representation of geomorfometric barriers reducing impacts from land use land

cover threat classes and of correction of distance from the threats (da). The gradient of col-

ors in the arrows represent the impact reduction with the distance from its source (urban area

or pastures). The slope in degrees was use to obtain the da distance, also reducing impact inten-

sity in the natural land use land cover class (forest in this figure case). Design: Campestris.

(TIF)

S2 Fig. Land use land cover map obtained for the Iron Quadrangle study region, showing

each one of the classes found in the mapping process.

(TIF)
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