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Abstract— Sitting posture analysis is widely applied in many
daily applications in biomedical, education, and health care
domains. It is interesting to monitor sitting postures in an

economic and comfortable manner. Accordingly, we present
a textile-based sensing system, called Smart Cushion, which
analyzes the sitting posture of human being accurately and non-
invasively. First, we introduce the electrical textile sensor and
its electrical characteristics, such as offset, scaling, crosstalk,
and rotation. Second, we present the design and implementation
of the Smart Cushion system. Several effective techniques have
been proposed to improve the recognition rate of sitting postures,
including sensor calibration, data representation, and dynamic
time warping-based classification. Last, our experimental results
show that the recognition rate of our Smart Cushion system is
in excess of 85.9%.

Index Terms— Textile, pressure sensor, sitting posture,
calibration, cushion, non-invasive.

I. INTRODUCTION

A. Background and Related Work

S ITTING is one of the most common postures of human

beings in life. It is reported that people sit for six hours

each day. Sitting posture is related to many health issues, such

as back pain [1], sciatica [2] and cervical spondylosis [3];

therefore, sitting posture analysis receives increasing attention

in the medical community due to its extensive applications

and significant impacts, such as chronic diseases [4], health

education (correct sitting posture for back ache prevention [1]),

and human computer interface for rehabilitation (real-time

sitting posture analysis for gaming [5]).

A traditional method to analyze sitting posture is to let

a patient sit on a hospital chair, and a therapist or a nurse

observes the patient’s sitting posture and ask questions about

his feeling. In general, the normal diagnostic process will

take half to one hour. However, it is still too short to obtain

enough information for accurate diagnosis. Furthermore, the

Manuscript received December 15, 2012; revised March 29, 2013; accepted
April 18, 2013. Date of publication April 23, 2013; date of current version
August 30, 2013. The associate editor coordinating the review of this paper
and approving it for publication was Prof. Zeynep Celik-Butler.

W. Xu is with the Computer Science and Engineering Department, SUNY
Buffalo, NY 14214 USA (e-mail: wenyaoxu@buffalo.edu).

L. He and M. Sarrafzadeh are with the Electrical Engineering
Department, University of California, Los Angeles, CA 90095 USA (e-mail:
lhe@ee.ucla.edu; majid@cs.ucla.edu).

M.-C. Huang and N. Amini are with the Computer Science Depart-
ment, University of California, Los Angeles, CA 90095 USA (e-mail:
mingchuh@cs.ucla.edu; amini@cs.ucla.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSEN.2013.2259589

diagnostic result has low reliability and can be biased by

subjective factors from doctors to patients.

For the sake of reliable diagnosis, doctors are eager to obtain

more comprehensive information from patients. Therefore, it

is necessary to monitor patients 24/7 and offer the most

comprehensive information for doctors. Camera is commonly

used sensor for sitting posture analysis. Marschall et al. [6]

deployed several cameras in an office setting to record sitting

postures of subjects. However, this method always makes the

subjects uncomfortable as cameras record other unnecessary

information of the subjects, which will be related to personal

privacy. Kazuhiro et al. [7] equipped chairs with four pressure

sensors for sitting posture monitoring. Compared to cameras,

pressure sensor has less privacy concerns and is dedicated

to record the sitting pressure distribution only. However,

a handful of pressure sensors are not enough to obtain the

comprehensive sitting information, and on the other hand

deploying more pressure sensors will increase the related cost.

Currently, the community is still seeking a low-cost, high-

accuracy, and reliable solution to analyze sitting postures.

B. Textile Sensor

Electrical textile, shorthand as eTextile, is a composite yarn

made of fibers coated with conductive polymer. Its natural

structure is loose and its inside fibers are air gapped. Con-

sidering its promising electrical characteristics, eTextile has

become widely-used in fabricating sensors for diverse applica-

tions, such as pressure [8]–[10], stretch [11]–[13], strain [14],

humanity sensors [15], and respiratory sensors [16]–[18].

Moreover, it can be used to measure human physiological

signals for health care applications, such as EKG [19], blood

pressure [20], and rehabilitation [21]. Different from silicon

or piezoelectric based sensors [22], [23], eTextile offers much

more comfortable touch feeling and economical price. There-

fore, it can be unobtrusively integrated into apparels for daily

use. For example, Mattmann et al. [24] presented a garment

prototype using textile strain sensors to recognize upper body

positions. Mitchell et al. [25] introduced an interactive system

using a wearable textile sensor to monitor breathing patterns

of human beings. Shu et al. [26] built textile pressure sensor

arrays in a shoe for gait analysis.

However, the characteristics of a textile sensor are not

well-described. Normally, a textile sensor suffers from several

instable factors such as environmental noise, offset, scaling,

and crosstalk. Especially, whenever it is integrated into clothes
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Fig. 1. The Smart Cushion architecture.

or facilities, other uncertainties from the environment will

make the signal too fuzzy to be understood. For instance, in

sitting monitoring application, pressure distribution is not only

related to the subject’s sitting posture, but also depends on

other factors such as body size, weight, and sitting orientation.

Therefore, signal processing and analysis on textile sensors is

a challenging research topic.

C. Contribution

In this paper, we introduce a smart wearable system, called

Smart Cushion, to analyze the sitting posture of users in daily

life. Different from the traditional medical devices, Smart

Cushion is based on textile material and is capable of recording

patients information non-invasively. We model the textile

sensor array and propose an effective framework to tackle

the challenges in sitting posture analysis. The contributions

of this paper are three-folds. First, we develop a textile sensor

based cushion system to sense human sitting postures. The

system consists of textile sensor array, data aggregator, and

data analysis module. Secondly, we propose a new model to

characterize and calibrate the textile sensor array. This model

addresses the major issues of textile sensors, such as back-

ground noise, offset, scaling, and cross talking. Second, we

present an efficient algorithm for sitting posture recognition.

The algorithm reduces the dimensionality of sensor data and

analyzes sitting postures based on dynamic time warping.

We evaluate the performance of Smart Cushion system with

14 subjects. The experimental results show that the recognition

rate can reach up to 85.9%.

The remainder of this paper is organized as follows.

Section II presents the overall structure and the key com-

ponents of Smart Cushion system. Section III elaborates on

the design of the textile sensor array. Also, we introduce

the significant uncertain factors in sensor signal processing.

Section IV describes the new proposed sensor calibration

method. This method is general for textile sensor calibration

and not restricted to any specific application. Section V dis-

cusses the algorithm of sitting posture analysis. Experimental

results are shown in Section VI, and the paper is concluded

in Section VII.

(a) (b)

Fig. 2. The prototype of Smart Cushion. (a) Textile sensor array. (b) Smart
phone.

II. SYSTEM DESCRIPTION

Smart Cushion is developed to be used in hospital settings

and daily use, such as at home or in the office. Therefore, the

essential problem is how to make the system convenient to

access, straightforward to deploy, and unobtrusive to use. In

addition, the system is low-cost and compatible with existing

computer systems found in hospitals or homes. Fig. 1 shows

the architecture of the Smart Cushion system. Basically the

system is composed of three components: textile sensor array,

data sampling unit and a data center. Textile sensor array

captures sitting pressure distribution of the user when he sits

on Smart Cushion, data sampling unit acquires the sensor

values and it wirelessly transmits the data to a data center.

The data center stores and analyzes the sensed data for health

status monitoring.

Fig. 2(a) shows the implementation of the textile sensor

array in Smart Cushion. The total sensor surface area is

10 by 10 inch, where the area of each square sensor is

5/8 by 5/8 inch as each row and column bus is 5/8 inch

wide, and the space between sensors is 1/8 inch. The design

structure of the sensor array will be introduced in detail in

Section III. The data sampling unit is designed based on

Arduino Dev. board. A bluetooth module is built on the board

to enable wireless data transmissions. A driver circuit is around

the Arduino microcontroller for sensor array scanning. The

sampling frequency is adjustable. Given that the frequency of

sitting posture changes is lower than other body movements,

the default data rate in Smart Cushion is set to 10 Hz. Data

storage and analysis are performed in the date center, includ-

ing sitting posture analysis, human movement indexing, and

statistics of motion. Considering the accessibility for mobile

users, as shown in Fig. 2(a) a user-friendly application is also

developed for smart phones, which conveniently displays real-

time feedback of the sitting pressure distribution and facilitates

continuous visualization of sitting postures.

III. TEXTILE SENSOR ARRAY DESIGN

eTextile is a fiber-based yarn which is coated with

piezoelectric polymer [27]. The initial resistance between

the top-bottom surfaces is high. When extra force is applied

on the surface of the eTextile, the intra fibers will be squeezed
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Fig. 3. The peripheral circuit for pressure distribution scanning.

together and the throughout resistance become decrease.

Therefore, we can take advantage of this electrical character-

istics and design a high-density and low-cost pressure sensor

array.

A. Sensor Array Architecture

One type of the textile sensor sheet has been implemented

in [27]. In that structure, each sensor needs an independent

analog to digital channel (ADC) to sample the pressure. For

example, to build an N by N sensor array, N×N I/O

pins are required. This is prohibitive for large-scale sensing

applications. In Smart Cushion, we use a three-stacked-layer

structure to build the sensors, where the middle layer is

eTextile. The advantage of this structure is that the top layer

and the bottom layer are normal fabric uniformly coated with

parallel conductive buses. As shown in Fig. 3, the conductive

buses on the top layer are orthogonal to those on the bottom.

The intersection area in between of the orthogonal buses is the

sensing unit. Fig. 4(a) shows the sensor implementation. The

top layer and bottom layer are both coated with 16 buses.

Therefore, the number of sensors located on this sheet is

256. Moreover, with regards to Fig. 4(b) the total thickness

is 1.5 mm only, which makes Smart Cushion flexible and thin

enough for noninvasive use. This N×N sensor structure only

requires 2N I/O pins. The functionality of this circuit will

be discussed in the following subsection.

B. Scanning Method

The peripheral circuit shown in Fig. 3 is used to scan

the zebra pattern sensor array. Each conductive bus on the

bottom is connected to an ADC from analog switch module

S1 to ground via an offset resistor R0. Each conductive

bus on the top is connected to a voltage supply via analog

switch model S2. Both S1 and S2 are used together in to

determine which sensor is selected, and the scanning sequence

is synchronized by a microcontroller. For example, when S2

connects bus i on the top layer to a voltage supply and S1

connects bus j to ADC, Smart Cushion will read the sensor

located in row i , column j , which is denoted as Vi j . Therefore,

this peripheral circuit has random accessability for an arbitrary

sensor in the system.

(a) (b)

Fig. 4. The structure of textile sensor and sensor array design. (a) Sensor
implementation. (b) Sensor thickness.

C. Uncertainties in Textile Sensor Data

When a user sits and applies forces on the sensor sheet,

the eTextile output will not just depend on the sitting posture.

In fact, the sensor value can be interfered by other uncertain

factors, which make the textile sensor data difficult to be

analyzed. Here, we list the dominant factors of signal dis-

tortion in eTextile. Basically, there are four different kinds of

uncertain issues. Offset and scaling are caused by sheet-to-

sheet variation, and crosstalk and rotation are due to within-

sheet variation.

1) Offset

In the ideal case, the initial pressure on each sensor

should be zero. However, due to the sandwiched struc-

ture, initial offset pressure is unavoidable, and its value

highly depends on the assembling method of the sensor.

If the three layers are laminated tightly, the offset value

will become high and vice versa. Obviously, different

sheets should contain different assembling status, and

this assembling variation implies different offset pres-

sure values from sheet to sheet.

2) Scaling

The characteristics of eTextile have a large resistivity

variation. Even if the same forces are applied to two

similar eTextile sensors, their outputs are not necessarily

the same. It is impossible to build up a general look-up

table which describes the relationship between applied

forces and sensor outputs in all cases. However, eTextile

sensor is still promising for applications because the

sensing repeatability and relativity are stable. It is pos-

sible to use a scientific method to predict the scaling

variation.

3) Crosstalk

The crosstalk effect is one of the most challenging issues

to deal with in textile sensors. Due to the limited space

between sensors, all adjacent sensors are mechanically

coupled together. As shown in Fig. 5, the initial sensor

sheet is uniform, and the thickness value of each sensor

is H1. Once some force is applied on Sensor S3, its

thickness will be reduced to H2. In the meanwhile, the

adjacent sensors also become squeezed more or less: the

sensor values of S2 and S4 change because S3 is pressed.

The thickness of S2 and S4 changes to H3, though there

is no direct force applied on them. This phenomenon

implies that the sensor readings are not only linked with

the applied force but are also related to its neighboring

sensors’ conditions.
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Fig. 5. An demostration of the crosstalk effect in the textile sensor array.

(a) (b)

(c) (d)

Fig. 6. The effect of the pressure map rotation. (a) Sitting A. (b) Sitting B .
(c) Pressure map A. (d) Pressure map B .

4) Rotation

Even if the same user sits on Smart Cushion with

the same gesture, the collected pressure map may not

be the same due to the different sitting orientations.

Fig. 6 shows two pressure distributions with the same

gesture but different orientations. The pressure map

in Fig. 6(c) is fairly similar to the one in Fig. 6(d).

However, it is considerably difficult to match them with

each other using pattern recognition techniques, since

“rotation is always something hard to handle compared

to translation and scaling” [28].

In this section, we presented the sensor design and imper-

fection of the textile sensor array. To achieve good perfor-

mance in applications, all issues described above should be

effectively handled. In the next section, we will introduce

our proposed model to improve the quality of textile sensor

data.

Fig. 7. Parametric modeling of a single textile sensor.

Fig. 8. The illustration of sensor x and its neighbors.

IV. SENSOR CALIBRATION

A. Preliminary

To make reasonable inferences for applications, such as

sitting position analysis, it is necessary to have accurate

measurements from textile sensor. To address the uncertain

issues we discussed from Section III-C, we analyzed the sensor

signal model to learn the intrinsic relation between an applied

force Fa and a sensor reading Vo.

Fig. 7 models intrinsic parameters in a single textile sensor.

The textile resistor, Rt , and the offset resistor, Ro are con-

nected in serial. One end is connected to a voltage supply, Vs ,

and the other is connected to the ground, G N D. The middle

joint point is connected to an ADC to obtain a sensor reading

Vo. According to the mechanics of the eTextile [27], the extra

applied force, Fa , is approximated to be inversely proportional

to the sensor resistor Rt :

Rt =
C

Fa

, (1)

where C is a constant. Based on the parametric model in

Fig. 7, we can derive a relational expression between sensor

reading So and applied force, Fa :

Fa =
C×Vo

Rt×(Vs − Vo)
. (2)

From Eq.2, we can see that the applied force is not linearly

proportional to the ADC reading. This non-linearity makes the

uncertain factors more difficult to deal with.
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(a) (b)

(c)

(d)

Fig. 9. Data representation procedure. (a) Map. (b) Boundary. (c) Distance.
(d) Pressure profile sequence.

B. MRF/Gibbs-Based Re-Sampling Method

Our previous method to calibrate the sensors is to establish

a pressure-resistance look-up table to exhaustively model the

eTextile formulation via repeating voltage measurements under

a number of imposed pressure values [29]. However, there

are several difficulties involved. For example, even though we

can measure the voltage of the voltage divider circuits one

by one for each pressure sensor, we still cannot predict its

output voltage if a number of its neighbor sensors are pressed

at the same time because of the coupling effect mentioned

in Section III-C. Furthermore, pressure-resistance relationship

changes from one eTextile to another. Therefore, measuring

each pressure-resistance relationship for each eTextile-based

pressure sensor might result in an inefficient model.

In this paper, we proposed a new re-sampling based statistics

technique under MRF/Gibbs distribution [30] to calibrate

the uncertainties in eCushion, instead of directly building

an ad-hoc modeling for each eTextile sensor. The basic idea

is to find an up-threshold, T hup , a down-threshold, T hdn , and

the sensors that need to be calibrated. Firstly, we should decide

which sensor needs to be re-sampled based on the following

algorithm:

Here, we assume that the noise in Smart Cushion without

any subject follows a Gaussian distribution. Once we have

the re-sampling table Mask, we filter out the pressure values

within the threshold range by randomly initializing the val-

ues. Then we start re-sampling under MRF/Gibbs probability

Algorithm 1 Re-sampling Strategy

1: /* Step 1: Data Annotation and Setup */

2: Initial arrayed sensor reading: ArrayV alue(i, j) denotes

the sensor value located at (i, j)

3: Calculate the up-threshold value T hup and the down-

threshold value T hdn

4: Decide the re-sampling table Mask, where Mask(i, j) =

1 means that the pressure sensor needs to be re-sampled,

Mask(i, j) = 0 means that the pressure value does NOT

need to be re-sampled

5:

6: /* Step 2: T hup and T hdn setup */

7: T hup = mean(ArrayValue) + std(ArrayV alue);

8: T hdn = mean(ArrayValue) − std(ArrayV alue);

9:

10: /* Step 3: Re-sampling Table Calculation*/

11: for i = 1 to n do

12: for j = 1 to n do

13: if ArrayV alue(i, j) < T hup and

ArrayV alue(i, j) > T hdn then

14: Mask(i, j) = 1;

15: else

16: Mask(i, j) = 0;

17: end if

18: end for

19: end for

20:

distribution as follows:

P(X = x) =
1

Z(β)
e−βE(x). (3)

In Eq. 3, Z is used for normalizing the probability distribution.

E is the energy function derived from the neighboring pressure

values around x . β is a free variable for a finer tuning, such

as using simulated annealing method. In our case we just

decrease the β value monotonously by a constant factor. Norm-

2 energy function is the summation of the squared differences

between x and its neighbors. The neighborhood definition is

shown in Fig. 8. The energy function is denoted in Eq. 4 to

calculate the probability density function of x :

pd f (x) = e−β((xup−x)2+(xdn−x)2+(xle f t−x)2+(xright −x)2). (4)

In our algorithm, whenever a corrupted pressure value

detected out of T hdn and T hup , the probability distribu-

tion of the corrupted pressure value will be re-computed

and the new value will be generated by the re-sampling

formulation Eq. 3. Traveling all corrupted pressure val-

ues once is called 1-sweep. After a few sweeps, the cor-

rupted pressure value will be closer to its neighboring pres-

sure value, since the probability distribution will become

narrower when the energy deceases. In other words, the

newer sampling values drawn from the new probability dis-

tributions will be similar to their neighborhood pressure

values.

Based on the above analysis, a heavier pressure point on

the Smart Cushion system will have more impact on its
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Fig. 10. A DTW example of two pressure profile sequences.

surrounding neighbors. It means that the pressure values inside

the subject area will be boosted to a higher value close to

the average pressure value of the heavy object imposed. This

conclusion can be derived by the following proof:

Given that the boundary pressure value will be determined

by the equation:

pd f (x) = e−
∑

i (xneighbori
−x)2

. (5)

The maximum likelihood can be obtained by its differenti-

ation equation:

∂ pd f

x
= 0, (6)

∑

(xneighbori − x)2
= 0. (7)

Eq. 7 indicates that x is more likely to be a value around

the average of its neighbors. After applying the proposed

algorithm, the holes inside the uniform weighted subject are

filled. Less noisy pressure values will affect the summation

result. Hence, the pressure estimation is approximately linear

along with the weight of the subject on Smart Cushion.

Since the threshold range is adaptive and only those pressure

values in the suspicious zone will be modified, the proposed

algorithm will not over-smooth the pressure readings.

In this section, we describe a re-sampling mechanism to

iteratively adjust up and bottom threshold range based on a

re-constructing probability distribution. After calibration, these

sensors have higher precision, and the shape of the subject is

also preserved. It is worth noticing that our method can be

adapted in a variety of eTextile based sensors without manually

tuning.

V. SITTING POSITION RECOGNITION

A template-based algorithm [31] is proposed to distinguish

sitting postures; however, it cannot handle the scenario where

the sensing data is imperfect. In addition, Naive Bayes Net-

work [32] method [15] is used to train the data and selected

significantly featured sensors for classification. This method

highly depends on the training data and cannot deal with the

uncertain factors such as different weights, sizes and sitting

orientations. In this section, we introduce our algorithm to

efficiently address sitting posture analysis.

A. Data Representation

To facilitate the effort of pattern recognition, it is important

to choose an appropriate way of data representation. Instead

of dealing with pressure map (2D image) directly, we convert

it into a pressure profile sequence (1D time series). In general,

there are multiple advantages to work with 1D sequential data.

First, the dimension of is data reduced; therefore, the algorithm

complexity decreases dramatically (compared to 2D pressure

image). Second, there are a number of existing algorithms to

process 1D data sequences. Thirdly, it is much easier to tackle

the rotation issue.

Our proposed procedures for data representation contain the

following steps:

1) Step 1: Get the calibrated data as 2D image shown in

Fig.9(a).

2) Step 2: The Canny edge detector is applied to the data

to obtain a binary image as shown in Fig. 9(b).

3) Step 3: Extracting the outline curve of the binary image.

Note that it is always a closed curve due to the shape

of human body.

4) Step 4: Measure the distance between every point and

an image center (Fig. 9(c)).

5) Step 5: Signals can be treated as the Y-axis of a

sequentially expanded signal waveform (Fig. 9(c)).

Fig. 9(a) shows the different steps of this method. After

the last step, the pressure distribution information has been

transformed to a 1D sequential data. In the next subsection,

we will introduce a sitting posture recognition algorithm for

this new data representation.

B. Signal Matching Using Dynamic Time Warping

We use dynamic time warping to classify different sitting

postures. The targeted sequential signals are extracted from the

corresponding pressure map while a user sits on Smart Cush-

ion. Dynamic time warping (DT W ) is a similarity evaluation

method of two time series signals. Compared to Euclidean

distance, DT W is more robust, allowing similar shapes to be

matched even if they are out of phase [33].

Assuming there are two pressure sequences denoted as:

S = [s1, s2, s3, ··, si , ··, sn ], (8)

T = [t1, t2, t3, ··, t j , ··, tm ]. (9)

To evaluate the similarity of these two sequences, DT W

constructs a n by m matric D, where di j = (si − t j )
2. Each

element di j denotes the similarity between si and t j . The main

idea of DT W is to find a continuous and monotonic path

W from d11 to dmn with minimal cost. The time and space

complexity of DT W (S, T ) is O(mn). Using L B_K eogh

bounding can effectively make DTW run in O(n) [34], [35].

Fig. 10 shows an example of DT W -based similarity evaluation

between two pressure profile sequences.

In order to speed up the algorithm, we set two bounds

to reduce DT W searching space. In this application, our
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TABLE I

THE EXPERIMENTAL RESULTS: PRECISION V.S. RECALL

Situp Forward Backward LL RL LFOR RFOL Total Recall

Situp 85 7 8 0 0 0 0 100 85%

Forward 3 92 5 0 0 0 0 100 92%

Backward 9 4 87 0 0 0 0 100 87%

LL 1 2 0 74 0 15 8 100 74%

RL 1 1 4 0 82 1 11 100 82%

LFOR 0 0 0 5 1 90 4 100 90%

RFOL 1 1 1 2 3 2 91 100 91%

Total 100 107 105 81 86 108 114

Precision 85% 86% 83% 91% 95% 83% 80%

Fig. 11. Sitting posture analysis: seven sitting postures (top) are evaluated and each eTextile pressure map (middle) is transformed to a corresponding pressure
profile sequence (bottom).

algorithm has adaptive bounding values according to the

signal. Given any 2r length subsequence S′ = [si−r : si+r ]

in S, we can find that the upper bound of S′ is Ui , and the

lower bound of S′ is L i . The values of Ui and L i are calculated

as follows:

Ui = 1.5 × max(si−r : si+r ), (10)

L i = 0.75 × min(si−r : si+r ). (11)

With these bound settings, L B_K eogh(S, T ) becomes:

L B_K eogh(S, T ) =

√

√

√

√

√

∑

⎧

⎨

⎩

(ti − Ui )
2 i f ti > Ui

(ti − L i )
2 i f ti < L i

0 otherwi se

.(12)

Notice that, similar to [34], DT W similarity measurement will

converge to the Euclidean distance when r is 1.

VI. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of our Smart Cushion system,

we performed a pilot study on-campus. There are 25 sub-

jects participated in the experiments, including 15 males and

10 females. Each participant sits on Smart Cushion with seven

most common sitting postures. These data are used as training

data. The seven postures, considered for classification, include

1) situp, 2) forward, 3) backward, 4) left lean (LL), 5) right

lean (RL), 6) right foot over left (RFOL) and 7) left foot over

right (LFOR).

Fig. 11 shows an example indicating the procedure of data

acquisition and preprocessing. The figures on the top row

illustrate seven sitting postures. The middle row pictures show

the corresponding pressure map of each posture. Each pressure

map has 256 pixels in total. The bottom row pictures are the

corresponding sequential representation using pressure maps.

Each sequence is evaluated and classified using our proposed

algorithm.

B. Recognition Results

The experimental results are shown in Table I. We list the

recognition results of all sitting postures with the precision

and recall calculation. The overall accuracy of our proposed

algorithm over all sitting postures is 85.9%, which outperforms

the previous method (79% in [29]). This is because the re-

sampling based calibration method deals with the uncertainties

in eTextile sensor data in a more accurate way. Furthermore,

we notice that “situp”, “forward” and “backward” postures are

similar in the sense that their samples are never misclassified

into other postures; however, they are confused with each other

to a great extent. This observation indicates that these three

sitting postures share many common features. This experience

is helpful for us to further improve the algorithm performance

while considering these sitting postures in particular.

VII. CONCLUSION

In this paper, we design and implement the Smart Cushion

system for sitting posture monitoring. In order to overcome
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several uncertain factors in eTextile sensors, including offset,

scaling, crosstalk, and rotation effects, we propose a re-

sampling based method to calibrate the sensor values. We also

develop a dynamic time warping based algorithm to recognize

different sitting postures. The experimental results show that

the overall accuracy of Smart Cushion over all sitting positions

is 85.9%, which outperforms the previous method (79% in

[29]). We also learn that a number of sitting postures are

similar to each other and harder to be differentiated from each

other. In the future, we will attempt to improve the recognition

rate with the experience we learned. Meanwhile, we consider

to further scale up our system for other applications such as a

bedsheet for sleeping monitoring and a carpet for gait analysis.
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