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Abstract-The time-recursive computation has been proven a 
particularly useful tool in real-time data compression, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrans- 
form domain adaptive filtering, and in spectrum analysis. Unlike 
the FFT-based ones, the time-recursive architectures require only 
local communication. Also, they are modular and regular, thus 
they are very appropriate for VLSI implementation and they 
allow a high degree of parallelism. In this two-part paper, we 
establish an architectural framework for parallel time-recursive 
computation. We clonsider a class of linear operators that consists 
of the discrete time, time invariant, compactly supported, but 
otherwise arbitrary kernel functions. We show that the structure 
of the realization of a given linear operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis dictated by 
the decomposition of the latter with respect to proper basis 
functions. An optimal way for carrying out this decomposition 
is demonstrated. The parametric forms of the basis functions 
are identified and their properties pertinent to the architecture 
design are studied. A library of architectural building modules 
capable of realizing these functions is developed. An analysis of 
the implementatioin complexity for the aforementioned modules 
is conducted. Based on this framework, the time-recursive archi- 
tecture of a given h e a r  operator can be derived in a systematic 
routine way. 

I. INTRODUCTION 

HE discipline of time-recursive computation embraces 
a number of algorithms and architectures introduced in 

the context of diverse applications and under different names. 
First, the Goertzel algorithms (or Goertzel filters), introduced 

in 1958 [14] and later explored by other researchers [2], [3], 

[ 151, can be used €or implementing an N-point discrete Fourier 

transform (DFT) in cases where only a small subset of the 
N-frequency components is desired [29]. During the last two 
decades, the running transforms have been used in ffequency 
domain filtering [31] and transform domain adaptive filtering 
[4]. Several data transforms, such as the DFT, DCT, DST, and 
variations of them have been employed for accelerating the 

convergence and improving the performance in applications 

such as channel equalization, echo cancellation, adaptive line 

enhancing, and others [4], [9], [281, 1381, [271, [151. The 
advantage of the running algorithms over the fast algorithms 
is that for N consequitive evaluations of an N-point sliding 
transform the computational complexity is 0 ( N 2 )  compared 
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to O(N2 log, N )  for the fast algorithm implementation. The 
same rationale applies for realizing the sliding transforms 
that are used in spectrum analysis, the DFT being the most 

popular among them [31], [4]. A nonsinusoidal transform 

used in this context was realized in a time-recursive way 

independently in [ 11 and [ 113. Nonrectangular data windowing 

can be embodied in the time-recursive implementation of the 

shori time fourier transform (STFT) and the time-recursive 
design can be generalized for multiple dimensions [21]. 

The term "time-recursive'' has first appeared in [XI in the 
context of real-time data compression. Unlike adaptive filtering 
and spectrum estimation, where a sliding transform is desired, 
in data compression schemes the transform coefficients have 

to be evaluated in a block by block manner. The subtle 

point in the real-time, time-recursive implementation of the 

block transforms hinges on the fact that the operators need 

to evaluate one result per time unit,l while an operator in 

the fully parallel and pipelined FFT needs to produce one 

result every N time units. Apparently, this is the reason that 
has discouraged the use of time-recursive computation in data 
coding until recently [XI, [5]. The situation has been changed 
due to the advances in the VLSI technology that penalize 
more the global communication than the requirement for short 

internal clock cycle. In particular, note that the FFT-based 

architectures that employ global interconnection butterfly net- 

works require area 0 ( N 2 )  [35, pp. 216-2191, while the 

recursive computation in [15] has only 0 ( N )  complexity. As 

a side effect, the speed of a (VLSI implemented) operator 

can match the input data rate, by adjusting the length of the 

clock cycle 171, [SI. As long as this synchronization constraint 
is satisfied for a real-time application, area minimization 
becomes the major concern in the design, while latency 
and power consumption should confine with application de- 
pendent restrictions. Under this light, the success of the 

time-recursive VLSI circuits in evaluating block transforms 
and the promise they show are mainly justified, apart from 

the modularity, regularity, and scalability of the design, by 
virtue of the area optimality property and the communication 
locality property. This has been clearly demonstrated recently 
for a number of individual examples, DCT being the most 
prevalent among them. Descriptions of the architecture details, 
complete VLSI layout floor plans, discussions on the finite 
word-length implementation effects, as well as comparisons 
with competent techniques have been provided [8], [22], [7], 

[5], [30]. Furthermore, the time-recursive architectures are 
very efficient for separable multidimensional data transforms. 

'The time umt is the time that lapses between two adjacent input data. 
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In particular, the implementation cost is linear in terms of 

operator courts and the communication requirement remains 

local. The induction procedure for designing multidimensional 

architectures based on the 1-D ones is described in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[21] and 

[23], while a detailed example is given in [8]. 
The purpose of this paper is to identify the scope of 

applicability of the time-recursive computation, so that the 

exploitation of the well established advantages of this tech- 

nique becomes feasible for the widest possible spectrum 

of applications. We establish an architectural framework for 
parallel time-recursive computation. We show that all the 
aforementioned algorithmic and architectural designs exhibit a 
common infrastructure. We consider a class of linear operators 

that consists of the discrete time, time invariant, compactly 

supported, but otherwise arbitrary kernel functions. We specify 

the properties of the linear operators that can be implemented 

efficiently in a time-recursive way. Based on these properties, 
one can develop a time-recursive architectural implementation 
for a given operator in a routine way. See, for example, [12], 
[13]. Here, we briefly interpret the results presented in [12] 
regarding the modulated lapped transform (MLT) [24], [26], 
oftentimes referred in the data coding community as modified 
DCT (MDCT) [17]. 

The rest of this paper is organized as follows. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, 
we introduce some terminology. In Section 111, we study the 

time-recursive algorithmic structures and their properties. In 

Section IV, we focus on the architectural implementation of 
time-recursive architectures. In Section V, we briefly discuss 
the special features pertinent to block data transforms. We 
conclude withi Section VI. In the Appendix, we give the proofs 
of some lemmas that are stated in the course of the paper. 

11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPRELIMINARIES 

hl 
In many signal processing applications the key computation 

consists of a mapping operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . h p ~ - ~ ] :  z(.) -+ 
X (  .), which (operates on the semi-infinite sequence of scalar 

data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(.) and produces the sequence X ( . )  as follows: 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 

X ( t )  = >; hnz(t + 72. - N + l ) ,  t = 0,1 , .  . . . (1) 
n:=O 

Note that all FIR filters can be considered as this type of 

computation. This is also true for a number of data transforms. 

For example, the lcth frequency component of the N-point 

DFT is obtained for h, = e--3(2m/N)kn. 
. . . hlv-11 

with a function f ( . ) ,  for which the values at the points 

0,1, . . , N - 1 are the prescribed coefficients h, = f (n ) ,  n = 
0,1 ,  . . . , N - 1. In the sequel, we will use the term kernel 
function or siimply kernel for this function f ( . ) .  For example, 
the kernel f ( n )  = ecun is associated to the operator [ecun, n = 
0 ,  1, . . - , N ~ 11. Furthermore, we will call keme2 group a 
vector of kernel functions f o  (. ) , fl  ( .) , . . . , f ~ -  1 ( . ) : 

We can specify a mapping operator [ho hl 

A time-recursive implementation of a mapping operator 
[h, hl . . . hN-11 is the one that is based on a recursive 

update Computation of the type 

X ( t  -5 1 )  = U ( X ( t ) ,  z(t - N + l), z(t  + 1)). 

For example, the lcth frequency component of the N-point 

DIT can be extracted as follows [31]: 

Xk( t  + I) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=I e j ( 2 m / N ) k [ X k ( t )  + z(t + 1) - z(t - N + I)]. 

111. 1)ESIGN OF m E - m C U R S I V E  ALGORITHM 

A. Shifi Property 

In the course of our study, we will see that all mapping 
operators specified in (1) can be implemented in a time- 

recursive way. Nevertheless, such an implementation is not 

always attractive compared to feed-forward ones. 

Let us first introduce the shzjiproperty of kernel groups. 
Dejinition: A kernel group f ( . )  = [ f o ( . )  fi(.) * 

f ~ - l ( , ) ] ~ ,  satisfies the shift property (SP) if it satisfies the 
(matrix) difference equation 

f (n -  1) 1 Rf(n), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI = 1 , 2 , * * * , N  (2) 

with a specified final condition b f ( N ) ,  where R is a constant 

matrix of size M x M .  Furthermore, we shall say that a kernel 

function $(.) satisfies SP if there is a kernel group f(.) that 

satisfies SP and $ ( e )  is an element of f ( . ) .  
With the following lemma, we specify a family of kernels 

and kernel groups that can be implemented time-recursively 

in a way that will be determined shortly. 
Lemma 3.1: A time-recursive implementation of a kernel 

group f( .)  is feasible if this kernel group satisfies the shift 
property. 

Prooj Equation (2) gives 

M-1 

q=o 

p = 0,1, .  . . , M - 1 

where rqp, p ,  q = 0,1,  . . . , M - 1 are the elements of the 
matrix R. Let 

N - 1  

n=O 

p = 0,1, ... , M - 1. (3) 

Suppose this is available at the time instant t + 1. For the 

quantities X p ( t  + l ) , p  = 0,1, e . .  , A 4  - 1 we have 

N-1 - -  

X p ( t  + 1 )  = E x ( t  + n + I - N + l ) f p (n )  
n=O 
N 

n=l 

N 111-1 

n=l q=o 
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and therefore, we obtain the algorithm: where X+(t )  and X+( t )  have the obvious definitions, we can 

obtain an efficient time-recursive implementation for [ho 
hl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA... h~- - l ]  The mapping operators generated by this 
linearity property supplement the family of the operators that 
can be computed in a time-recursive way dictated by Lemma 

M - 1  

X,(t + 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATQ,[XQ(t) - z(t  - N + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1)fdO) 
q=o 

+ z(t  + l)fQ(N)l (4) '2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 

where p = 0,1, . . . , M - 1. If we assume knowledge of the 

boundary values {f ,(O),f ,(N),q = 0,1, . . . ,M - l}, the 

algorithm specifield in (4) will become the update computa- 

tion we were after. Equation (2) implies that knowledge of 

f (N) yields f (0). Furthermore, note that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR is nonsingular, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Corollary 1: A kernel group f( .)  that satisfies SP can be 

1) Compute the matrix R by evaluating f(n - 1) and using 

2) Evaluate f(n) at the points n = 0 and n = N. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 )  At each time instant t evaluate (4). 

knowledge of f (0) yields f ( N )  . 

implemented time-recursively as follows: 

(2). 

Note tha; the first two steps of the above algorithm belong to 
the initialization phase (off-line computation). 

J.L. 

One can generate all the transform kernels that have been 

employed in the literature referenced in Section I with proper 

choice of the kernel parameters specified by Lemma 3.2. In 

particular, for c = 1 and b = eJ2k. i r /N, Statement 1 yields the 

kernel functions of the DFT. 
By virtue of the fact that every mapping operator of finite 

length N can be expressed as a combination of exponential 

functions (by taking for example the DFT of the mapping 
operator coefficients), we conclude that all such operators can 
be implemented in a time-recursive way. In this perspective, 
L e m a  3.2 provides a completeness result. In other words, it 

provides a basis of kernel functions so that every mapping op- 

erator of finite length can be expressed as a line& combination 

of the basis functions. 

C. Systematic Design I 
B. Scope of Time-Recursive Computation 

SP is addressed by Lemma 3.2: 

In what follows, we summarize the steps to be taken in order 

in a time-recursive manner. We assume here that the given 

operator be expressed by inspection (and use of L~~~ 

The issue of specifying a of groups that to formulate the computation specified by a mapping operator 

Lemma 3.2: The shift property is satisfied by the following: 

The singleton kernel group [ C b N ]  , Where b and C are 

nonzero free parameters. 

The kernel group 

32) as a linear combination of kernel functions that satisfy SP. 

For example, the kernel functions of the discrete sinusoidal 

transforms belong in tb s  class of operators (cf. Lemma 3.2, 

where b is a nonzero parameter and the coefficients are 
free parameters, such that coocl1 - colclo # 0. 

The kernel group [CO, qn, .  . . , C M - ~ T L ~ - ' ] ~ ,  where the 

Input: 

hn = c,4,(n) (6)  
2 

coefficients are nonzero parameters. 

Proofi One can readily verify that the associated matrices 

R('), i = 1 ,2 ,3 ,  respectively, are 

0 

Suppose now that we are given a mapping operator [ho 
hl 
decomposition: 

. . .  h ~ - l ]  for which we have the following linear 

h, = a4(n) + @,b(n), n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, l , . .  . , N - 1 

where 4(.) and +(.) are kernel functions that satisfy SP. Since 
we have 

~ ( t )  
N - l  

h,z(t + n - N + I) = ax+(t> + px+(t) 
n = O  

where {&(n)}  is a set of kernel functions that satisfy the shift 
property SP and {ez} is a set of known constants. 

Step 1: Specify the kernel groups f,(.) in which the ker- 

nel functions $,(.) belong. For example, if $z(n) = n2 
then, according to Lemma 3.2, Statement 3, we get f,(n) = 

Step 2: For each kernel group f,(.) use (2) in order to 

compute the matrix of parameters R, and evaluate f,(n) at 
the points n = 0 and n = N .  

The outcome of this design procedure is the following 

algorithm: 

1) Evaluate (4) in order to obtain X z ( t  + l), where X,( t )  

2) Evaluate 

[l 71 n y  

is defined as X Z ( t )  = $,(n)z(t + n - N + 1). 

X ( t )  = CiXi(t). (7) 
2 

Detailed examples along the lines of this procedure are dis- 

cussed in [ll] and [lo]. 

D. Mapping Operator Decomposition 

If the mapping operator is not specified in the form (6), for 

example, if we are given the vector of the coefficients instead 
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Fig. 1. Architecture for kernel group of size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 

of a closed-form expression, an elaborate technique must be 
employed in order to obtain the linear expression required as 
the input of the design procedure. For any mapping operator 

a number of different time-recursive realizations exist, since 

the above mentioned decomposition is not unique. Given a 

mapping oper,ator, we would like to obtain the optimal time- 

recursive implementation in terms of the architectural cost. 

Unfortunately., this is not an easy problem, since a variety of 
ad hoc designs may exist for a specified operator. Here, we 
address the question of optimality with respect to the number 
of kernels that are used in a linear decomposition of a given 

mapping operator. 

Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.3: The size of the smallest kernel group that can 
be used to implement the mapping operator [ho . . . 
hlvP1] in a tiime-recursive way is equal to the size of the 
minimal order partial realization of the linear time invariant 

(LTI) system with the N first Markov parameters2 being equal 

to the coefficients of the specified operator. 

. . . hlv-11 
we can have the following coefficient expansion: 

hn =cA"b, n = O , I , . . . , N - I  (8) 

hl  

Proofi Given a mapping operator [ho hl  

where A is the system matrix of size M x M and b, c are the 

input and output vectors, respectively [18], 1201. Let 

f(n) = A"b (9) 

be a kernel group of size M .  Since f (n  - 1) = A"-lb = 
A-lf (n), this, kernel group satisfies the shift property with 

R = A - l  and f(0) = b. (10) 

From (8) and (9), we get the linear decomposition of the 

mapping operator coefficients h, = cf(n). Therefore, the 

time-recursive implementation of the mapping operator can be 

based on the kernel group f( .) .  In our construction, the size 

of the kernel group M is equal to the order of the realization 

Thus, by using Lemma 3.3 we can obtain a time-recursive 
algorithm for an arbitrary mapping operator based on the 
minimum number of kernels. The extended algorithm design 
procedure is dlescribed in the following subsection. 

{A, b, cl .  0 

E. Systematic Design I t  

ping operator h l  
the beginning of the design procedure in Section 111-C: 

For the timerecursive implementation of an arbitrary map- 

. . . hlv-11 three steps need to be added at 

*For the definition of the Markov parameters of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan LTI system, see [18, 
pp. 92-93]. 

Design Procedure Supplement 
Input: The mapping operator hl 
Step 0.1: Compute the quantities A, b, and c in (8) [18], 

[201. 
Step 0.2: Use the similarity transform that will yield 

{A, b, c} in the modal canonical form.3 

Step 0.3: Calculate the closed-form expression for the op- 
erator coefficients. 

The expression specified in Step 0.3 can be used as the input 

in the design procedure described in Section 111-C. 
Note that Step 0.1 returns a state space description of an LTI 

system in the controller canonical form. By transforming this 

system in the modal canonical form we are able to compute 
the closed form of the elements in matrix A" (since this is 

a block diagonal matrix where the blocks are either rotation 
matrices or real scalars). Consequently, Step 0.3 can be carried 

out by simple algebraic manipulations. 

In conclusion, the above design procedure yields a realiza- 
tion for which the associated matrix R, first, has the minimum 
possible size, and second, it is block diagonal with block 

elements either real scalars or 2 x 2 plane rotation matrices. 

In Section IV, we will see that both of these features are very 
desirable for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 he architectural implementation. 

F. Difference Equation Properly 

cA"b, n = 0,1, + e }  of LTI systems dictates [18]: 

... hlv-11 

A fundamental property of the Markov parameters {h, = 

hn+M + Qlhn+M-l f * .  * + QMhn = O 

where ap,  p := 1,2 , .  . . , M are the constants specifying the 
system matrix A in the controller canonical form [ 181. Equiv- 

alently, this can be written in a difference equation format as 

follows: 

(1 1) h, = yih,-i + . . . + Y M ~ , - M  

where 

yp = - Q p ,  p = 1 , 2 , .  * 1 ,  M .  (12) 

Let ep be the row vector of length M ,  for which the pth 
element is unity and all other elements equal zero. If vector c 
equals ep, then (8) implies that h, is the pth kernel function 
of the kernel group f ( . ) .  Suppose now that A and b are 

of the form specified in controller canonical form. Then, all 

kernel functions in (9) satisfy the same difference equation 

(1 1). Lemma 3.4, which follows, states that this is true even if 

A and b do not have any special structure. Thus, it introduces 
the difference equation property of a kernel group: 

De$nition: A kernel group f( .)  = [ f o ( . )  fl(.) * . . 
f ~ - 1 (  . ) I T  ,satisfies the difference equation property (DEP) if 
there are scalars y p ,  p = 1,2 ,  . . , M ,  independent of n, such 
that the kernel functions f q ( . ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = 0,1, .  . , M - 1 satisfy 
the following difference equation 

fq(n)  =ylfq(n-1) +"'+?Mfq(n-M), 

n = 1 , 2 , . . . , N  (13) 

with specified initial conditions f q  (n) , n = - 1, - 2, + . , - M .  

3For the definition of similarity transforms and the canonical realization 
forms for LTI systems one may refer to [181. 
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Fig. 2. Lattice architecture for kemel group of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsize M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2. 

Fig. 3. Lattice architecture for kernel group of size M = 3 

Lemma 3.4: A kernel group satisfies DEP if and only if it 

The proof of this Lemma is given in the Appendix. 
satisfies SP. 

Iv. DESIGN OF TIME-RECURSIVE ARCHITECTURE 

A. Lattice Architecture Design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor Mapping Operators 

In Section 111, we introduced a unifying approach for 

formulating the computation specified by a mapping operator 
in a time-recursive manner. A key role in this formulation 
is played by the evaluation of the expression in (4). The 
architectural implementation of (4) will have a lattice structure 
if the size of thie associated kernel group is M = 2 (see 
Fig. 2). An example of this architecture appears in [22]. In 
an abuse of terminology, we will cdl lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarchitecfuresl 
the architectures that implement (4) regardless of the size of 

the kernel group. The lattice architecture that implements a 

kernel group of size M = 3 is depicted in Fig. 3. The overall 
architecture design is completed by a simple weighted-sum 
circuit that evaluates (7). We can observe that this architecture 
consists of M two-tap FIR filters and a M x M weighted 
interconnection network with M feedback loops. The total 
cost of this structure is no more than M 2  + 2M multipliers 
and M ( M  - 1) + 2M = M 2  + M two-input adders. The 
weighted-sum circuit consists of M multipliers and M - 1 

adders. The cost of the overall implementation is given on 

Table I (lattice architecture). 

The M x M weighted interconnection network is char- 
acterized by the matrix R specified in (10). If we follow 
all five steps of the design procedure described in Sections 

ITI-C and ID-E, the matrix R will be block diagonal with 
blocks consisted of plane rotations. Consequently, we can 
implement the interconnection network very efficiently, with 

locally interconnected rotation circuits. The latter can be 

realized either with CORDIC processors [16] or with dis- 

tributed arithmetic techniques [34]. The cost for implementing 

a mapping operator with this approach is shown on Table I 
(latticehodal). Furthermore, with this setup we can exploit the 
fact that the absolute values of all the eigenvalues of a lossless 
system have the same magnitude [36], [37]. The lossless QMF 
bank implementation presented in [ 111 takes advantage of this 
fact to reduce the number of multipliers to be implemented. 

B. Periodicity Property 

there are two constants D1 and D2 such that the relation 

With regard to the structure depicted in Fig. 3 ,  suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
XP(t) = DpX0(t )  (14) 

is true for p = 1 , 2  and t = 1 , 2 , .  . . . Then, one can verify 
that the three two-tap filters in Fig. 3 can be replaced by the 
structure shown in Fig. 4(a). The corresponding circuit for 
M = 2 is given in Fig. 4(b). In this way, M - 1 multipliers 
and an equal number of adders are saved. Obviously, the same 
modification can be applied for a kernel group of arbitrary 
size. The resulted cost metrics are depicted in Table I (case 

b). In Lemma 4.1, which follows, we state a condition on the 
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TABLE I 

IMPLEMENTATION (COST OF A MAPPING OPERATOR, BASED ON A KERNEL GROUP 
OF SIZE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111: CASE a, THE OPERATOR DOES NOT SATISFY THE PERIODICITY 

PROPERTY AND IT 19 UTILIZED BY A SLIDING TRANSFORM. CASE b, THE OPERATOR 
SATISFIES THE PERIODICITY PROPERTY AND IT IS UTILIZED BY A SLIDING 

TRANSFORM. CASE C, THE OPERATOR IS UTILIZED BY A BLOCK TRANSFORM 

lattice architecture M + 3M M + 2M - 1 
httice / modal 
IIR architecture 3 M - 1  

[5M/2 + 1J 

IIR architecture 

IIR architecture 2 M - 1  

(b) 

Fig. 4. Part of lattice architecture if the periodicity property is satisfied. 

kernel functioiis that imply (14) and consequently the savings 
mentioned above can be obtained. 

First, let us introduce the periodicity property of kernel 
groups. 

Dejinition: A kernel group f ( . )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ f o ( . )  fl( .)  . . .  
f ~ -  1 ( . ) IT ,  satisfies the periodicity property (PP) if the 
following relation holds: 

for some nonzero constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. 
Lemma 4.1: Given a kernel group f(.) relation (14) holds 

f o r p =  1 , 2 , . . . , M - l a n d t = O , l , . . . i f f ( . )  satisfiesthe 

periodicity property. 

The proof of Lemma 4.1 is given in the Appendix. 

The name periodicity property is justified by the following 
special case: consider the kernel group specified by Statement 

2 in Lemma 3.2. In the Appendix we prove the following 

Lemma: 

Lemma 4.2: If parameter b of the kernel group (5) is of the 

form b = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe j g ,  then (5) satisfies the periodicity property if and 

only if /3 = h / N ,  that is, if the kernel functions are periodic 
with period equal to N .  Furthermore, if PP is satisfied the ratio 
value in (15) is equal to 1/S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-l)k. 

An example of kernel group that satisfies PP is the one 
that consists of the DCT and DST kernels 

C. IIR Architecture Based on Shift Property 

The lattice architecture we have seen in Section IV-A 
constitutes a direct translation of (4) into an architectural 

implementation. If a transfer function approach is adopted 
instead, we obtain an IIR filter structure implementation for (1) 
[23] .  In t h i s  subsection, we show how we can specify the IIR 

implementation of a kernel group based on the shift property, 

while the IIR architecture design based on the difference 

equation property is the subject of the following subsection. 
The ZZR architecture often involves less implementation cost 

in comparison to the lattice one, especially if the associated 

kernel group exhibits the periodicity property we have seen in 
the previous subsection. 

Lemma 4.3: Let f p ( . )  be a kernel function in the kernel 

group f( .)  = [ f o ( - )  fl(.) ... fM-1(.)IT of size M .  If 
f (.) satisfies SP, the kernel function f p  (.) can be implemented 
by an IIR filter with transfer function H p ( z )  

where U(.) is a polynomial in z-l of degree M and b i (z ) ,  i = 
0 , l  are polynomials in z-l of degree M -  1. These are defined 
as follows: U(.) = IA(z) I ,b i (z)  = Ibi(z)I,i = 0,1, where 

(17), as given at the bottom of the page bi(z) is an M x M 
matrix formed by substituting the pth column of A(z) with 

[si si S L - ~ ] ~ , ~  = 0,1, and 

M-1 

so P =-  %Lfq(O)r 

q=o 

M-1 

sk = - r q p f q ( N ) ,  p = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,... , M  - I. 
q=o 

Note that 1x1 denotes the determinant of the matrix X. 
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Fig. 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIR architeciure for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2. 

The proof is given in the Appendix. As a direct consequence 

of this Lemma we have the following corollary. 

Coro~~ury 2: Let f ( . )  = [fo(.) SI(.) ... fM-l(-)IT 

be a kernel group of size M that satisfies PP. Then, the transfer 

function Elp(.) of the linear system that models (4) is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(.) and bb(z) are specified in Lemma 4.3, and S is 

the constant specified in (15). 
For the sake of clarity, we will consider the special case 

of a kernel group of size M = 2 in detail. Let H p ( z )  be the 
transfer function of the linear system that models the mapping 

operators 

[ f P ( O )  f P ( 1 )  . . . fP(N - 111 

for p = 0 , l .  From (17), for M = 2 we get: 

Furthermore, we have 

where 

5; = - ~ o p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfo (0) - r i p  fi  (0) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3; = -ropfo(N) - r l p f l ( n  P = 0,1. 

The architectural implementation resulting from (16) is shown 
in Fig. 5, while for the case where the periodicity property 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. W architecture for M = 2 if the periodicity property is satisfied. 

is satisfied, the architecture associated to (18) is depicted 

on Fig. 6. We observe that the IIR architecture consists of 
a feedback structure with M = 2 delay elements. The 

parameters di,i = 1 ,2  and n,,,i = O , l , j  = 0 ,1 ,2 ,3  are 
given by the expressions shown in (19), at the bottom of the 

page. 

D. IIR Architecture Bused on Difference Equation Properly 

An alternative approach to the problem of designing the 

IIR architecture is based on the defining equation of X,(t) 
(3) and the difference equation property of the kernel group 
introduced in Subsection III-F. In more concrete terms, we can 

compute the 2 transform of a kernel function fp(n) based on 
the difference equation (13) and then calculate the transfer 
function of the system specified by (3). The following lemmas 

describe how we can obtain the desired transfer function 
if we are specified the difference equation parameters. The 
special case of a difference equation of order M = 2 is first 
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considered, the reason being both its importance for a number 

of practical applications [23] and its simplicity. 

Lemma 4.4: Let the kernel function f p ( . )  satisfy the second 

order difference equation 

The transfer function H p ( z )  of the system specified in (3) is 

A variation of this lemma was originally given in [23]. In the 
Appendix, we present a proof that enables the generalization 

considered in Lemma 4.5. 

The param'eter values of the associated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIR architecture in 

Fig. 5 is a direct outcome of Lemma 4.4: 

The generalization of Lemma 4.4 for arbitrary values of the 

order M of the difference equation follows: 
Lemma 4.5: Let the kernel function f p ( . )  satisfy the Mth- 

order difference equation (1 3). Then, the transfer function 

Hp ( 2 )  of the system specified in (3) is given by the expression 

in (16), where 

M'-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ~ 1 

1 

Lemma 4.5 gives a means for computing the IIR parameter 

values that is considerably easier from the alternative way 
of carrying out the algebraic computations involved in (16). 
Finally, as a direct consequence of Lemma 4.5 we have the 
following corollary. 

Corollary 3: Let the kernel function f p ( . )  satisfy 

1) The Mth-order difference equation (13). 

2) The condition 

for some constant S. 
Then, the transfer function HP(z )  of the system specified in 
(3) is given by (18), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(.) and b i (z )  are specified in 
(23) and S in (24). 

We may observe that (24) has the same effect on the IIR 

architecture with (15), the defining equation of the periodicity 

property for ,a kernel group. This fact suggests the following 

extension of the definition of the periodicity property: 

DeJinition: We shall say that a kernel function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ ( e )  satisfies 

the periodicity property (PP) if there is a positive integer M 
and a nonzero constant S such that 

= s  $(NI __ $ ( N -  1) - - 4(N - M + I) - ._ - . . .  - 
$(O) 4(-1) d(-M + 1) 

is satisfied. 
Interestinglly, (15) and (24) imply the following corollary. 

Corollary 4: If a kernel group satisfies the periodicity prop- 

erty, then the ratio value S in (15) will be either S = 1 or 
s = -1. 

E. IIR Architecture Design for Mapping Operators 

Thus far, we have discussed the procedure for computing 

the transfer function that is associated to a given kernel group. 
We have shown how this transfer function is determined from 
two different starting points: the matrix difference equation 
(2) and the scalar difference equation (13). In the sequel, we 

will consider the implementation of the associated mapping 

operator, which is the goal of our construction. As a direct 

consequence of (7), the desired transfer function H ( z )  is 

M-1 

p=o 

where H p ( z ) ,  p = 0,1, . . . , M - 1 are the transfer func- 
tions of the members of the associated kernel group and 

cp, p = 0,1, - e + , M - 1 are specified by the algorithm design 

procedure. Based on Lemmas 4.3 and 4.4, one can show that 

where the expressions of a( 2 )  , b j  ( z )  , and b i  ( 2 )  are described 
by Lemma 4.3 or by Lemma 4.5, depending on the specifica- 
tions we are given. In a similar way, based on Corollaries 2 and 

3, one can show that for the case where the associated kernel 

group satisfies the periodicity property the transfer function 
we were after is: 

, M-1 

where the expressions of a(.) and b;(z) are specified as above. 
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We conclude our discussion on IIR architectural implemen- 

tations with some comments on the implementation cost! For 
the denominator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(.) in (25) we need zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM multipliers and M 
adders. For the two numerators of this expression we need 2M 
multipliers and 2(M-  1) adders. An additional adder is needed 

for the addition in (25). If the periodicity property is satisfied, 

the implementation of the numerator in (26) requires M 
multipliers and M -  1 adders. Note that no multiplier is needed 

for the factor S, since the constant S takes values in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ 1, - l}. 

The overall cost is shown in Table I (W architecture). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
comparison of the lattice and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIR architectures on the basis 

of the costs in Table I will yield the following conchusion: The 
IIR architecture is better if the periodicity property is satisfied 
by the underlying kemel group, while the lattice architecture 
is appropriate for the cases where the above property is not 
satisfied. Note that the implicit assumption we have made is 

that only one kernel function from the associated kemel group 

participated in the linear expression that specifies the mapping 

operator in consideration (cf. (6)). 

v. IMPLEMENTING SLIDING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND BLOCK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSFORMS 

An N x N data transform can be viewed as a bank of 

N mapping operators of length N.  A time-recursive imple- 
mentation of these operators yields a locally interconnected, 
modular, regular, and scalable with N design with linear cost 
O ( N )  (in terms of operator counts). In particular, the constant 

term underlying the asymptotic cost expression can be made 

linear in terms of the associated kemel group size M ,  as 
manifested by the figures in Table I, resulting in the more 
accurate expression of O ( M N ) .  In the introductory Section I, 
we distinguished between the sliding and the block transforms. 
We observe in Table I that such classification reflects different 

implementation costs. This is justified as follows. 
The output of the operators that implement a block trans- 

form are sampled at the time instances t = 0, N,2N, . . .  . 
Consequently, between two adjacent sampling instances we 

compute N - 1 pieces of data that are neglected. The only 

purpose of this computation is to have a transition phase to 
computing the data output at the next time instance that is a 
multiple of N .  Consider now the computation of the first valid 
output that is at time instant t = N.  The scenario for producing 
this output amounts to initializing the memory elements of the 
time-recursive structure at t = 0 and feeding the N first input 

samples. If we reset (to 0) the memory elements periodically 
with period N ,  we can periodically imitate the computation 
of the initialization phase, while being able to produce all the 
useful output data. The consequence of this observation is a 

simplification of the time-recursive design for the operators in 
block transforms: the delay element x - ~  will never deliver 

a nonzero quantity and therefore it should be replaced by 0 
in (25) and (26) (as well as in (16), (18), (21), and (23)). 
The architecture designs need to be changed accordingly. For 

4The IIR structure we consider throughout this paper is the well known 
type-l realization and the cost analysis that follows is based on this fact. 
Nevertheless, any one of the known filter realizations can be used for 
implementing the transfer functions we specify in this subsection. 

Fig. 7. Lattice architecture for M = 2 for an operator used in block 
transform. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. W architecture for M = 2 for an operator used in block transform. 

example, both IIR structures in Fig. 5 and 6 reduce to the one 

in Fig. 8. 
Similarly, the lattice structure in Fig. 2 reduces to the one 

in Fig. 7. A specific instance of this class of circuits, namely 

the DFT W structure, is the well known Goertzel filter [14], 

Observe that the periodicity property has an interesting 

interpretation in this context: if the mapping operators that 

implement a data transform satisfy PP, the implementation 
cost of the block transform is almost identical (it differs by 

one adder) to the one of the sliding transform. 

Note also that the decimation in Fig. 8 lets a substantial 

part of the circuitry operate at minimum rate (that is N times 

lower than the input data rate). 

Finally, an important consequence of the periodical reseting 

we mentioned above is the elimination of the accumulated 

round-off error. In this way, limit cycles and other problems of 

numerical nature associated with the use of finite wordlength 

in the recursive structure are avoided [23], [7]. The algorithm 
design procedure suggested in Sections 111-C and 111-E, along 

with the cost figures in Table I, can be used as design guides. 

Based on this background, a time-recursive architecture of 

a given mapping operator can be routinely obtained. An 

example of this design procedure has been presented in [12] 
regarding the modulated lapped transform (MLT) [24], [26] 
and an extended lapped transform (ELT) [25], [26] with N 
basis vectors of length 4N each. Table I1 depicts cost metrics 
associated with time-recursive and feed-forward architectures 

for sliding and block MLT and ELT. We denote with U the 

time unit that is equal to the time that lapses between two 

consequent input samples. All operations acting on a single 

PI, [31. 
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IIR 
Architecture 

Lemmas 2 9 , 2  10 
Corollary 2 3 

Corollary Lemma2 2 8 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ I  DifferenceEquation 

Numencal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig 9 Overview of the hme-recursive architecture design pnnciples. 

input sample lhave to be performed in time no longer than U,  

or else the data processing rate cannot match the input data 

rate. This is iratructive for the delays5 allowed to the different 

operators, as shown in Table 11, under the column labeled 

“basic pipeline rate.” In case these conditions are not met, 
look ahead techniques [32], [33] should be used to improve 
the speed with the trade-off of complexity. An instance of this 
trade-off is discussed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]. In Table 11, operator counts are 

also specified. All expressions corresponding to feed-forward 

implementations are based on the fast algorithms derived by 

Malvar [24]-[26]. The VLSI layout of the operators that can 

be used for implementing the two architectural schemes have 

to be taken into account before one is able to choose between 

a time-recursive and a feed-forward realization. Nevertheless, 

comparison tables such as Table I1 can be used as guides for 

the choice of VLSI operator instantiations, in the perspective 
of the trade-off between the two architectural schemes. Note 
that unlike feed-forward fast transform implementations, in 
time-recursive: architectures the locality property allows not 

only bit-serial implementations, but also bit-parallel ones. 

Furthermore, the throughput of the overall implementation 

can be enhanced with the use of pipelining. More detailed 
information on operator instantiations that have been proven 

useful in timerecursive architectures and comparisons with 
competent techniques at this level can be found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[23] ,  [SI, 
[131, [191, and VI. 

VI. CONCLUSION 

In this paper, a unifying architectural framework for parallel, 
time-recursive computation is established. 

The structure of the realization of a given mapping operator 

is dictated by the decomposition of the latter with respect 

We assume there is no further fine-grain pipelining for both time-recursive 
and feed-forward architectures. 

TABLE I1 
COST METRICS FOR THE ARCHITECTURAL IMPLEMENTATION OF 

BLOCK TRANSFORMS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ,  A, AND R DENOTE THE TIME DELAYS 
ASSOCIATED WITH THE IMPLEMENTATION OF THE MULTIPLIER, 

THE ADDER, AND THE ROTATION CIRCUIT, RESPECTIVELY 

I 11 basic uiueline rate I implementation cost I 
_. 

MLT 

ELT 

to proper basis functions. Three properties of these functions 

that are instructive for the architecture design are the ship 
property (SP), the di8erence equation property (DEP), and the 
periodicity property (PP).  The design of a lattice architecture 
can be based on SP and the design of an IIR architecture can 
be based on either SP or DEP. PP yields a cost reduction 

and it should be involved in the decision-making for choosing 

between the two candidate architectural options. The time- 

recursive architectures associated to block transforms are 

simpler from the corresponding ones associated to sliding 
transforms. 

A comprehensive overview of the above results is given 
in Fig. 9. With the help of this diagram, the most efficient 
among the time-recursive realizations can be easily determined 
and compared to competent feed-forward alternatives. For 
demonstrating this concept, realizations of the MLT and an 
ELT have been briefly commented. 

Application areas for this framework include real-time data 
compression, adaptive filtering and spectrum analysis. Al- 
though focused on architectural implementations, the devel- 
opments in this work are equally useful for uniprocessor 
algorithmic implementations of sliding transforms. 
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APPENDLX Consequently, from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ transform of (14) we get 

X p ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ~ X O ( Z )  or - f p ( ~ ) z - N  + f p ( ~ )  
Proof of Lemma 3.4: We will proceed with the proof by 

showing that there are algorithms for the following computa- 
tions: = Dp[-fo(o)z-N + fO(N)l, P = 1 , 2 .  

1) Compute {A, b} based on the knowledge of R and f(0). 

2) Compute {R,f(O)} based on {A,b}. 

3) Compute {A,b} based on {f(-l),f(-2);,., 

f(-M),71,72,. . . , m i r ) .  

4) Compute {f(-l),f(-2), . . . , f ( -M),x,yz,  .. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,YM} 
based on {A, b} 

The first two algorithms are straightforward implications of 

relation (10). Note the implicit nonsingularity assumption we 

have made for the matrix R. 

For the computation in Step 3, we follow four steps: first, 

compute the quantities f (n) ,  n = 0, 1, . . . , M - 1 based on 

f (n) ,n  = -1,-2,.. . ,-M and (13). Since we havef(n) = 
ANb, the controllability matrix specified by the unknown 

quantities {A, b} will be [18] 

C = [ b  Ab . . .  A"-lb] 

= [ f ( O )  f(1) . . '  f(M- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl)]. 

Second, by using relation (12), find the controller canonical- 

form system matrix A, and output vector b,. So, the control- 

lability matrix of the controller canonical form is obtained 

C, = [b, A,b, . . .  AF-lb,]. 

Since this is true for every z in some open interval, the latter 

implies 

for p = 1,2 ,  or equivalently 

which in tum is equivalent to (15). 

Proof of Lemma 4.2: If we have b = eJ(lcTIN) one can 

venfy that (15) holds with ratio value 1/S = (-l)', by simply 

substituting the above expression of b in (5). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
On the other hand, suppose that (15) is satisfied by a kernel 

group specified by (5 )  with b = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeJp .  If 1/S is the value of the 
ratio in (15), then the latter implies: 

The left-hand side expression can also be written as 

cop(cos/3N + j sinPN) + cl,(cosPN - j sinPN) 

= cosPN(cop + e lp )  + jsinPN(cOp - elp) 

Third, compute the matrix T that defines the similarity trans- 

form 

where P = 0,1. Therefore, we have either Cop = Cip,P = 
or j3 = j ( k x / N ) .  Since the first condition yields coocl1 - 
colclo = 0, the alternative must be true. In turn, the above 

{A,, b,} + {A = T-'A,T, b = T-'b,} (27) result implies 

1 

S 
by using the relation [18] - = cosPN = c o s h  = ( - 1 ) k .  

T = C,C-' 

Fourth, the quantities {A, b} are computed by the relations 

specified in (27). 

The computation in Step 4 is as follows: from the knowl- 

edge of {A, b}, we obtain the corresponding pair in con- 

troller canonical form {A,, b,} [18]. The desired coefficients 

y1,y2,..* , y ~  can be obtained from the elements of the 

first row of the matrix A, by using (12). The initial values 

f (- 1), f (-a), . . . , f ( - M )  can be obtained by simply evalu- 

ating the expression f (n) = A"b for n = -1, -2, . . . , -M. 
Proof of Lemma 4.1 : We will consider here the special case 

of M = 3. The proof can be easily generalized for arbitrary 

values of M .  
One can verify that the transfer functions from the input to 

the points X o ( t ) ,  Xl(t), and X2(t) in Fig. 3, respectively, are 

- fo(0)z-N + f o ( N ) ,  -fl(0)z-N + f l ( N )  and 

- f2(0)z-N + f2(N). 

Proof of Lemma 4.3: Let X p ( t ) ,  t = 0,1, . . . be the output 
data of the mapping operation defined by the 'operator 

[fm f P ( 1 )  . . '  f p (N  - 1)l. 

From (4) we get 

M-1 

X,@> = c TQD[X,(t - 1) + &(t)l, 
q=o 

~ = O , l , . . . , M - l , t =  1,2, . . .  (28) 

where 

M 
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q=l Ln=1 n=l 
M 

F ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

1 - CYqz- ' "  
q=l 

Since 

Z+{x(t - m)} = .z-"X(z), 

m>O 

for every integer 

the 2, transfiorm of (28) and (29) gives 

M-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q=o 

p = 0,1, .  . . , M  - 1 

where 

From (31), we have 

M-1 

Tqpz-lXq(z) + (-1 + ?-ppz-l)xp(z) 

q=o 

M-I 

q=o 

p = 0 ,1 , .  .. , M - 1. 

By solving the above system of equations for X p ( z ) , p  = 
O , l , .  . . , M - 1, we obtain 

X,(z) = Hp(z)X(z), p = 0,1, .  . . , M - 1 

where Hp ( z )  can be brought into the form specified in Lemma 

4.3 after a few algebraic manipulations. 

Proof of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.5: First, we define the ZN transform 
of a discrete time function f ( n )  over the time segment 

{O, . . . ,N  - 1) 

N-l 

ZN{ f (n ) }  = f ( n ) z - " .  (33) 

This variation of the Z transform is appropriate for the 
frequency domain representation of the kernel functions we 
consider here, since these functions are defined on a bounded 
segment of the time axis. On the other hand, we will use the 

unilateral Z+ transform as the frequency domain representa- 

tion of the input signal x( t )  and the output signalX(t), since 

these signals are defined on the semi-infinite sequence of time 

instances t = 0,1 , .  . . . 
Let F ( z )  = 2N{fp(n)}. Based on (33), we can show that 

Z{fp(n - 1)) = z - l F ( z )  + f p ( - l )  - z P N f p ( N  - 1) and 

Z{ fp (n  - 2)) =z-2F(2)  + f p ( - 2 )  + z - l f p ( - l )  

- z -N fp (N  - 2) - zN- l fp (N  - 1). (34) 

In addition, we have 

where 

F ( z )  = . Z ~ { f ~ ( n ) }  and 

j ( n )  = f p ( ~  - 1 - n), n = 0 ,1 , .  . . , N - 1. 

By taking the Zn transform of both sides of (20), using (34), 
and solving for F ( z ) ,  we obtain (36), as given at the top of 
the page. 

From (3), we have 

N-1 

X ( t  + N - 1) = f,(n)s(t + n) 
n=O 

or equivalently 

(37) 
n=O 

where y ( t )  2 X ( t  
both sides of (37) and using (30) we obtain: 

N - 1). By taking the Z+ transform of 

N-1 N-1 

Y(2) = f(n)[z-"X(z)] = X(z)  f " ( n ) P  
n=O 

= X ( z ) F ( z ) .  
n=O 

n=O 
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By substituting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(35), we get 

Y(,) = ,-N+1F(,-1)X(z) 

and therefore, the transfer function we were after is 

If we substitute the expression (36) of F ( z )  in the above we 
obtain the transfer function specified in (21). 

Proof of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALemma 4.5: One can verify that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

where the Z N  transform is defined by (33) and F ( z )  = 
Z ~ { f ~ ( n ) } .  By taking the Z ,  transfom of (13), using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(39) 
and solving for F ( z )  we obtain the second equation shown at 
the top of the previous page. 

By substituting this expression in (38), we obtain (23). 
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