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Abstract. Sampling along a precipitation gradient in tropical

South America extending from ca. 0.8 to 2.0 m a−1, savanna

soils had consistently lower exchangeable cation concentra-

tions and higher C /N ratios than nearby forest plots. These

soil differences were also reflected in canopy averaged leaf

traits with savanna trees typically having higher leaf mass

per unit area but lower mass-based nitrogen (Nm) and potas-

sium (Km). Both Nm and Km also increased with declin-

ing mean annual precipitation (PA), but most area-based leaf

traits such as leaf photosynthetic capacity showed no system-

atic variation with PA or vegetation type. Despite this invari-

ance, when taken in conjunction with other measures such as

mean canopy height, area-based soil exchangeable potassium

content, [K]sa, proved to be an excellent predictor of several

photosynthetic properties (including 13C isotope discrimina-

tion). Moreover, when considered in a multivariate context

with PA and soil plant available water storage capacity (θP)

as covariates, [K]sa also proved to be an excellent predictor

of stand-level canopy area, providing drastically improved

fits as compared to models considering just PA and/or θP.

Neither calcium, nor magnesium, nor soil pH could substi-

tute for potassium when tested as alternative model predic-

tors (1AIC> 10). Nor for any model could simple soil tex-

ture metrics such as sand or clay content substitute for ei-

ther [K]sa or θP. Taken in conjunction with recent work in

Africa and the forests of the Amazon Basin, this suggests –

in combination with some newly conceptualised interacting

effects of PA and θP also presented here – a critical role for

potassium as a modulator of tropical vegetation structure and

function.

1 Introduction

Forests and savannas dominate the tropical vegetated re-

gions of the Earth covering around 0.2 of the Earth’s surface

(Torello-Raventos et al., 2013). At a broad scale, it has been

long recognised that the distribution of these two biomes,

each with its own structural characteristics and species com-

position, is to a large degree governed by precipitation and its

seasonality (Schmimper, 1903), but with soil chemical char-

acteristics also important (Lloyd et al., 2008; Lehmann et al.,

2011; Veenendaal et al., 2015). Edaphic conditions are espe-

cially influential in regions where the two biomes intersect

– often referred to as “ecotones” or zones of (ecological)

transition (ZOT) – both forest and savanna existing as dis-

crete “patches” under similar climatic conditions (Murdoch

et al., 1976; Furley and Ratter, 1988; Cochrane, 1989; Rat-

ter, 1992; Thompson et al., 1992; Lehmann et al., 2011; Saiz

et al., 2012; Schrodt et al., 2014; Veenendaal et al., 2015).

The role of soils in influencing vegetation distribution pat-

terns within ZOT is, however, still equivocal with some au-

thors arguing that fire-mediated feedbacks determine the na-

ture of alternative vegetation types within this region through

a mechanism related to the maintenance of alternative stable

states (Warman and Moles, 2009; Hirota et al., 2011; Staver

et al., 2011; Hoffmann et al., 2012; Murphy and Bowman,

2012). It has also been argued that large-scale differences

in fire-mediated feedbacks are required to account for ap-

parent inter-continental differences in savanna–precipitation

relationships (Lehmann et al., 2014).

One key argument of the fire-mediated feed-

back/alternative stable state community has been that

in many cases woody vegetation formation types can be

found where they would not be expected on the basis of

climate and/or soils alone (Staver et al., 2011; Murphy and

Bowman, 2012; Lehmann et al., 2014). Yet – other concerns

aside (Hanan et al., 2013; Veenendaal et al., 2015) – we

perhaps should ask ourselves if at present we really do know

exactly what climatic and/or edaphic factors are likely to

be important. Here, of particular note is the importance of

physical as well as chemical soil properties in influencing

tropical vegetation structure, with a range of physical

factors such as soil texture, depth to water table and the

presence/absence of impermeable layers all being potentially

important (Cole, 1960; Avenard and Tricart, 1972; Ratter,

1992; Thompson et al., 1992; Williams et al., 1996; Mills

et al., 2006; Lloyd et al., 2008, 2009).

Tropical South America provides a particularly interesting

“living laboratory” for an investigation into the importance

of climate–soil interactions as drivers of variations in tropi-

cal vegetation structure and function, with “Seasonally Dry

Tropical Forest” extending into rainfall areas with mean an-

nual precipitation rates (PA) of less than 0.9 ma−1 (Prado

and Gibbs, 1993; Killeen et al., 2006; Pennington et al.,

2006) and, most importantly, often occurring in close prox-

imity to a structurally and floristically distinct savanna-like

cerrado formations (Daly and Mitchell, 2000). This occurs

not only at relatively low precipitations of < 1.0 ma−1 (Vil-

larroel et al., 2010) but also – with both vegetation types

found more or less in a continuum – across a range of differ-

ing precipitation regimes extending to the southern Amazon

forest boundary for which PA is typically around 1.6 ma−1

(Ratter, 1992; Killeen et al., 1998; Durigan and Ratter, 2006;

Marimon et al., 2006; Mews et al., 2012; Torello-Raventos

et al., 2013; Veenendaal et al., 2015). Moreover, within the

Amazon Basin itself savanna “inliers” are sometimes found

growing in close proximity to the dominant forest vegeta-

tion at rainfall up to 2.0 ma−1 and sometimes beyond (Cole,

1960; Eiten, 1978; Thompson et al., 1992; Cochrane and

Cochrane, 2010; Torello-Raventos et al., 2013; Rossatto,

2014). It is thus possible to find paired savanna and forest

sites across a precipitation gradient extending from less than

1.0 to more than 2.0 ma−1. This provides a ready means for

quantifying the relative importance of soils vs. climate as

modulators of forest/savanna structure and function.

In terms of measurement and modelling strategies appro-

priate to quantify the relative importance of soils vs. climate

as modulators of tropical vegetation structure and function,
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some guidance can be obtained from the production orien-

tated forestry literature for which there are many examples of

empirical models integrating both edaphic and climatic fac-

tors with the overall aim of predicting site-to-site differences

in stand productivity. For example, Grigal (2009) found a soil

site index measure incorporating water availability (depth to

water and drainage), nutrients (base saturation and organic

matter) and site physical properties (bulk density and stone

volume) to provide good predictions of the growth of aspen

trees in Minnesota. Male (1981) found soil depth (to rock) to

be a good predictor for a range of coniferous species in sub-

tropical Queensland (Australia). Turner et al. (1990) found

a wide range of attributes such as parent rock type, texture

profile, depth to and nature of any impeding layer and con-

dition of the uppermost 0.1 m soil combining together as

factors contributing to variations in the productivity of Pi-

nus radiata forest in Australia. Briggs (1994) used soil root-

ing depth and drainage class to delineate forest productivity

classes in Maine, and Ritchie and Hamann (2008) found that

water capacity of the soil (depth, texture and type of bedrock)

was effective at characterising the productivity of Douglas fir

saplings (Weiskittel et al., 2011).

Most of the above studies have not focussed on specific

soil chemical parameters – and indeed deliberately so: the

reason being to facilitate the ready scaling up of these pro-

ductivity measurements on the basis of limited spatial soils

information. But with, at least in some cases, soil chemical

status indirectly included as a predictor variable through the

inclusion of a parent material term. Soil physical and chemi-

cal properties are inevitably correlated to at least some degree

due to their mutual associations during pedogenesis (Que-

sada et al., 2010). Thus, some “hidden soil fertility effects”

are probably present in many of the above metrics despite

these being based solely on soil physical properties.

It is reasonable to anticipate that soil nutrient status should

affect tropical vegetation structure and dynamics as there

are numerous studies both correlative (Askew et al., 1970;

Goodland and Pollard, 1973; Lopes and Cox, 1977; Fur-

ley and Ratter, 1988; Oliveira-Filho and Ratter, 2002; Que-

sada et al., 2012; Schrodt et al., 2014) and experimental

(Wright et al., 2011; Santiago et al., 2012; Sayer et al.,

2012; Alvarez-Clare et al., 2013) showing specific nutrient

effects on a range of ecosystem properties. Conceptually

at least three mechanisms by which nutrients could affect

vegetation structure and function can be envisioned. First,

as may be especially relevant to high biomass vegetation

types, there may simply not be enough nutrients available

to sustain a higher biomass. This is implicitly assumed by

Bond (2010) and Silva et al. (2013) in their analyses of sa-

vanna and nutrient stocks. Second, a shortage of photosyn-

thetically relevant nutrients such as nitrogen could poten-

tially be associated with reduced rates of carbon acquisition

as is implicitly assumed in many process-based models of

forest productivity in the temperate zone (Weiskittel et al.,

2011) – for example Comins and McMurtrie (1993) – and has

also been suggested for soil phosphorus and Amazon forest

wood production rates (Mercado et al., 2011). Third, given

the many roles played by both macro- and micro-nutrients

in plants (Hänsch and Mendel, 2009; Maathuis, 2009), it

is quite conceivable that processes not directly related to

photosynthetic carbon acquisition or structural biomass ac-

cumulation might be affected. As an illustration, there are

clear and important roles for both potassium and calcium

in wood cambial growth (Fromm, 2010), with the many re-

ports of positive effects of potassium fertilisation on crop

productivity mostly accounted for via improved plant wa-

ter relations rather than photosynthetic carbon acquisition

per se (Römheld and Kirkby, 2010; Wang et al., 2013; Ah-

mad and Maathuis, 2014; Anschütz et al., 2014; Hafsi et al.,

2014; Shabala and Pottosin, 2014; Zörb et al., 2014). This is

thought to be due to the role of potassium as a key osmoticum

in plants, as well as with important roles in long-distance wa-

ter transport (El-Mesbahi et al., 2012; Wang et al., 2013; An-

schütz et al., 2014).

Indeed, these observations, taken along with the many pos-

itive reports of woody plant growth responses to improved

soil potassium status (Tripler et al., 2006), numerous demon-

strations that potassium can – at least to some extent – ame-

liorate adverse effects of soil water, deficits on plant growth

(Egilla et al., 2005; Umar, 2006) and the clear tendency for

savanna species to have a lower potassium requirement than

forest species (Rossatto et al., 2013; Schrodt et al., 2014;

Viani et al., 2014), all suggest that potassium availability

could potentially be important in accounting for any edaphic

effects across the wide precipitation range for which forests

and savanna both occur.

It is also possible that other cations could be involved

in any other observed soil-associated modulations of tropi-

cal vegetation physiognomy. For example, Cochrane (1989)

found very low Ca/Mg ratios in Brazilian savanna sub-soils

and hypothesised that these might be limiting for new root

growth. High concentrations of toxic ions might also be im-

portant with Priess et al. (1999), for example, attributing

very high fine-root turnover rates in Venezuelan sub-montane

forests to high exchangeable aluminium concentrations in the

soil.

Especially as many (but by no means all) tropical soils

are old and highly weathered, it is also possible that trace

element deficiencies may account for some differences in

vegetation structure observed across the tropics. For exam-

ple, working in the Cerrado Region of Brazil, Marques et

al. (2004) found the acid pH soils there to be depleted in both

divalent or monovalent trace element cations (Rb+ Mn2+,

Co2+, Ni2+, Cu2+, Zn2+, Sr2+, Ba2+ and Pb2+) compared

to temperate zone soils. Nevertheless, whatever the hypoth-

esis for the underlying cause of variations in woody plant

cover in the tropics, as grasses are also present in most open

woody vegetation formation types, tree–grass competition

also needs to be considered. For example, according to Wal-

ter’s “two-layer” hypothesis of tree–grass coexistence as ap-
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plied to arid and semi-arid savannas (Ward et al., 2013), there

may be a stratification of below-ground resources with – at

least in the area not directly under the tree crown – grasses

typically utilising water from the uppermost layer and trees

from a slightly lower depth. Thus even if one were to take the

view that the presence of grasses in arid or semi-arid savan-

nas is simply a passive consequence of an inability of trees

to occupy all the available canopy space – though with sub-

surface lateral root spread extending far beyond the canopy

crown areas themselves (Schenk and Jackson, 2002) – then

the presence in open non-shaded areas must also serve to re-

duce woody plant water use and hence productivity.

Nevertheless, under certain conditions it is clear that

herbaceous life forms (axylales) are directly favoured over

their woody competitors, for example where soils are fre-

quently waterlogged and/or very shallow (Lloyd et al., 2008;

Torello-Raventos et al., 2013), and it has even been suggested

that soil nutrient status may directly affect the relative viabil-

ity of woody versus herbaceous life forms. Here, according

to the theory of maximum energy intensity, the latter should

tend to dominate at both the lowest and highest levels of soil

nutrient availability, with trees and shrubs only successful at

intermediate soil fertilities (Milewski and Mills, 2010).

But in any case, as already noted, some authors have sug-

gested that tropical vegetation structure and function across

the 1.0 to 2.0 ma−1 precipitation range are mostly deter-

mined by fire-mediated feedbacks and the existence of alter-

native stable states (Warman and Moles, 2009; Hirota et al.,

2011; Staver et al., 2011; Hoffmann et al., 2012). In which

case it would be reasonably expected that no systematic pat-

tern of vegetation structure in relation to climate and/or soils

should emerge (Sankaran et al., 2005; Hoffmann et al., 2012;

Murphy and Bowman, 2012; Lehmann et al., 2014). Soil–

climate–vegetation interactions along “long” ecological gra-

dients are, however, likely to be complex with significant

multiple interactions. For example, a number of studies have

shown that the optimum vegetation rooting depth should (and

does) increase with precipitation as long as potential evapo-

ration continues to exceed rainfall (as a rule of thumb this is

for PA < 2.2 ma−1; Schenk and Jackson, 2002; Collins and

Bras, 2007; Guswa, 2010). This means that any adverse ef-

fect of a restricted root zone on annual rates of plant water

uptake is likely to be considerably less at lower compared to

higher PA.

Moreover, impermeable layers, such as laterite, which are

common in all but the most severely weathered soils groups

typically found across tropical lands (Thomas, 1974), could

potentially even have a positive effect on soil water balances,

and hence vegetation structure at low PA if reductions in

drainage losses associated with such layers were not to be

fully offset by increased runoff rates during large precipita-

tion events. This has been suggested, for example by Dye and

Walker (1980), as one potential causative factor for the exis-

tence of very high biomass Colophospermum mopane stands

often found at PA < 0.7 ma−1 in southern Africa (Mapaure,

1994).

In addition to measurements of soil and climate, leaf

trait characterisations can also help disentangle causes for

regional-scale variations in canopy structure. For example,

where a nutrient is limiting it might reasonably be expected

that foliar concentrations would be more closely correlated

with the appropriate measures of soil availability than when

a nutrient is available in excess (Quesada and Lloyd, 2015).

Likewise, measurements of photosynthetic capacity in re-

lation to foliar nitrogen and/or phosphorus concentrations

can also yield information as to the extent to which these

elements may be influencing rates of carbon acquisition

(Domingues et al., 2010, 2015; Bloomfield et al., 2014).

Leaf-level measurements on their own do, however, only tell

part of the story. For example, in high-light and water-limited

environments theory suggests that optimal whole-plant pho-

tosynthetic carbon gain should be attained through the con-

struction of relatively few leaves but with higher photosyn-

thetic capacities as compared to moister lower-insolation cli-

mates (Buckley et al., 2002; Farquhar et al., 2002). This pho-

tosynthetic capacity–leaf area trade-off means that any sen-

sible interpretation of variations in leaf-level photosynthetic

rates in terms of whole-plant carbon gain also requires some

knowledge of concurrent changes in canopy leaf areas (Cer-

nusak et al., 2011).

Analysis of the δ13C of leaf dry matter further pro-

vides a convenient method for investigating leaf physiol-

ogy because it relates to the ratio of intercellular to ambient

CO2 mole fractions (Ci/Ca) during photosynthesis (Farquhar

et al., 1989). Thus, foliar δ13C provides a time-integrated

proxy measurement of important leaf gas exchange charac-

teristics, especially in terms of changes in photosynthetic ca-

pacity relative to those of stomatal conductance, hence pro-

viding some indication of the extent to which leaf-level car-

bon acquisition might be “compromised” as a consequence

of stomatal closure in relation to high soil and/or atmo-

spheric water deficits (Lloyd and Farquhar, 1994; Schulze

et al., 1998; Miller et al., 2001). In term of cations, a role

for potassium in the adjustment of savanna trees to more se-

vere soil water deficits has already been suggested by Schrodt

et al. (2014), as an explanation for high foliar concentrations

in the leaves of African savanna species at lower PA.

The current study reports on the climate, soil, leaf and

canopy structural characteristics of 9 forest and 11 savanna

stands of the Amazon Basin sampled along a precipitation

gradient extending from 0.82 to 2.12 ma−1. The following

specific questions are addressed:

1. Are there consistent differences in the physical and/or

chemical properties of forest vs. savanna soils across

a range of sites differing in precipitation?

2. If so, how are these differences reflected in differences

in leaf-level measures of foliar nutrient content, δ13C

and photosynthetic capacity?
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Figure 1. Map showing sampling sites and their temperature (◦C) and precipitation climatologies.

3. How do associated canopy structural characteristics

such as leaf area, average and upper canopy tree heights

and stand-level biomass vary with precipitation for for-

est vs. savanna vegetation formation types?

4. And once variations in soil physical and chemical prop-

erties have been taken into account – noting the likely

importance of interactions with precipitation regimes –

can we then account for variations in tropical forest and

savanna structure using simple statistical models such

as those applied in the forestry production literature? Or

do variations in canopy structure in relation to climate

remain so enigmatic that an invocation of “alternative

stable states” becomes necessary?

2 Materials and methods

2.1 Study area

Data presented here come from 20 plots sampled in the

southern and eastern areas of the Amazon Basin, and lo-

cated in regions where both forest and savanna vegetation

formation types were known to occur (Figs. 1 and 2). Most of

these plots were specifically sampled as part of the Tropical

Biomes in Transition (TROBIT) project (Torello-Raventos

et al., 2013), though with both plant and soil data for two

forest plots (viz. TAP-123 and TAP-04) coming from previ-

ous measurements made through the Amazon Rainforest In-

ventory Network (RAINFOR) (Fyllas et al., 2009; Quesada

et al., 2010, 2011). Additional photosynthesis and foliar N

and P data for the forest plot TAP-04 come from Domingues

et al. (2005). A list of all plots sampled along with selected

climate and soil properties can be found in Supplement Ta-

ble S1.

Measurements from the TROBIT program were made in

two field campaigns, each over a period of ca. 2 months.

First, sampling in Bolivia from February to April 2007 of

nine plots across a rainfall gradient from 0.82 ma−1 at TUC-

01 to 1.45 ma−1 at LFB-01 (Noel Kempff Mercado National

Park). Second, a sampling of 10 plots in Brazil from April

to June 2008 with a range of PA from 1.51 ma−1 at NXV-01

to 2.02 ma−1 at ALC-02. All sampling campaigns had been

timed to coincide with the end of the wet season and the tim-

ing of expected maximum plant physiological activity and

standing herbaceous biomass.

www.biogeosciences.net/12/6529/2015/ Biogeosciences, 12, 6529–6571, 2015
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Examples of forest (top row) and savanna (bottom row) vegetation formation types found along the precipitation gradient. (a) TUC-

01 forest, (b) TUC-03 savanna (both towards the drier end of the transect); (c) FLO-01 forest, (d) SMT-02 savanna (both in the middle of the

Transect); (e) TAP-123 forest (f) ALC-02 savanna (both at the moister end of the transect). Specific details of site locations, climatology and

soils are given in Fig. 1 and Table S1 of the Supplement.

2.2 Stand structure and species identification

Full details of canopy cover, tree height (H ) and

stand biomass estimates are provided in Torello-Raventos

et al. (2013) and Veenendaal et al. (2015), and are thus only

summarised briefly here. In short, we inventoried all trees

and shrubs with a diameter (D) – at breast height (1.3 m) –

of greater than 0.1 m with transect measurements being used

for the estimation of size and abundance of smaller saplings,

shrubs and seedlings (D > 25 mm and H > 1.5 m). Selected

trees and shrubs in each plot were then used for determina-

tion of site-specific allometric equations relating either H or

estimated projected canopy areas (CA) toD. These equations

were then used to estimate mean and 0.95 quantile heights

(hereafter denoted as 〈HU〉, and H ∗, respectively) as well as

stand-level crown area index, CW – defined as the sum of all

woody individual canopy-projected area (including the sky-

light transmitted component) divided by the ground area. Al-

lometric equations employing some combination ofD and/or

H and/or CA taken from a range of previously published

sources or specifically developed as part of the TROBIT

project were then used to estimate stand-level biomass (Vee-

nendaal et al., 2015). Height and biomass estimates for the

non-TROBIT forest plot TAP-123 comes from Feldpausch

et al. (2011) with CW for TAP-123 and the nearby TAP-4

calculated from leaf area index measurements of these stands

(Fyllas et al., 2014) using relationships given in Veenendaal

et al. (2015). Woody and herbaceous species were usually

identified in the field by local botanists, but where necessary

specimens were collected and verified against herbarium col-

lections.

2.3 Soil physical and chemical properties

Soil sampling methods are described in detail in Quesada

et al. (2010, 2011) and are thus only briefly summarised here.

In brief, for each 1 hectare plot, five soil cores were col-

lected and soil retained over the depths 0–0.05, 0.05–0.10,

0.10–0.20, 0.20–0.30, 0.30–0.50, 0.50–1.00, 1.00–1.50 and

1.50–2.00 m using an undisturbed soil sampler (Eijkelkamp

Agrisearch Equipment BV, Giesbeek, the Netherlands). In

addition, each plot usually had one soil pit dug to a depth

of 2.0 m with samples collected from the pit walls at the

same depths as above. Where possible, coring from the bot-

tom of the soil pit for a further 2.0 m was also undertaken,

giving a total maximum depth sampled of 4.0 m. All sam-

pling was done following a standard protocol of RAIN-

FOR network (http://www.geog.leeds.ac.uk/projects/rainfor/

pages/manualstodownload.html) in such a way to best ac-

count for spatial variability within the plot.

Soil samples were air dried, usually in the field, and then

once back in the laboratory had roots, detritus, small rocks

and particles over 2 mm removed.
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2.3.1 Soil bulk density

Samples for bulk density determinations were taken from

pit wall samples using specially designed container rings

of known volume (Eijkelkamp Agrisearch Equipment BV,

Giesbeek, the Netherlands) and subsequently oven dried at

105 ◦C until constant weight, cooled to room temperature in

a sealed desiccant before final weight determinations were

made. Three bulk density samples were collected at each

sampling depth.

2.3.2 Soil texture and plant available soil water

Particle size analysis was performed using the pipette method

(Gee and Bauder, 1986) with plant available soil water (θP)

obtained through an estimation of soil water retention char-

acteristics based on the particle size pedotransfer functions

for tropical soils given by Hodnett and Tomasella (2002)

for each sampled layer. Individual layer values (−0.01 to

−1.5 MPa) were then integrated to the maximum rooting

depth for each profile or integrated to 4 m for the case of

roots not having been observed to be constrained in any way.

2.3.3 Soil chemical properties

As described in detail by Quesada et al. (2010, 2011) sam-

ples were analysed for pH in water at 1 : 2.5, with ex-

changeable cations determined by the silver–thiourea method

(Pleysier and Juo, 1980). Phosphorus pools were obtained

from standard fractionation procedures as modified from

Hedley et al. (1982). Soil carbon and nitrogen was deter-

mined using an automated analyser (Pella, 1990; Nelson and

Sommers, 1996). Samples from Bolivia were analysed in the

School of Geography, University of Leeds, with those from

Brazil at Instituto Nacional de Pesquisas da Amazonia in

Manaus.

2.3.4 Plant available nutrients

As in Quesada and Lloyd (2015), the amount of nutrient

available per unit ground area ([2]S,a) was estimated accord-

ing to

[2]S,a =

z=d
∫

z=0

ρb[2]ex,mdz, (1)

where [2]S,a is the soil nutrient content (expressed as gm−2

or mol m−2), ρb is the soil bulk density (typically in kgm−3),

[2]ex,m is the plant available soil nutrient on mass basis (typ-

ically gg−1 or mmolg−1), z is the soil depth (below the soil

surface) and d is the depth of soil nutrient availability consid-

ered, here – so as to be consistent with Quesada et al. (2012)

– taken to be 0.3 m.

2.4 Leaf traits

Traits were assessed on an individual basis for at least 10

individuals with a diameter at breast height (1.3 m) greater

than 0.1 m within each 1 ha plot. Trees were further selected

on the basis that climbing the tree or cutting the branch from

the ground could retrieve sun-exposed top-canopy branches.

For each tree, a branch was harvested from the top canopy

as described in Lloyd et al. (2010). A list of the species sam-

pled is given in Table S2 along with details of the species’ as-

sumed affinity (forest vs. savanna) and leaf habit – both these

characteristics being mostly based on local botanical knowl-

edge. In terms of leaf habit, trees were categorised as being

deciduous (trees remain bare until leaf flush is induced by

re-hydration), brevi-deciduous (short bare period in the dry

season followed by leaf flush), semi-deciduous (trees losing

old foliage as growth of new leaves starts) or evergreen (trees

are never leafless but flush or shed leaves in regular periods

or continuously throughout the year).

2.4.1 Leaf mass per unit area (Ma)

The ratio of fresh, one-sided area of a leaf to its dry weight

was obtained by separating at least 10 healthy adult leaves

from the bulk leaf sampled from each branch. Each leaf was

then scanned using a flatbed scanner attached to a laptop as

soon as possible after harvesting in the field. Where scan-

ning on the day of collection was impossible due to logisti-

cal reasons, leaves were stored in tightly sealed plastic bags

under cool and dark conditions for a maximum of 2 days to

avoid changes in the leaf area. The surface area of the leaf

scans was subsequently analysed on an individual basis us-

ing WinFOLIA™ (Regent Instruments Inc., Ottawa, Canada).

The scanned leaves were then oven dried to constant weight

at 70 ◦C for about 24 h to prevent enzymatic decomposition,

and their dry-mass determined after cooling in a desicca-

tor. Where this was not possible due to logistical constraints,

leaves were air dried in the field and oven dried as soon as

possible.

2.4.2 Sample preparation

Bolivian leaf sample preparation and analyses were under-

taken at the University of Leeds (UoL) with Brazilian sam-

ples processed and analysed at the Instituto Nacional de

Pesquisas da Amazonia (INPA) in Manaus, with the excep-

tion of carbon and nitrogen determinations, which were un-

dertaken at the Centro de Energia Nuclear na Agricultura

(CENA) in Piracicaba, Brazil. Leaf material not used for the

determination of Ma was dried as described above. About

20 g dry weight subsamples were then taken for the deter-

mination of foliar nutrients and isotopes. To prepare the leaf

samples for these analyses, the main vein and petiole of each

leaf were removed and the dried subsample ground through

a 1.0 mm (20 mesh) sieve.
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2.4.3 Carbon and nitrogen determinations

Foliar nitrogen [N]m and carbon [C]m in the bulk leaf sam-

ples were determined on 15–30 mg of the ground plant mate-

rial using elemental analysis (EURO EA CHNSO Analyser,

HEKAtech GbhB, Wegberg, Germany in UoL and a CARLO

ERBA EA 1110 CHN, Thermo Fisher Scientific, GmbH,

Germany at CENA).

2.4.4 Cation and phosphorus determinations

At UoL, foliar cations (calcium, potassium and magnesium)

and phosphorus in the ground samples were determined

by inductively coupled plasma optical emissions spectrome-

try (ICP-OES) (PerkinElmer Optima 5300DV, PerkinElmer,

Shelton, CT, USA) following acid digestion (Lloyd et al.,

2010). In the INPA laboratory, samples were digested us-

ing a nitric–perchloric acid mixture, with concentrations of

Ca, Mg and K determined using an Atomic Absorption

Spectrophotometer (AAS) (Model 1100b, Perking Elmer,

Norwalk, CT, USA) as described by Anderson and In-

gram (1993) with phosphorus determined by Colorimetry

(Olsen and Sommers, 1982) using a UV–visible spectropho-

tometer (model 1240, Shimadzu, Kyoto, Japan). Sample di-

lutions for AAS determinations were made with a 0.55 %

lanthanum suppressant solution for Ca and Mg, with a 0.2 %

CsCl solution for K. Details of solutions and standard series

preparation can be obtained from Van Reeuwijk (2002).

2.4.5 Leaf construction costs

The cost of leaf construction (expressed as g glucose g−1

DW) was estimated as in Poorter and de Jong (1999), viz.

K = (−1.041 + 5.077Cm)(1 −φm)+ 5.325Norg, (2)

where K is the construction cost, Cm is the leaf carbon con-

centration, φm is the leaf mineral content and Norg is the leaf

organic N concentration (all in gg−1 DW). For the purposes

of calculation we assumed that all N present in the leaves

was in the organic form (i.e. free nitrate levels were minimal

as seems to be the case at least for Amazon forest species;

Bloomfield, 2012), with leaf mineral content being approxi-

mated as the sum of the measured major cations (Sect. 2.4.4).

2.4.6 Estimation of canopy nutrient concentrations

The total amount of each nutrient contained in the foliage2C

was estimated as (Quesada and Lloyd, 2015)

2C = L〈2m〉〈Ma〉, (3)

where L is the stand leaf area index (D > 0.1 m) taken from

Veenendaal et al. (2015) – 〈2m〉 and 〈Ma〉 are the species-

abundance-weighted mass-based leaf nutrient estimates and

leaf mass per unit area, respectively (see Sect. 2.6.2). Equa-

tion (3) is by necessity an approximation – ignoring within

canopy gradients for example – also assuming a species’

abundance is also a good indication of its relative leaf area.

But especially for comparison of canopy and soil available

nutrient stocks, it does have advantages as compared to more

simplistic approaches, such as in Cleveland et al. (2011),

where variations in leaf area or Ma are not even taken into

account. Moreover, taken in conjunction with the “soil equiv-

alent” (Eq. 1; Sect. 2.3.3), Eq. (3) allows both plant and soil

nutrient stocks to be expressed on a per unit ground area basis

(e.g. mol m−2), therefore providing a ready means for quan-

titative comparisons.

2.5 Climatological data

Precipitation climatologies for all sites were obtained from

the interpolated WorldClim data set (Hijmans et al., 2005).

2.6 Statistical analyses

2.6.1 Variance partitioning

As in Fyllas et al. (2009), the relative proportions of the total

variance within the data set were apportioned to genetic, en-

vironmental and “residual” components for each trait (2).

Taking into account that the majority of species sampled

could be assigned as being affiliated with either the forest

(F) or savanna (S) biomes, the model fitted here was

2= A/S+p+ ε, (4)

where A represents the affiliation of species S (either for-

est or savanna) located within plot p, and ε is the residual

variance: the nesting of S within A allows for a splitting of

the total between species variance into an intra- and inter-

biome component. As noted by Fyllas et al. (2009), the resid-

ual variance component includes any intra-species variability

as well as any measurement error. These calculations were

done using the “lme4” package (Bates et al., 2014) available

within the “R” statistical platform (R-Development-Core-

Team, 2014), treating all terms as random effects.

2.6.2 Variations in plot-level means in relation to

vegetation type and precipitation

For each leaf trait 2 (including the area-based light and

CO2 saturated photosynthetic capacity, Amax) plot-level

community-weighted means 〈2〉 and standard deviation

(SD) were estimated using standard formulas (Bevington and

Robinson, 1969) and weighting each observation accord-

ing to the ratio ns/np, where ns is the number of individ-

uals of that species sampled in the plot (Lopez-Gonzalez

et al., 2011) and np the total number of that species in

the plot as determined through floristic inventory (Torello-

Raventos et al., 2013). These calculations were done us-

ing the “wt.mean” function within the “SDMTools” package

(VanDerWal et al., 2014) available within the “R” statisti-

cal platform (R-Development-Core-Team, 2014). Estimates
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of 〈2〉 and associated weights so obtained were then inves-

tigated in relation to variations in mean annual precipitation

according to

〈2〉 = µ+αS + s1(PA)+ Ss2(PA), (5)

where µ represents the data set mean for trees located within

the forest (F) vegetation type (i.e. V = F), S is an indicator

variable taking a value of 1 for all trees located within sa-

vanna formations (for which by definition V 6= F) and zero

otherwise, s1 is a non-parametric smoother, fitted to the data

set as a whole, PA is the mean annual precipitation as es-

timated for the plot in question and s2 is a non-parametric

smoother defining the difference between forest and savanna

vegetation formation types. Equation (5) thus allows for dif-

ferences in overall average trait values as well as for dif-

fering interactions with precipitation for forest vs. savanna

vegetation formation types: with these two aspects of varia-

tion tested through a simple t test on the (fixed) α term with

s2(PA)= 0 (i.e. an imposition of the same precipitation re-

sponse on both V), and a simple F test evaluating the effect

of inclusion of the s2(PA) term in Eq. (5; Zuur et al., 2009).

For the fitting of Eq. (5), we used the “gam” function within

the “mgcv” package (Wood, 2006, 2011) as available on the

”R” statistical platform (R-Development-Core-Team, 2014).

Equation (5) was also used (without weights) in analyses

of variations in bulked stand-level soil and canopy properties.

2.6.3 Soil–climate–vegetation associations

A variety of regression/correlation techniques were applied

depending on the nature of the data and questions posed.

These included ordinary least squares (OLS) regression,

Kendall’s distribution-free test for independence (Hollan-

der and Wolfe, 1999) and non-parametric (robust) regres-

sion (McKean et al., 2009). All were undertaken using the

“R” statistical platform (R-Development-Core-Team, 2014)

using the “stats” or “Rfit” package (Kloke and McKean,

2013). For multivariate OLS regressions, variance inflation

factors (VIF) were also calculated and are presented in the

relevant tables along with the associated “tolerance” (i.e.

1/VIF). OLS regression coefficients are presented in both

original and standardised form. The latter are presented as

standardised values, this giving the relative change in the

dependent variable per unit SD of each independent vari-

able. Though potentially open to misinterpretation (Grace

and Bollen, 2005), this provides a simple measure of the rel-

ative importance of the various factors accounting for the

variation in stand structure or physiological variables in-

vestigated, the standardising factor being the variability (af-

ter transformation where appropriate) of the various candi-

date independent variables along the precipitation transect as

measured by our data set.

3 Results

3.1 Soil properties

Across the precipitation (PA) gradient, forest soils had an

exchangeable base cation content (usually referred to as

the “sum of bases”: [Ca]ex +[K]ex +[Mg]ex +[Na]ex =6B)

greater than the savanna soils (Fig. 3a) as reflected by an esti-

mated α = −9.1±3.1 mmol kg−1 for the model fit of Eq. (5)

(p = 0.010). That analysis also showed a difference between

the two V in their overall precipitation dependencies with the

“s2” term in Eq. (5) being significant at p = 0.005; i.e. the

forest (F) and savanna (S) soils differed both in their overall

average 6B and in the way that 6B varied with precipitation.

For both V, 6B were clearly higher at low PA. Across the

precipitation gradient individual cation concentrations were

typically [Ca]ex > [Mg]ex ≫ [K]ex for any individual plot,

with [Ca]ex and [Mg]ex increasing more markedly with de-

clining PA than was the case for [K]ex (see Table S1 for ac-

tual values).

Soil C/N ratios (CNs) also varied with both V and PA

(Fig. 3b) with S soil being on average 2.3 ± 0.6 gg−1 higher

than for F soils (p ≤ 0.001). In both cases, CNs declined with

decreasing PA with (after accounting for intercept differ-

ences) no apparent difference between the two fitted curves

(p = 0.155).

Extractable soil phosphorus concentrations, [P]extr, also

showed a dependence upon both V and PA (Fig. 3c) with

markedly lower values in savanna sites as reflected in the

fitted value of α in Eq. (5) being −143 ± 44 mgkg−1 (p =

0.005). There was also a clear difference between F and S

in the way [P]extr varied with precipitation (p = 0.023) with

the lack of any clear savanna PA dependency (p = 0.58) in

marked contrast to the increasing forest [P]extr as PA declined

(for which p < 0.001). In all soils, the bulk of the [P]extr pool

was made up of the less accessible NaOH extractable organic

and inorganic fractions (PNaOH(o) and PNaOH(i), respectively).

Small amounts of mineral P were also present in some of the

lower PA soils as indicated through the presence of an HCl

extractable component.

Further site information (including other soil character-

istics of the study plots) may be found in the Supplement

(Table S1) from which we note both a tendency for the sa-

vanna plots to be sandier than their nearby forest counter-

parts though with no consistent difference between F and

S in terms of their plant available water holding capacity

(θP), which was itself highly variable (ranging from 0.18 to

0.74 m). Also of note is that – with the exception of the driest

TUC-01 and TUC-03 plots, which were Cambisols – all soils

were of the highly weathered Acrisol, Arenosol or Ferralsol

World Reference Base great soil group.
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Figure 3. Variations in key soil chemical properties (0.0–0.3 m

depth) in relation to precipitation and vegetation formation type

(a) soil exchangeable cations; (b) soil C/N ratio; (c) soil phos-

phorus pools. For (a) and (b) forest plots are shaded more lightly

than savanna with the fitted curves (solid for forest plots, dashed

for savanna) representing generalised additive model fits represent-

ing for (a) total exchangeable cations (sum of bases) and for (c)

total extractable phosphorus. In (c) the phosphorus pools are as

per the Hedley fractionation procedure (see Sect. 2.3.3): [P]resin

– resin extractable P; [P]Bicarb(i) – bicarbonate extractable in-

organic phosphorus; [P]Bicarb(o) bicarbonate extractable organic

phosphorus; [P]NaOH(i) – NaOH extractable inorganic phosphorus;

[P]NaOH(o) bicarbonate extractable organic phosphorus; [P]HCl –

HCl extractable phosphorus.

3.2 Canopy characteristics

All three canopy structural properties showed differences

both in absolute values and precipitation dependencies for

forest vs. savanna plots (Figs. 2 and 4). Specifically, there

was a clear decline in forest canopy area index (CW) with

declining precipitation (p < 0.001), but with the best-fit line

for savanna plots (which were on average of a lower CW

than their forest counterparts) only significant at p = 0.183

(Fig. 4a).

Also observed was a tendency for the increase in 0.95

quantile canopy height with rainfall to approach its maxi-

mum at high PA (overall response significant at p < 0.001)

but with no systematic dependency of H ∗ on PA for S (p =

0.106): the trees in savanna plots being on average 10.5 m

shorter than their forest counterparts (Fig. 4b).

Above-ground biomass (BU) estimates showed similar

patterns for CW and H ∗ (Fig. 4c), although in this case (in-

terestingly) with the slight increase in savanna BU as PA de-

clines, statistically significant at p < 0.001.

Overall, we find a marked decline in stature and canopy

area with precipitation for forest sites but not for savannas.

Thus, savanna and forest are much more similar in their

above-ground structural characteristics at lower PA.

3.3 Leaf traits

3.3.1 Variance partitioning (mass-based traits)

Through fitting the multilevel model of Eq. (4), a partition-

ing of the variance to genetic- and plot-level components

was achieved with results presented for leaf mass per unit

area (Ma), mass-based nutrient concentrations and estimated

leaf construction costs (Eq. 2) shown in Fig. 5. Here, because

each species could be assigned as primarily affiliated with ei-

ther forest or savanna, it was further possible to partition the

genetic component into that systematically associated with

where a species typically grows (its “affiliation”) as opposed

to genetic variation within the forest and savanna grouping

themselves. This analysis shows not only that relative contri-

butions of the genetic-components vs. the plot-components

vary from trait to trait, but also that the relative magnitude

of the residual component (representing within-species vari-

ability and experimental error) is trait dependent.

The genetic component that is systematically associated

with a species’ affiliation was typically a small proportion of

the overall variability, the one exception being for potassium

(Km) where the relative contributions were approximately

equal. With the exception of phosphorus (Pm), the variance

explained by the combined genetic components was of equal

or greater magnitude than the plot-dependent (environmen-

tal) component with the latter being only a minor contributor

to the overall variations in Cm and the associated leaf con-

struction costs (K).

Whether or not one should attempt to assign error esti-

mates and associated inferred level of significance to random

effect estimates as used in deriving Fig. 5 is a point of con-

tention (Wood, 2006); nevertheless, the “affiliation” of forest

vs. savanna species is just as readily perceivable as a fixed ef-

fect allowing reasonable error estimates and associated sig-

nificance levels to be obtained. When this is done, species

affiliation (forest vs. savanna) is found to exert a significant

influence on all trait values investigated in Fig. 5 at p < 0.05

except Pm (Table S3); i.e. even after accounting for differ-

ences in soil properties, intrinsic differences between forest

and savanna in all traits except Pm existed. From Table S3 it

can be seen in some cases that these differences – although

significant at p < 0.05 – are relatively small (e.g. Ma, Nm,

Biogeosciences, 12, 6529–6571, 2015 www.biogeosciences.net/12/6529/2015/



J. Lloyd et al.: Edaphic, structural and physiological contrasts 6539

Figure 4. Variations in canopy structural properties in relation to precipitation and vegetation formation type (a) canopy area index, (b)

upper 0.95 quantile height and (c) above-ground biomass. (•) Forest plots; (�) savanna plots. Fitted curves (solid for forest plots, dashed for

savanna) represent generalised additive model fits.

Figure 5. Partitioning of the total variance for mass-based foliar

properties into genetic (green), environmental (blue) and residual

(red) components with the genetic component further divided into

the variations between versus within vegetation formation affilia-

tion (each species having being identified as principally associated

with either forest or savanna). Ma denotes mass per unit area and

K represents leaf construction costs. Other symbols represent the

elemental composition of the leaves on a dry-mass (subscript “m”)

basis.

Cm, Mgm, and K all having savanna species mean values

all within 20 % of the forest species’ mean) but with Cam

and Km showing much larger differences (savanna affiliated

species showing reductions of 34 and 39 %, respectively, as

compared to forest species: Table S3).

3.3.2 Mass-based trait variation in relation to

vegetation type and precipitation

Across the precipitation gradient, leaves of trees within sa-

vanna formations (S) had consistently higher leaf mass per

unit area than those where the dominant species mix con-

sisted of forest species (F; Fig. 6a). From the generalised

additive model fit (Eq. 5), this overall 〈Ma〉 difference (α =

32 ± 9 gm−2) was significant at p = 0.001. Overall, the PA

dependencies observed were highly significant at p < 0.001

for both V, but the differing fitted trends were not so sig-

nificant (p = 0.183); i.e. little credence should be placed on

the greater difference between the two vegetation formation

types at the highest PA.

For stand-level leaf nitrogen there was also an obvious dif-

ference in overall concentrations between the two V (F−S =

6.0 ± 1.5 mgg−1; p = 0.001; Fig. 6b) with the fitted precip-

itation dependencies showing an increase with declining PA

significant at p < 0.001 and p = 0.065 for F and S, respec-

tively. As for 〈Ma〉 there was, however, no difference in the

fitted PA dependencies for 〈Nm〉 once differences in absolute

values were taken into account (p = 0.588). Thus, after ac-

counting for differences in intercept both forest and savanna

can be considered as showing similar increases in 〈Nm〉 with

declining PA.

For 〈Pm〉 there was no effect of V on overall leaf concen-

trations (Fig. 6c: p = 0.283), nor was there any difference in

the fitted PA response patterns (p = 0.098).
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Figure 6. Variations in community-abundance-weighted mean fo-

liar properties in relation to precipitation and vegetation formation

type (a) leaf mass per unit area, (b) leaf nitrogen (dry-mass basis),

(c) leaf phosphorus (dry-mass basis) and (d) carbon (dry-mass ba-

sis). (•) Forest plots; (�) savanna plots. Fitted curves (solid for for-

est plots, dashed for savanna) represent generalised additive model

fits. Error bars represent the community-abundance-weighted SD.

A similar lack of any effect of vegetation formation type

was also observed for leaf carbon concentrations (Fig. 6d)

where although 〈Cm〉 were 11 mgg−1 higher for S plots this

effect was significant only at p = 0.091. The fitted PA de-

pendencies were, nevertheless, significant at p < 0.001 in

both cases, but also not different in pattern to each other

(p = 0.687).

Despite the 〈Cam〉 differences between F and S plots at

lower PA, the overall contrast (F−S) of 1.4 mgg−1 was only

significant at p = 0.161, presumably a consequence of sig-

nificant overlap between the two V at around PA = 1.5 m

and the high variance of the community-weighted means at

higher overall 〈Cam〉, especially for forest plots at low PA

(Fig. 7a). The fitted PA dependencies were highly significant

in both cases (p < 0.001), but with overall patterns not dif-

ferent (p = 0.687).

For 〈Km〉, F and S values were significantly different over-

all (p = 0.015) with savanna plots being estimated as, on

Figure 7. Variations in community-abundance-weighted mean fo-

liar properties in relation to precipitation and vegetation formation

type (a) leaf calcium (dry-mass basis), (b) leaf potassium (dry-

mass basis), (c) leaf magnesium (dry-mass basis) and (d) leaf con-

struction costs. (•) Forest plots; (�) savanna plots. Fitted curves

(solid for forest plots, dashed for savanna) represent generalised ad-

ditive model fits. Error bars represent the community-abundance-

weighted SD.

average, 1.8 ± 0.7 mgg−1 less than forest (Fig. 7b). Over-

all fitted PA dependency patterns – which were significant

at p < 0.001 and p = 0.025 for F and S, respectively – were

also appreciably different from each other (p = 0.010). Thus

for 〈Km〉 we can conclude that for F the rate of increase with

declining precipitation was more or less constant across the

transect. This is opposed to S where the increase in 〈Km〉

with declining PA was more moderate, also occurring only

towards the drier end of the transect.

Overall, the 0.67 mgg−1 lower 〈Mgm〉 observed for the

savanna plots (Fig. 7c) did not make them appreciably dif-

ferent to their forest counterparts (p = 0.155) with no dif-

ference between the two V in the nature of their PA depen-

dencies (p = 0.192), which were themselves both significant

(p = 0.001 and p = 0.047 for F and S, respectively). As for

〈Cam〉 and 〈Km〉, within-plot variation at the lowest PA forest

plot (TUC-01) was exceptionally high.
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Leaf construction costs showed a slight overall depen-

dence on V with 〈K〉 for S being on average 0.077 ±

0.037 mgglucose g−1 DW higher than F (p = 0.053). Al-

though the individually fitted curves are different in form for

F vs. S (Fig. 7d) this difference in shape is not of conse-

quence (p > 0.999).

Although a lack of knowledge for many of the species

studied prevents rigorous inferences of trends in leaf habit,

from those species for which this information was avail-

able (Table S2), it can be confidently stated that at the dri-

est Tucavaca sites in Bolivia that all species were decidu-

ous (both forest and savanna) with semi-deciduous and brevi-

deciduous and then evergreen species becoming more com-

mon as precipitation increased. At all sites other than Tu-

cavaca, evergreen species were more common in the forests

and purely deciduous species more common in the savanna.

3.3.3 Vegetation–soil nutrient associations

Estimates on canopy nutrient contents (Eq. 2) as a function of

soil exchangeable nutrient contents (Eq. 1) showed no clear

relationship for calcium (CaC; Fig. 8a), magnesium (MgC;

Fig. 8b) and phosphorus (PC; Fig. 8d), but with some asso-

ciation being more clear for potassium (KC; Fig. 8c). Us-

ing a robust regression procedure (relatively immune to out-

liers), significance levels as estimated through a dispersion

test were p = 0.062, 0.266, 0.026 and 0.402 for CaC, MgC,

KC, and PC, respectively.

As the graphs of Fig. 8 express both plant and soil nu-

trients on the same per unit ground area basis, they provide

a ready means to evaluate the relative amounts of any nutrient

in the foliage vs. the soil. Here we then see that, as approach-

ing the asymptote, CaC ≃ 0.1[Ca]sa, MgC ≃ 0.1[Mg]sa and

PC ≃ 0.08[P]sa, but for KC : [K]sa there is no real flattening

out, with canopy potassium contents quite similar to those of

calcium and magnesium despite much lower soil concentra-

tions; i.e. relative to the amount of soil nutrient present, there

is much less K in the canopy foliage than is the case for Ca

and Mg. This is in addition to a much clearer relationship be-

tween the nutrient stocks in the canopy vs. soil pools for K

than for the other cations examined. For phosphorus the gen-

erally overall lower canopy foliar contents of savanna plots

are not associated with a lower [P]sa.

3.4 Photosynthesis and related traits

3.4.1 Variance partitioning (area-based traits)

In contrast to the mass-based traits, in no case was the pro-

portion of the total data set variance in light and CO2 sat-

urated assimilation rates (Amax), area-based nitrogen and

phosphorus concentrations (Na and Pa, respectively), photo-

synthetic N and P use efficiencies (AN and AP, respectively)

and foliar δ13C attributable to species affiliation per se. But

still – with the exception of Pa, and to a lesser extent δ13C –

Figure 8. Relationships between soil and community-abundance-

weighed foliar nutrient concentrations with both expressed on

a ground area basis. (a) Calcium, (b) magnesium, (c) potassium

and (d) phosphorus. (•) Forest plots; (�) savanna plots. The curves

shown are log-linear, viz. y = a+b log(x), fitted using a robust non-

parametric procedure.

a notable portion of the explained variance was attributable

to species identity. Plot identity as estimated through the en-

vironmental components was also an appreciable source of

variation in all cases, especially for δ13C and – in relative

terms – also for Pa.

3.4.2 Area-based trait variation in relation to

vegetation type and precipitation

Stand-level species-abundance-weighted maximum CO2 as-

similation rates (Fig. 10a) did not vary overall between the

two V (p = 0.851), nor – despite their fitted slopes being of

a different sign – did their precipitation dependencies differ

(p = 0.302). Amongst this general “noise” of note, however,

are two noticeably high 〈Amax〉 plots: the relatively low pre-

cipitation forest OTT-01 and the mid-precipitation savanna

LFB-03.

Contrasting to 〈Nm〉, there was no overall difference be-

tween F and S in 〈Na〉 across the data set (Fig. 10b), though

with very different patterns in terms of their PA dependen-
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Figure 9. Partitioning of the total variance for photosynthesis-

associated foliar properties into genetic (green), environmental

(blue) and residual (red) components with the genetic component

further divided into the variations between versus within vegetation

formation affiliation (each species having being identified as princi-

pally associated with either forest or savanna). Amax denotes light

and CO2 saturated (maximum) CO2 assimilation rate; Na and Pa

represent the nitrogen and phosphorus composition of the leaves on

an area (subscript “a”) basis; AN and AP represent the photosyn-

thetic nitrogen and phosphorus-use efficiencies (viz. Amax/Na and

Amax/Pa) with δ13C a measure of the leaf 13C/12C composition.

cies (p = 0.006). Specifically, there was virtually no sys-

tematic variation of 〈Na〉 with precipitation for the savanna

plots, but with an increase in forest plot 〈Na〉 as PA decreased

(p < 0.001).

For 〈Pa〉 there was a small effect of V on mean values

(Fig. 10c) with savanna plots typically being 0.022 gm−2

higher than their forest counterparts. As for 〈Amax〉 and 〈Na〉,

opposing patterns of variations with PA were observed, here

with a decline in 〈Pa〉 coinciding with an increase in precipi-

tation for F, but with less pattern observed for S.

Finally, we note the clear contrasting patterns in 〈δ13C〉

observed for F vs. S with a more or less constant decline

with increasing precipitation observed for the forest plots,

but with this pattern only being replicated for savanna plots

at lower PA (Fig. 10d). Here the fitted curves were both sig-

nificant at p < 0.001 and statistically different to each other

(p = 0.011).

Figure 10. Variations in community-abundance-weighted mean fo-

liar properties in relation to precipitation and vegetation formation

type (a) light and CO2 saturated (maximum) CO2 assimilation rate,

(b) leaf nitrogen (area basis), (c) leaf phosphorus (area basis) and

(d) leaf 13C/12C composition. (•) Forest plots; (�) savanna plots.

Fitted curves (solid for forest plots, dashed for savanna) represent

generalised additive model fits. Error bars represent community-

abundance-weighted SD.

3.4.3 Identifying key drivers of variation in 〈Amax〉 and

〈δ13C〉

With Fig. 10 suggesting broad-scale interacting patterns of

variations in 〈Amax〉 with V and PA quite similar in form

to 〈Na〉 and 〈Pa〉, Kendall’s non-parametric regression coef-

ficients (τ ) were calculated for these and other stand-level

properties of interest (Table 1). This shows that, contrary to

expectation, the only significant univariate correlation with

〈Amax〉 at p < 0.05 was a negative one with soil potassium.

Consequently [K]sa also exhibited strong positive correla-

tions with a range of stand-level structural properties such

as crown area index and canopy height (both mean and 0.95

quantile) as well as 〈δ13C〉.

Building on this negative 〈Amax〉 : [K]sa association

through the development of a OLS multivariate regression

model using a forward regression procedure, a best-fit linear–
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Table 1. Kendall’s bivariate correlation coefficients for stand-level photosynthetic capacity 〈Amax〉, photosynthetic nitrogen use efficiency

〈AN〉, photosynthetic phosphorus-use efficiency 〈AP〉 and their association with a range of canopy, soil and climatic factors, viz. community-

weighted means of area-based leaf nitrogen 〈Na〉 and phosphorus 〈Pa〉 concentrations; leaf carbon stable isotopic composition 〈δ13C〉; total

woody canopy area index CW; upper 0.95 quantile upper-canopy height 〈HU〉; community-weighted mean upper-canopy height H∗; area-

based measures of soil nutrient availability for calcium, potassium and magnesium, viz. [Ca]sa, [K]sa and [Mg]sa; soil carbon/nitrogen ratio

(CN), and mean annual precipitation (PA). Values significant at p < 0.05 are shown in bold.

〈Amax〉

0.65 〈AN〉

0.43 0.54 〈AP〉

0.17 −0.18 −0.12 〈Na〉

−0.12 −0.26 −0.7 0.22 〈Pa〉

−0.09 −0.27 −0.29 0.25 0.31 〈δ13C〉

−0.07 −0.02 0.11 0.08 −0.2 0.01 CW

0.01 0.08 0.20 0.16 −0.25 0.02 0.74 〈HU〉

−0.01 0.06 0.22 0.16 −0.26 0.02 0.73 0.86 H∗

−0.13 −0.3 −0.15 0.20 0.05 0.53 0.13 0.13 0.18 [Ca]sa

−0.37 −0.42 −0.15 0.20 0.01 0.32 0.42 0.37 0.42 0.53 [K]sa

−0.15 −0.29 −0.09 0.19 −0.03 0.38 0.12 0.10 0.16 0.85 0.54 [Mg]sa

−0.05 −0.12 0.03 0.12 −0.1 0.31 0.14 0.08 0.17 0.50 0.52 0.53 [P]sa

0.15 0.22 −0.07 −0.07 0.28 −0.2 −0.05 −0.16 −0.15 −0.53 −0.41 −0.56 −0.38 CNs

0.2 0.35 0.05 −0.13 0.16 −0.25 0.06 0.03 −0.01 −0.46 −0.37 −0.59 −0.43 −0.85 PA

log relationship of 〈Amax〉 with [K]sa, [P]sa, 〈Na〉 and 〈HU〉

was found, details of which are given in Table 2a. Here, along

with unstandardised coefficients, standardised values are also

given together with the appropriate collinearity statistics, the

latter giving VIF< 10 (tolerance> 0.1), which suggests that

cross-correlations between predictor variables were not an

issue in the model fit. From the standardised coefficients we

can conclude that the dominant effect is, indeed, the nega-

tive [K]sa association and the other three positive factors, viz.

[P]sa, 〈Na〉 and 〈HU〉 all contributing to a lesser degree. The

reasons for the complex multivariate association can be seen

in Fig. 11, where 〈Amax〉 is individually plotted as a function

of each of [K]sa, [P]sa, 〈Na〉 and 〈HU〉. Here, for example,

although the forest plot OTT-01 is a clear outlier when con-

sidered just in terms of [K]sa, this apparently anomalously

high 〈Amax〉 can, however, be explained in terms of a very

high 〈Na〉. The lower precipitation forest plot TUC-01 also

has a high 〈Na〉, but in this case [K]sa is very high and 〈HU〉

relatively low: these factors then combine (at least according

to the model) to give a relatively low 〈Amax〉. For the savanna

plot LFB-03, the main contributing factor to its high 〈Amax〉

is suggested by the model to arise through a very low [K]sa

combined with a reasonably high [P]sa.

Given the relatively strong association between soil ex-

changeable K and the other base cations (Table 1), it was

of interest to see if these could substitute for potassium as

a predictor of 〈Amax〉 with other potentially important soil

properties, such as pH and soil and clay content, also be-

ing tested. This analysis confirmed potassium as the defining

soil predictor, with the best alternative predictor, as detected

through a substitution of the [K]sa term in the model of Ta-

ble 2a, being the [Mg]sa term with an r2 of only of 0.15 (cf.

0.71 for [K]sa). This “best alternative model” had an Akaike’s

information criterion (AIC) of 117.6 as compared to 98.4 for

the equation in Table 2a.

Soil potassium status was also negatively related to

species-abundance-weighted photosynthetic nitrogen use ef-

ficiency; 〈AN〉 = 〈Amax/Na〉; indeed, following a similar

procedure as for 〈Amax〉, significant associations at p < 0.05

were again found for [K]sa, [P]sa and 〈HU〉 with soil ex-

changeable potassium again the dominant (negatively associ-

ated) predictor variable (Table 2b). As for 〈Amax〉, alternative

soil predictors gave a markedly inferior fit, the “best alterna-

tive model” again being with [Mg]sa but with an r2 only of

0.15 (cf. 0.68 for [K]sa). This model had an AIC of 87.1 as

compared to 68.7 for the equation in Table 2b. In both the

above cases, substituting either the soil [K]sa variable with

its canopy equivalent 〈Ka〉 and/or the soil [P]sa variable with

its canopy equivalent 〈Pa〉 also gave rise to a markedly infe-

rior fit (data not shown).

This was similar in the case of a fit of species-abundance-

weighted photosynthetic phosphorus-use efficiency; 〈AP〉 =

〈Amax/Pa〉, where soil C : N was a significantly better pre-

dictor than 〈Na〉 with [K]sa and 〈HU〉 again included in the

best-fit model (Table 2c). Here again, other soil properties

could not be substituted for [K]sa with the best alternative

predictor being [Ca]sa giving an AIC of 226.7 as compared

to 222.8 for the equation in Table 2c.

Soil exchangeable potassium also showed a relatively high

Kendall’s τ when considered as a univariate predictor of

〈δ13C〉 (Table 1); indeed, a model consisting of [K]sa and

〈HU〉 provided a statistically reasonable model fit, with an

increase in [K]sa or a decrease in 〈HU〉 predicted to cause

higher (less negative) 〈δ13C〉. It is also of note, however, that

in this case soil calcium (ground-area basis) turns out to be

a better predictor of 〈δ13C〉 when taken in conjunction with
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Table 2. Multivariate regression statistics relating estimates of community-weighted canopy-level average maximum CO2 assimilation rates,

nitrogen use efficiency, phosphorus-use efficiency and foliar 13C/12C to canopy and soil variables. Abbreviations: [K]sa – soil potassium

(mmol m−2), [P]sa (µmolm−2), 〈Na〉 – species-abundance-weighted area-based leaf nitrogen (g m−2), 〈HU〉 – average canopy height (trees>

0.1 m diameter at beast height, in m), CNs – soil CN ratio (g g−1) and VIF – variance inflation factor. In all cases predictor variates have

been centred with the unstandardised intercept giving then the predicted value when all predictor variables are at their mean values. In the

standardised case, all variables have been centred and scaled by their SD.

Coefficients

Unstandardised coefficients Standardised 0.95 confidence interval for b Collinearity statistics

b SE β t p Lower Upper Tolerance VIF

a. Light/CO2 saturated assimilation rate (µmolCO2 m−2 s−1): r2 = 0.71, p = 0.0004

Intercept 28.73 0.74 – 38.74 0.000 27.07 30.53 – –

loge[K]sa −6.98 1.19 −1.212 −5.86 0.000 −11.04 −4.75 0.387 2.59

loge[P]sa 3.80 0.83 0.630 3.67 0.003 0.75 6.00 0.575 1.73

loge〈Na〉 3.62 1.98 0.660 4.58 0.001 0.87 5.21 0.875 1.14

loge〈HU〉 2.44 0.98 0.425 2.50 0.027 1.39 5.45 0.604 1.65

b. Photosynthetic nitrogen use efficiency (µmolCO2 g−1 Ns−1): r2 = 0.68, p = 0.0003

Intercept 12.81 0.33 – 38.72 0.000 11.86 13.28 – –

loge[K]sa −3.16 0.52 −1.393 −6.12 0.000 −4.88 −2.41 0.411 2.43

loge[P]sa 1.59 0.44 0.630 3.67 0.003 0.574 2.72 0.585 1.71

loge〈HU〉 1.04 0.44 0.463 2.40 0.031 0.326 2.10 0.607 1.65

c. Photosynthetic phosphorus-use efficiency (µmolCO2 mg−1 P s−1): r2 = 0.30, p = 0.0469

Intercept 312.4 23.90 – 13.07 0.000 258.3 354.1 – –

loge[K]sa −91.59 33.61 −0.857 −2.73 0.016 −173.0 −31.8 0.507 1.97

loge (CNs) −58.78 27.53 −0.542 −2.13 0.051 −126.1 −3.48 0.754 1.33

loge〈HU〉 71.34 31.50 0.586 2.27 0.040 11.6 129.3 0.610 1.64

d. Foliar 13C/12C (‰): r2 = 0.26, p = 0.040

Intercept −29.37 0.170 – −180 0.000 −29.61 −28.93 – –

loge[K]sa 0.592 0.219 0.787 3.63 0.016 0.301 1.143 0.609 1.64

loge〈HU〉 −0.526 0.225 −0.604 −2.88 0.034 −0.974 −0.133 0.609 1.64

〈HU〉 (r2 = 0.383) giving an AIC of 40.7 as compared to 44.1

for the equation in Table 2c.

Especially as PA, on its own showed a reasonably strong

correlation with [K]sa (Table 1); mean annual precipitation

was also tested as a predictor variable for 〈Amax〉, 〈AN〉, 〈AP〉

and 〈δ13C〉. But in no case, either on its own or in conjunction

with the other predictor variables in Table 2, did it give rise

to an r2 even closely approximating [K]sa (data not shown).

3.5 Predicting canopy structural properties

In addition to an important role as a modulator of leaf-level

photosynthetic properties, Table 1 also suggests a strong as-

sociation between [K]sa and CW and both canopy height

measures. With CW relating directly to both leaf area in-

dex and fractional canopy cover (Veenendaal et al., 2015)

and both providing commonly used measures of woody plant

plenteousness in tropical ecosystems (Lloyd et al., 2008; Hi-

rota et al., 2011; Staver et al., 2011; Murphy and Bowman,

2012; Torello-Raventos et al., 2013; Veenendaal et al., 2015),

we therefore first applied a simple OLS log–log model re-

lating CW to [K]sa. And indeed, even when simply consid-

ered on its own, this area-based soil potassium measure ac-

counted for 0.31 of the total CW data set variation (Model 1:

Table 3a). Although this was substantially more than when

precipitation was considered on its own (r2 = 0.00), when

PA was considered along with log[K]sa as a predictor of

log(CW), a substantial improvement in the model fit was

achieved (Model 2: Table 4b; r2 = 0.57; 1AIC = −8.6).

Further, although the simple addition of plant available soil

water storage capacity (θP; see Table S1) did not improve

the model fit (Model 3: Table 3c), addition of a PA × θP in-

teraction term gave rise to a substantial model improvement

(Model 4: Table 3d; r2 = 0.68; 1AIC = −5.3). However, in

this model, the PA term is significant at only p = 0.553 and

with very high VIF (low tolerances) for the θP and PA × θP

terms as well. Removal of the PA term from Model 4, but

with all other variables retained (including the interaction),

resulted in a model that was just as good, if not even better

(Model 5: Table 3e; r2 = 0.71; 1AIC = −1.9).

Biogeosciences, 12, 6529–6571, 2015 www.biogeosciences.net/12/6529/2015/



J. Lloyd et al.: Edaphic, structural and physiological contrasts 6545

Table 3. Multivariate regression statistics relating canopy area index (CW), mean upper stratum canopy height 〈HU〉, and above-ground

biomass (BU) to soil and climatic variables. From (a) to (d) occur increasingly complex models for the prediction of CW; (e) represents an

application of model (d) to 〈HU〉 and (f) is model (d) but applied to BU. Other abbreviations: [K]sa – soil potassium (mmol m−2), PA mean

annual precipitation (m), VIF – variance inflation factor. In all cases predictor variates have been centred with the unstandardised intercept

giving then the predicted value when all predictor variables are at their mean values. In the standardised case, all variables have been centred

and scaled by their SD.

Coefficients

Unstandardised coefficients Standardised 0.95 confidence interval for b Collinearity statistics

b SE β t p Lower Upper Tolerance VIF

(a)loge [Crown area index] (Model 1): r2 = 0.31, p = 0.010, AIC = 42.43

Intercept 1.42 0.457 – 3.12 0.007 0.456 2.40 – –

loge[K]sa 0.748 0.258 0.573 2.91 0.010 0.204 1.30 – –

(b)loge [Crown area index] (Model 2): r2 = 0.57, p = 0.000, AIC = 34.70

Intercept −0.55 0.701 – 1.70 0.794 −2.04 0.945 – –

loge[K]sa 1.14 0.236 0.874 5.15 0.000 0.640 1.645 0.740 1.35

PA 1.78 0.542 0.633 3.47 0.001 0.623 2.93 0.740 1.35

(c)loge [Crown area index] (Model 3): r2 = 0.58, p = 0.001, AIC = 35.19

Intercept −0.926 0.774 – −1.17 0.111 −2.58 0.733 – –

loge[K]sa 1.121 0.235 1.022 4.77 0.000 0.618 1.624 0.735 1.36

PA 1.775 0.539 0.686 3.30 0.005 0.620 2.930 0.740 1.35

θP 0.827 0.743 0.140 1.13 0.285 −0.767 2.421 0.991 1.00

(d)loge [Crown area index] (Model 4): r2 = 0.72, p = 0.000 AIC = 28.27

Intercept 1.821 1.140 – 0.67 0.498 −0.643 4.289 – –

loge[K]sa 0.949 0.199 0.726 4.76 0.000 0.518 1.380 0.670 1.49

PA −0.372 0.863 0.931 4.99 0.886 −2.234 1.492 0.189 5.27

θP −9.274 −2.610 0.281 2.16 0.050 −16.95 −1/598 0.028 35.10

θP ×PA 7.090 2.458 0.445 2.89 0.012 1.780 12.400 0.026 37.85

(e)loge [Crown area index] (Model 5): r2 = 0.74, p = 0.000 AIC = 26.52

Intercept 1.362 0.395 – 2.05 0.030 0.515 2.21 – –

loge[K]sa 0.992 0.167 0.643 5.94 0.000 0.634 1.35 0.896 1.11

θP −7.975 1.819 −1.404 −4.39 0.001 −11.88 −4.07 0.102 9.77

θP ×PA 6.177 0.326 1.673 5.12 0.000 3.59 8.77 0.103 9.68

(f)loge [Mean canopy height]: r2 = 0.41, p = 0.016

Intercept 2.926 0.329 – 8.90 0.000 2.221 3.631 – –

loge[K]sa 0.503 0.139 0.766 3.62 0.003 0.205 0.802 0.897 1.12

θP −2.113 1.514 1.286 −1.39 0.184 −5.361 1.134 0.102 9.77

θP ×PA 1.702 1.004 −1.102 1.70 0.112 −0.451 3.857 0.103 9.69

(g)loge [Woody biomass]: r2 = 0.47, p = 0.007

Intercept 5.614 0.725 – 7.75 0.000 4.06 7.168 – –

loge[K]sa 1.238 0.307 0.637 4.03 0.001 0.581 1.896 0.897 1.11

θP −3.228 3.339 −0.528 −0.96 0.350 −10.38 3.933 0.102 9.77

θP ×PA 3.004 2.214 0.695 1.35 0.197 −1.745 7.753 0.103 9.68

Overall, predictions of CW according to Model 5 were of

acceptable fidelity (Fig. 12a) with the wide range of savanna

CW well predicted, in particular by this simple mixture of soil

chemical and hydrological properties. Some differentiation

of the forest plots would also seem to have been achieved by

the model. Nevertheless, there was a tendency for the model

to under-predict forest CW and vice versa for savanna plots.

To illustrate how Model 5 works, the input data are pre-

sented in the ordinal space of the interacting PA and θP terms

in Fig. 12b. Here the colour of the symbols relate to CW and
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Figure 11. Relationships of community-abundance-weighted mean

maximum CO2 assimilation rates to (a) soil exchangeable potas-

sium, community-abundance-weighted foliar nitrogen concentra-

tions (area basis), (c) soil available phosphorus and (d) mean canopy

height. Selected plots (specifically mentioned in the text) are also

shown. (•) Forest plots; (�) savanna plots.

the symbol size relates to [K]sa. From Fig. 12b it can be seen

that in any one region of the plot that the smaller symbols

(lower [K]sa) tend to be of a redder hue (lower CW), and

consideration of similarly sized symbols shows a tendency

for increased greenness (higher CW) as one moves along the

main diagonal. Reddish symbols (of low CW) are typically

smaller (of lesser [K]sa) at higher PA, although the pattern of

variation with θP is less systematic.

As an illustration, model predictions of canopy area index

(ĈW) variations as a function of [K]sa are shown in Fig. 12c

for PA = 1.0 ma−1 and PA = 1.5 ma−1 (θP = 0.5 m). This

shows the model to be especially responsive to [K]sa below

about 0.2 molm−2 with a greater sensitivity of ĈW to [K]sa at

higher PA. Thus, in relative terms, ĈW is modelled to become

most sensitive to PA at low [K]sa.

Figure 12d–f show how the PA × θP interaction affects

ĈW at three different [K]sa. Here (where white areas are

for ĈW < 0 and for which we therefore assume in practice

CW = 0) we see first for Fig. 12d that at a very low [K]sa of

0.1 mol m−2 the model suggests that any sort of woody leaf

area is simply not possible for PA < 1.5 ma−1, and even then

only when θP is relatively high. As PA increases, the θP for

which ĈW > 0 increases, with a ĈW of around 2 m2 m−2 at

the highest PA–θP combination examined considered possi-

ble.

At double potassium availability with [K]sa =

0.2 mol m−2, the response observed is very different

(Fig. 12e). Here, by comparison with Fig. 12d, we can

again see the generally higher ĈW anticipated for the higher

PA–θP combinations. But at around PA ≃ 1.3 ma−1, the area

delineated by the ĈW = 0 shifts from a concave to a convex

form; i.e. the model then predicts that for PA / 1.3 ma−1,

rather than an increase CW should decline with increasing

θP.

At an even higher [K]sa of 0.4 mol m−2 the general

concave–convex pattern is maintained (Fig. 12f) with higher

ĈW at all PA–θP combinations. The domain for which

ĈW > 0 is also shifted compared to Fig. 12e with additional

combinations of lower PA/higher θP also deemed possible.

At the lowest simulated PA of 0.8 ma−1, ĈW > 0 is now

modelled as possible for all θP less than about 0.5 m.

Application of Model 5 to other structural variables also

gave rise to a reasonable fit. For example, as shown in Ta-

ble 3f, a reasonable fit of r2 = 0.41 was found when 〈HU〉

was substituted as the dependent variable. Above-ground

biomass (BU) was also reasonably well predicted by the

model (Table 5g: r2 = 0.47), in both cases with a role for

potassium still evident at p = 0.001.

When taken in conjunction with PA and θP, [K]sa further

proved to be a much better predictor for each of the three

structural variables examined than any other measured soil

property. For example, the next-best alternative to [K]sa as

a co-predictor for CW in Model 5 was [Mg]sa, which gave

a r2 = 0.65 and an AIC = 31.9 as compared to r2 = 0.74

and AIC = 26.5 for [K]sa (Table 2e). For both 〈HU〉 and BU

it also emerged that [Mg]sa was the next-best substitute for

[K]sa, but in both cases with the differences between the two

cations in their statistical efficacy much less marked with

1AIC = −0.4 for 〈HU〉 and −1.9 for BU.

3.6 Soil water simulations

Given the results of Sect. 3.5, where the statistical modelling

of CW, 〈HU〉 and BU in terms of climate and soil factors sug-

gested a significant interaction between mean annual precip-

itation and soil water storage (Fig. 12), we conducted numer-

ical simulations of soil water balances investigating the spe-

cific proposition that a low θP arising through the existence

of some sort of impermeable layer close to the soil surface

could actually have a positive effect on ecosystem annual

water balances at low PA: this occurring as a consequence

of reductions in vertical water flow to depths below the root-

ing zone (Appendix B). Indeed, as is detailed is Sect. B3, it

turns out that, due to reductions in drainage not necessarily

being offset by high runoff rates, restricted root zones need

not always be considered as having a detrimental effect on
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Figure 12. Modelling of canopy area index (CW) in relation to mean precipitation (PA), maximum plant available soil water storage (θp)

and area-based soil potassium [K]sa. (a) Modelled versus observed CW as predicted by Model 4 of Table 3 with a 1 : 1 line also shown; (b)

location of sample plots in terms of PA and θp. Here symbol size is in proportion to [K]sa with the colouring in accordance with theCW colour

scale shown; (c) model predictions of the relationship between CW and [K]sa for PA = 1.0 ma−1 (solid line) and PA = 1.5 ma−1 (dashed

line). In both cases θp has been held constant at 0.5 m; Model predictions of CW in relation to PA and θp for (d) [K]sa = 0.1 mmol m−2, (e)

0.2 mmol m−2 and (f) [K]sa = 0.4 mmol m−2.
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plant water relations; in fact, in many cases potentially the

opposite occurs and this is more likely to be the case where

PA is low.

4 Discussion

Utilising the relatively novel situation found in South Amer-

ica where two distinct tropical vegetation formation types

(V) occur in close proximity across a wide precipitation

range, we have demonstrated here systematic differences be-

tween forest (F) and savanna (S) in terms of soil, vegetation

structure and some of the sampled physiologically relevant

foliar characteristics. Further, we have shown that the large

contrasts in structure between forest and savanna (Figs. 2 and

4) can be explained with a simple statistical model based on

“effective plant available soil water” θP and upper layer ex-

changeable potassium concentrations [K]sa (Table 3).

In terms of our relatively unusual situation of forest–

savanna contrasts existing over such a wide precipitation

range, the underlying reasons seem well understood in terms

of underlying geomorphology and past landscape evolution

(Cole, 1960, 1986). In short (as well as a gross simplifica-

tion) outside the Amazon forest region proper, forests tend to

be found on slopes and escarpments with reasonably young

and hence fertile (but often shallow) soils, with cerrado-type

savannas on plateaus and other planation surfaces charac-

terised by deep and usually heavily weathered soils. These

differences in soil parent material, landscape position and/or

soil age (degree of weathering) then lead to differences in

soil properties (Fig. 3, Table S1), which – as has already been

noted by others (Cochrane, 1989; Silva et al., 2006; Cochrane

and Cochrane, 2010) – are intimately associated with the dif-

ferent vegetation types found across the landscape mosaic.

At larger scales than in this study, an important role for

soil cations as a modulator of tropical vegetation structure

and function has already been implied, for example from

the canonical correspondence analysis (CCA) of vegetation

distributions across the Amazon Basin, where – in addition

to PA – effective soil cation exchange capacity (ECEC),

and sub-soil texture were found to be important determi-

nants of vegetation type with vegetation formations char-

acterised by a higher CW tending to be found at higher

ECEC (Lloyd et al., 2009). Similarly, taking interpolated es-

timates of total exchangeable bases (6B = [Ca]ex+[Mg]ex+

[K]ex + [Na]ex) as a measure of “soil fertility”, Lehmann

et al. (2011) found a significant positive effect of inclusion of

6B into a precipitation-based model of global savanna distri-

bution. Using a crude water balance metric (W ), Veenendaal

et al. (2015) found that both intra- and inter-continental dif-

ferences in transition zone W were related to differences in

[Ca]ex +[Mg]ex +[K]ex (drier transition zones typically hav-

ing higher cation status) with that study (of which the soil

and vegetation data here form a subset) also finding signifi-

cant cation–soil moisture interactions.

It would thus seem that the identification of factors under-

lying the clear effects of soil on tropical vegetation structure,

as evident using our precipitation transect extending across

savanna–forest transition zones as in the current study, may

be of a general and wide relevance. Nevertheless, we do em-

phasise that some trends, such as increases in soil cation sta-

tus with declining rainfall, are much more likely to be due

to changes in soil parent material than to climate. Thus, al-

though it may be reasonable to infer that the only reason we

were able to find forest at the lowest PA was that there were

soils there of a very high cation status; it is by no means a

corollary that soil and/or plant cation status should always

tend to increase with declining PA, or even that there might

be a general trend in that direction (regionally, globally or

otherwise).

4.1 Mass-related trait variations in relation to species,

soils and climate

In terms of stand-level forest–savanna trait comparisons, data

interpretation is facilitated by there being almost no species

overlap between the two vegetation types anywhere along the

precipitation gradient (Torello-Raventos et al., 2013) – hence

our ability to refer to “forest” and “savanna” species. Within

each vegetation type there is, however, significant species

sharing between plots. But interestingly, although forest plot

species composition systematically changes in accordance

with changes in precipitation regime (Torello-Raventos et al.,

2013), when examined at the community level changes in

mean trait values as precipitation declined were, with the ex-

ception of the cations and δ13C, surprisingly small (Figs. 6,

7 and 10). This is especially the case when compared to

the dramatic changes in forest stand-level canopy cover, tree

height and biomass characteristics (Figs. 2 and 4). This is

even all the more surprising in so much as there was also

a clear change in leaf deciduousness along the transect, with

almost all the forest species deciduous at the lowest PA TUC-

01 and mostly evergreen at the highest PA TAP-123 and

TAP-04 sites (Table S2). Moreover, as is evident from the rel-

atively modest “environmental component” in the variance

partitioning of Fig. 3 and the error bars of Figs. 6, 7 and 10,

within-plot variability – a reasonable portion of which could

be attributed to species identity (Fig. 3) – accounted for much

more of the variation in trait characteristics than soil or cli-

mate. This then suggests that, at least within the one vegeta-

tion type, species differences in leaf-level traits, such as Ma,

Nm and Pm, are more or less irrelevant in terms of any habitat

filtering that might be occurring.

Some changes in savanna species composition along the

transect also occurred, though with this being to a lesser

extent than for the forest species (Torello-Raventos et al.,

2013), with the changes in community level trait values gen-

erally more muted for S than was the case for F. For ex-

ample, there was no appreciable effect of precipitation on

community-averaged savanna Ma (Fig. 6a) as was also ob-
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served by Schrodt et al. (2014) in West Africa, which is

contrary to the generally accepted dogma that Ma should in-

crease with declining rainfall (Poorter et al., 2009). We sug-

gest a similar explanation for this lack of a precipitation re-

sponse as detailed by Schrodt et al. (2014); that is to say,

this lack of precipitation response of Ma to annual rainfall

amount may be due to our study being located in the strongly

seasonal tropics where there is a tendency towards an in-

creased rainfall seasonality (shorter growing season) as pre-

cipitation declines.

An overall higher Ma (Fig. 6a) and lower Nm (Fig. 6b) of

savanna trees was also noted by Schrodt et al. (2014), and

has been observed similarly in tropical Australia by Bloom-

field et al. (2014) and in the phylogenetically controlled

Brazilian cerrado vs. gallery forest comparison of Hoffmann

et al. (2005). This suggests a consistent difference and, as

is discussed in the next section, a tendency for leaf nitro-

gen concentrations to increase with decreasing rainfall also

seems to be a consistent pattern, and is probably related to

reductions in canopy leaf areas as PA declines. Also involved

might be lesser N lixiviation and denitrification at lower rain-

fall (Robertson, 1989).

Differences between F and S in mass-based phosphorus

concentrations are less consistent across studies with Schrodt

et al. (2014) finding no difference in West Africa (as was the

case here – Fig. 6d), but with Bloomfield et al. (2014) find-

ing lower values in their Australian savanna species. Nev-

ertheless for all studies, at least within ZOT, any difference

between vegetation types disappears when P is considered on

a leaf area basis (Sect. 4.2).

It was, in any case, the cations for which the most dramatic

changes with PA we observed and for which the differences

between F and S were the greatest. Again these trends and

differences are similar as was found for West Africa, but with

the case of higher savanna Km at low rainfall in that study

not being associated with increases in soil cation availabil-

ity as was the case here (Fig. 3a). As discussed by Schrodt

et al. (2014), given its prime role as an osmotically active

cation (Leigh and Wyn Jones, 1984), it seems reasonable to

assume that leaves of trees exposed to a lower PA regime

should have a higher potassium content than their higher

rainfall counterparts due to the more negative osmotic po-

tentials required to survive more extended rain-free periods

(also likely to be times of higher than average evaporative de-

mand) during the dry season. Such a notion is consistent with

results from a recent literature survey where it was found that

the leaves of “tropical-dry” woody species tend to have more

negative osmotic potentials than their “tropical-wet” counter-

parts (Bartlett et al., 2012).

The West African study of Schrodt et al. (2014) similarly

found lower Km for savanna as compared to forest plots,

which – although also related to a lower potassium availabil-

ity in the savanna soils within ZOT – was further attributable

to a different species composition. This is also the case in

this study because re-running Eq. (2) but with the affilia-

tion term treated as fixed rather than random gave an intrin-

sic savanna–forest difference of 3.0±0.7 mgg−1 (Table S3f);

i.e. it is not only the different soil chemistry of the forest vs.

savanna plots that leads to their lower 〈Km〉, but also intrinsi-

cally lower Km for savanna species contributing. Specifically,

our model predicts Km to be – on average – only 0.6 that of

their forest counterparts under identical edaphic conditions.

Also inferred to be intrinsically lower for savanna species

were both Cam (Table S3e) and (more marginally) Mgm (Ta-

ble S3g), and as discussed by Schrodt et al. (2014) underly-

ing this forest–savanna difference may be typically contrast-

ing plant strategies in terms of leaf construction costs, with

the tendency for low Ma in leaves of high mineral content.

This is presumably attributable to a low tissue density asso-

ciated with thinner, less lignified cell walls with the higher

cation content presumably also balanced by higher levels of

organic acids, which are, themselves, of a relatively low C

content. Generally with a lower Cm as well, forest leaves thus

have lower overall construction costs especially at low PA

(Fig. 7d; Table S3g).

As noted in Sect. 3.3.3 there was a tendency towards in-

creased deciduousness as PA declined; indeed, with a simple

ANOVA on the data in Table S2 (data not shown) we find

lower construction costs for deciduous species as compared

to evergreen species and the semi- and brevi-deciduous types

as defined in Sect. 2.4 (p < 0.01), but only for forest species.

The lower average construction costs for trees in forest plots

is not therefore associated with a greater dominance of decid-

uous species per se; indeed, if anything the opposite occurs

with more evergreen-type species in the transitional forests

(Sect. 3.3.3).

4.2 Area-based trait variations

Despite individual estimates of Amax at the leaf level vary-

ing more than twofold across the data set, little of this varia-

tion appeared systematic in terms of differences in 〈Amax〉

between F and S plots, or in relation to variations in PA

(Fig. 10a). This lack of any rainfall dependence was also ob-

served for savanna plot 〈Na〉 and 〈Pa〉. There was, however,

a slight and significant tendency for forest plot 〈Na〉 and 〈Pa〉

to increase with declining rainfall (in a general pattern simi-

lar to the non-significant 〈Aa〉 trend) consistent with the idea

that leaves functioning at lower PA should have a higher pho-

tosynthetic capacity than at high PA – also operating a lower

ratio of intercellular to ambient [CO2], Ci/Ca (Buckley et al.,

2002; Farquhar et al., 2002). The latter effect would be ex-

pected to be detectable through such leaves having a higher

(less negative) δ13C as was indeed observed to be the case

for forest plots across the transect (Fig. 10d). It was, how-

ever, only at the lowest PA savanna site that 〈δ13C〉 was in-

creased for savanna trees. This lack of a community-level

savanna δ13C response has also been observed along a pre-

cipitation gradient in Australia where it has been assumed

that the pattern is due to “species switching” (Schulze et al.,
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1998; Miller et al., 2001); i.e. as PA declines, species that

are increasingly adapted to more severe and/or extended soil

water deficits replace those whose physiological characteris-

tics are better suited to more mesic conditions; presumably

one important factor here being that the former has intrin-

sically higher roots, i.e. shoot ratios (Schenk and Jackson,

2002; Mokany et al., 2006; Zerihun et al., 2006).

Taking savanna and forest together, simple linear multi-

variate modelling (Table 2) showed changes in 〈Na〉 to be

positively correlated with higher 〈Amax〉. This is as would be

expected on the basis of leaf-level studies (Domingues et al.,

2010, 2014; Bloomfield et al., 2014) but here with the soil-

associated [P]sa rather than the community-weighted foliar

〈Pa〉 being the better predictor in terms of stand-level phos-

phorus status. Moreover, in addition to a positive effect of

mean canopy height 〈HU〉 on 〈Amax〉 (p < 0.01), also de-

tected was a very strong negative effect of soil exchangeable

potassium [K]sa.

Taking the phosphorus effect first, one likely explanation

for soil concentrations being better predictors than those of

the foliage itself is that – at the individual leaf level – N and

P may not be simple additive constraints on photosynthetic

capacity. But rather – and depending on their relative con-

centrations – either one of these two elements can be limit-

ing and both forms of limitation often existing within the one

stand (Domingues et al., 2010, 2014). The higher the [P]sa

the less the chance of a given tree having its photosynthetic

rate limited by Pa. Nevertheless, this would then mean that

a soil phosphorus effect as shown here should be evident, but

not necessarily with a community-level trait metric such as

〈Pa〉 being the relevant measure.

But what of the canopy height and soil potassium effects?

First, with regard to 〈HU〉, although there is a strong tendency

for taller trees with a greater probability of access to full sun-

light to have higher area-based nutrient concentrations and

associated higher CO2 assimilation capacities (Kenzo et al.,

2006; Lloyd et al., 2010), this effect applies only within in-

dividual stands and there is no reason why that phenomenon

should readily translate to differences in mean canopy height

between different stands. Moreover, with 〈Na〉 also included

in the multivariate model (Table 2a), that means that it is

also the mean photosynthetic N use efficiency, which is mod-

elled to decline with decreasing 〈HU〉. With the 〈HU〉 of for-

est plots showing a clear negative dependence on PA, espe-

cially at the drier end of the transect (and savanna plots being

less variable; Figs. 4b and 11d); perhaps then this effect re-

lates to concurrent changes on other stand properties which

also correlate with 〈HU〉. For example, an increase in forest

species deciduousness is associated with the shorter growing

season as noted in Sect. 4.1. Here for example, to facilitate

rapid leaf and shoot expansion during the limited periods of

plant water availability at sites such as TUC-01, we might

reasonably expect relatively large amounts of nitrogen to be

allocated away from photosynthesis and towards amino acid

production (Funk et al., 2013), with increased allocation to

N-based plant defence strategies also expected for the in-

evitably short-lived leaves (Stamp, 2003) on trees growing

in – as is strongly suggested by their soil and leaf δ15N (Nar-

doto et al., 2013) – a relatively replete nitrogen environment.

Although at first sight the negative correlation between soil

potassium and both leaf-area-based photosynthetic capacities

as well as the photosynthetic nutrient efficiencies of both N

and P may seem surprising, this association is broadly con-

sistent with previous work in the forest–savanna transition

zone in both Africa and Australia, where savanna species –

as was the case here typically found on lower potassium sta-

tus soils than their forest counterparts – have been observed

to have greater Amax and/or AN than their forest counter-

parts (Domingues et al., 2010, 2014; Bloomfield et al., 2014).

Indeed, undertaking simple non-parametric correlations be-

tween photosynthetic capacity and a range of climatic and

edaphic conditions for a (combined) data set of nearly 200

forest and savanna tree measurements in Far North Queens-

land (Australia), Bloomfield et al. (2014) also found soil ex-

changeable potassium to be the best predictor of photosyn-

thetic properties with a negative relationship as found here.

In interpreting this relationship between community-level

mean trait values and soil properties, it is important to re-

member that edaphic effects may be mediated via intrinsic

differences in the physiological characteristics of the various

species making up the different plant communities (Fyllas

et al., 2012), this being in addition to any direct effects of the

soil property on the physiological traits of the species making

up that community per se. In this respect, there is some indi-

cation that both these effects are likely to be important, with

Fig. 9 suggesting that equivalent amounts of the explained

variance in the data set are attributable to both species and en-

vironment for Amax and AN. Akin with this may then be that,

associated with the typically lower cation status, low [K]sa

soils are typically slower growing species, which on average

have less of their N allocated to defence or amino acids as

growth reserves as compared to the faster growing species.

Also related to differences in leaf nitrogen chemistry may be

the tendency for tropical trees on higher cation status soils to

use as their primary source NO−
3 , which is subsequently as-

similated in the foliage as opposed to root assimilated NH+
4

(Stewart et al., 1988; Schmidt and Stewart, 1998; Aidar et al.,

2003). This could affect photosynthesis and photosynthetic

nitrogen efficiency in two ways. First, with the leaves of trees

on higher nutrient status soil having the main site of nitro-

gen processing in leaves as opposed to roots on more dys-

tric soils, more N-containing compounds not directly asso-

ciated with CO2 assimilation would inevitably be present in

the foliage, thus leading to a lower AN. Second, with some

of the NO−
3 reduction reactions of such trees occurring in the

chloroplast (Halliwell, 1981), it is also possible there could

be direct competition with the photosynthetic carbon reduc-

tion cycle for the reducing equivalents ATP and NADPH.
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But how does one specifically invoke a role for soil potas-

sium in the above scheme? Especially as differing forms of

nitrogen uptake observed on eutric vs. dystric soils are gen-

erally considered to largely reflect differences in the rela-

tive availabilities of NO−
3 and NH+

4 (Britto and Kronzucker,

2013), which in turn relate to pH sensitivities of ammonia-

oxidising bacteria and archaea (Yao et al., 2011). It is, how-

ever, now clear that other edaphic factors may influence soil

nitrification rates at low pH (de Gannes et al., 2014) includ-

ing a likely role for potassium (Norman and Barrett, 2014).

Moreover, when one considers that a likely reason for nitro-

gen assimilation occurring mostly in the roots at low pH is

through the prevention of ammonium toxicity in the stem and

leaf tissues (Givan, 1979) and with alleviation of NH+
4 tox-

icity by K+ supply well documented (Mengel et al., 1976;

Britto and Kronzucker, 2013), then a specific role of soil

potassium in influencing leaf photosynthetic characteristics

through a range of interactions with plant nitrogen utilisa-

tion characteristics seems likely, especially given the close

linkages between nitrogen and potassium in the modulation

of numerous plant signalling pathways as discovered in re-

cent years (Tsay et al., 2011). It has also been suggested that

there may be advantages to storing C as organic acids (rather

than sugars/starch) when it is to be subsequently used for

the assimilation and/or used for N (Xu et al., 2012), which

may also be related to potassium’s likely role as a balancing

cation for organic anions (see Sect. 4.1).

4.3 Soil–vegetation–climate relationships

In both managed and natural ecosystems, physiologically rel-

evant reductions in soil nutrient availability can be expected

as most likely to be manifested either through changes in tis-

sue nutrient concentrations and/or reductions in the extent of

standing biomass (for example reductions in leaf area); there-

fore through Eq. (3) we have attempted to see which of our

studied nutrients was likely to be more limiting by examin-

ing the relationships between total canopy and soil amounts

when both are expressed on a ground area basis (Fig. 8).

When looked at this way, suggestions of any sort of rela-

tionship were, however, found only for calcium (Fig. 8a) and

potassium (Fig. 8c) with – in marked contrast to the wetter

forests of the Amazon Basin (Quesada and Lloyd, 2015) – no

relationship being found between canopy and soil phospho-

rus amounts. It is accepted of course that Eq. (3) is an approx-

imation: ignoring for example nutrients in boles, branches

and roots as well as in grasses and understorey shrubs. Nev-

ertheless, with their fast foliage turnover times and a gen-

eral equivalence between fine-root and leaf concentrations in

tropical ecosystems (Vitousek and Sanford, 1986), such plots

should still give a general indication of the relationship be-

tween ecosystem nutrient stocks/uptake rates and therefore

the lack of any sort of relationship for magnesium and phos-

phorus remains particularly telling. It is also clear that whilst

there are typically fivefold higher concentrations of calcium

in the soil as compared to potassium (see also Fig. 3a), dif-

ferences in the total amount of foliar nutrient per unit ground

area are much less marked (Fig. 8a and c). This – along with

the non-saturating relationship of Fig. 8c then suggests – at

least when considered in terms of vegetation requirements in

relation to soil availability – that of the nutrients examined

it is potassium that is the more likely candidate in terms of

a nutrient constraint on ecosystem function.

Further evidence pointing in this direction comes from the

observation that, as well as being associated with a range

of different foliar properties, such as photosynthetic nitrogen

and phosphorus-use efficiencies, and varying systematically

between forest and savanna stands, as a univariate predictor,

[K]sa was the only edaphic or climatic variable significantly

correlated with CW at p < 0.05 (Table 1) and with none of

[Mg]sa, [Ca]sa, pH, sand or clay content nearly as good a pre-

dictor of CW, when considered either on their own or when

considered in conjunction with PA and θP (Sect. 3.5). Thus

we postulate not only that low soil potassium availability

serves to decrease leaf areas, though with this effect some-

what offset by higher photosynthetic capacities per unit leaf

area, but also – with this response also mimicking what is

expected under conditions of increasingly more severe water

deficits (Buckley et al., 2002; Farquhar et al., 2002) – that

potassium may somehow be involved in the signalling of the

latter. Although such a strong effect, attributable to a single

cation, may be surprising, especially in terms of generally

assumed belief that nitrogen and/or phosphorus are the two

factors likely to be limiting plant productivity – and through

the associated modulation of C supply also controlling other

attributes such as leaf area and stand-level biomass (Ostle

et al., 2009; Scheiter and Higgins, 2009; Mercado et al.,

2011; Alvarez-Clare et al., 2013; Pavlick et al., 2013) – in the

agricultural literature the importance of potassium for crop

yields is particularly well appreciated (Römheld and Kirkby,

2010; Wang et al., 2013; Zörb et al., 2014). This is especially

the case under conditions of soil water deficit where a range

of factors have been implicated: these including an improved

soil and/or plant potassium status being associated with en-

hanced root longevities, reductions in stress-associated reac-

tive oxygen species production and the maintenance of tissue

water relations through increases in leaf and/or root osmotic

potential. In addition, positive effects of potassium on pho-

tosynthetic carbon acquisition through stimulation of both

stomatal and chloroplast metabolism have also been noted.

(Mengel and Arneke, 1982; Egilla et al., 2001, 2005; Umar,

2006; Lebaudy et al., 2008; El-Mesbahi et al., 2012; Wang

et al., 2013; Shabala and Pottosin, 2014). Further, an impor-

tant role of potassium as a prime signaller of plant responses

to abiotic stresses has also recently been postulated by sev-

eral groups (Osakabe et al., 2013; Ahmad and Maathuis,

2014; Anschütz et al., 2014; Hafsi et al., 2014; Shabala and

Pottosin, 2014), which – along with a previously unrecog-

nised likely role for potassium as an osmoticum in woody

stem tissues capable of high water storage (Braun et al.,
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1968; Hart, 1984; Borchert and Pockman, 2005; Pineda-

Garcia et al., 2013; Hietz et al., 2014; Spicer, 2014) – all

point to this element as a key chemical in soil water deficit

signalling and response.

An active involvement of potassium in modulating plant

responses to soil water deficit is also consistent with the ad-

ditional involvement of mean annual precipitation and total

plant available water as key factors modulating canopy struc-

tural properties (Table 3): in particular as a determinant of

CW for which θP seems just as important as PA in account-

ing for the variations observed (Fig. 12d–f). Although per-

haps surprising, numerical simulations have shown that this

should indeed be the case. For example, the theoretical study

of Feng et al. (2012) showed that along with seasonality, the

key factor controlling ecosystem evaporation rates – them-

selves expected to link broadly to differences in plant pro-

ductivity (Beer et al., 2009) – was γ = θP /Ṗ , where Ṗ is the

mean precipitation depth per event. The dimensionless nature

of γ itself immediately points to an interaction between pre-

cipitation and soil water storage as detected here and is also,

as expected on the basis of maximum rooting depth, increas-

ing with mean annual rainfall in water-limited ecosystems

(Collins and Bras, 2007; Schenk, 2008). Moreover, as one

might intuitively expect, the study of Feng et al. (2012) also

served to show that lower values of γ provide increasingly

greater constraints on annual ecosystem evaporation rates as

precipitation seasonality increases. Thus in less seasonal en-

vironments than those investigated here, it may well be that

θP is less important a factor in the modulation of precipitation

effects than as found for the current study.

Nevertheless, none of the above considerations can ac-

count for our fitted model prediction that for PA ≤ 1.5 m

a decline in θP may actually be associated with an increase in

CW. But as is verified numerically in Appendix B, this phe-

nomenon does become readily understandable when it is con-

sidered that – with the exception of only a few sites – lower

values of θP for the current study arose through the presence

of some physical barrier restricting the depth below which

roots could penetrate (Table S1). We suggest that because

such layers are also effectively impermeable to water flow,

then associated with a lower θP is also less drainage and thus

with more water generally being available for plant water use

above that layer. Of course, if any such layer were not to be

present, then roots could still access water below that depth,

but presumably with this also involving additional structural

carbon investment as compared to the restricted root zone

case: the maximum rooting depth on that case presumably re-

flecting the point at which the marginal carbon cost of adding

deeper roots is balanced by the marginal carbon benefit of the

increased transpiration then made possible (Guswa, 2008).

As characterised through the forest–savanna species di-

chotomy, a strong influence of soil physical and chemi-

cal properties on tropical vegetation structure as detected

here are also indicative of a significant edaphic influence

on woody plant community composition consistent with nu-

merous regional studies where landscape-scale variations in

vegetation structure/floristics have been related to effects of

landscape position, underlying geology and/or soil texture,

as for example, in Brigalow woodland in Central Queens-

land (Australia; Dowling et al., 1986), Mopane Woodland

in Botswana (Mlambo, 2007), for Nylsvley Nature Reserve

(Coetzee et al., 1976), Kruger National Park (Fraser et al.,

1987; Ben-Shahar, 1991; Baldeck et al., 2014; Scholtz et al.,

2014), northern Transvaal (O’Connor, 1992) and Klaserie

Nature Reserve (Witkowski and O’Connor, 1996) in South

Africa, for the southern Kalahari Desert (Botswana, Namibia

and South Africa; Werger, 1978), in Etosha National Park

in Namibia (Le Roux et al., 1988), for the Turkana District

in Kenya (Coughenour and Ellis, 1993), across northern Yu-

catan Peninsula in Mexico (White and Hood, 2004), at Assis

Ecological Station in southeast Brazil (de Assis et al., 2011),

in W Regional Park in southwest Niger (Diouf et al., 2012),

in the Zambesi Valley (Guy, 1977), at Malilangwe Wildlife

Reserve (Clegg and O’Connor, 2012) and Gonarezhou Na-

tional Park (Gandiwa et al., 2014) in Zimbabwe, and for

Emas National Park in central Brazil (Dantas et al., 2015). At

larger scales, soil-specific texture and depth effects on vege-

tation structure have also been noted for Zimbabwe (Dye and

Walker, 1980) and, in conjunction with rainfall variations for

Australia (Williams et al., 1996), Botswana (Skarpe, 1986;

Ringrose et al., 2003) and Sudan (Smith, 1951).

Although it has been suggested that one general theme

emerging from the above studies is the importance of soil

texture, with heavy textured soil generally having a lower

woody vegetation density than coarser textured soils, ap-

parently due to lower infiltration rates associated with the

swelling of 2 : 1 minerals (Clegg and O’Connor, 2012), high

clay contents are also possible for even the most highly

weathered soils dominated by 1 : 1 clays for which water

infiltration and retention properties are, if anything, more

favourable than more coarsely textured soils (Sanchez, 1976;

Hodnett and Tomasella, 2002; Quesada et al., 2011; Quesada

and Lloyd, 2015). Moreover, variations in both soil organic

matter and silt fraction also contribute importantly to differ-

ences in plant available soil volumetric water content (Rawls

et al., 2003; Collins and Bras, 2007; Shukla, 2013). This

means that, along with variations in rooting depth (as poten-

tially affected by physical limitations), simple measures of

upper-soil sand and clay content are likely to be only broadly

reflective of the θP parameter as identified here. Although

our estimates of θP were based simply on observations of

maximum rooting depth and translating the categorised soil

texture for each depth increment to a water holding capacity

using a simple look up table (Hodnett and Tomasella, 2002),

this clearly provides an improved estimate of soil moisture

storage and buffering as compared to simple measures of up-

per surface clay and/or sand content as seems to have been

the generally employed metric to date (Williams et al., 1996;

Sankaran et al., 2005, 2008; Lehmann et al., 2014). It is, how-

ever, important to note that the fitted PA : θP interaction term
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should not be independent of precipitation seasonality (Good

and Caylor, 2011; Feng et al., 2012) with any (presumably

small) changes in seasonality with PA incorporated into our

fitted regression coefficients.

Although a few of the above studies demonstrating strong

effects of soil physical properties and landscape position of

vegetation structure did also measure soil nutrients, prior to

this study little attempt had been made to ascertain if vari-

ations in tropical vegetation structure could be explained on

the basis of differences in soil chemistry: either in isolation or

in addition to the soil physical effects interacting with water

supply as described above. One exception is the interesting

recent study of Mills et al. (2013) who found that for mea-

sures of woody cover on 364 plots at 20 sites in Namibia CW

tended to peak at intermediate nutrient contents. They inter-

preted their data as indicating that at the highest soil nutri-

ent availabilities the “metabolic power” of grasses exceeded

that of woody plants. Noting significant differences on sev-

eral foliar traits between species growing in a “seasonally dry

forest” vs. a “cerradão” (closed savanna woodland) stand in

south-eastern Brazil, Viani et al. (2014) pointed out a low

pH (as opposed to a low [K]sa) in the latter as the main factor

driving differences in stand structure between the two vegeta-

tion formation types. But, as was found here (Fig. 7b), foliar

potassium concentrations in that study were also markedly

higher in the forest species as compared to their savanna

counterparts with similar large contrasts in soil exchange-

able cations (Fig. 3) between the two vegetation types (Viani

et al., 2011). In terms of model fits, we found pH to be a far

inferior predictor when substituted with [K]sa with r2 < 0.1

for all multivariate predictor combinations as presented in

Table 3. Indeed, as was the case for the photosynthetic prop-

erties examined, when considered in association with the ap-

propriate covariates, no other soil parameter came even close

to potassium in terms of its efficacy as a predictor of CW with

the best alternative, viz. [Mg]sa, yielding a 1AIC of −5.4

(Sect. 3.5).

But, especially with nearly half the sites of the current

study being classified as savanna and hence having an ap-

preciable axylale layer, is it also necessary to implicitly take

into account tree–grass competition when considering our

observed potassium effect? To some extent, that depends on

the view one takes as to which grasses are “passive” occu-

piers of open areas not occupied by woody vegetation versus

active competitors for water and nutrient resources. But in

any case, with their typically lower stature and characteris-

tically lower rates of transpiration per unit leaf area (Grace

et al., 1998), many of the explanations given above for the

underlying basis of the potassium effect of woody vegetation

might reasonably be expected to be less of a consideration for

grasses and herbs. This would be especially the case should

one of the prime roles of potassium be in association with the

transport of water to height and/or short-term alleviation of

leaf water deficits through provision of xylem parenchyma

storage reservoirs in woody tissue root and stem.

It is, of course, possible that rather it being potassium it-

self, it might be that some unmeasured trace element who’s

availability in the soil is strongly correlated with [K]sa that

is really the basis of the underlying strong correlations ob-

served between [K]sa and the wide range of woody plant

traits as reported here (Mills et al., 2013). Yet, although it

is true that many univalent and divalent cation trace elements

are at relatively low concentrations in the more highly weath-

ered tropical soils such as were found to occur in all but the

lowest precipitation regions of the current study (Marques et

al., 2004), it is also the case that – as compared to “typical”

temperate soils for example – relative trace element concen-

trations are reduced by less than an order of magnitude in

even the most highly weathered tropical soils (Marques et

al., 2004). This is a situation very much different to that for

the major cations (and especially potassium) where estimates

of exchangeable concentrations are several fold lower in the

more heavily weathered soils of the tropics as opposed to

those typical of the temperate zone (Sanchez, 1976; Quesada

et al., 2011). This contrast is perhaps due to retention of trace

element cations in the even most strongly weathered tropical

soil types through organic matter adsorption and iron oxides

also potentially being important in trace element retention in

such soils (Rieuwerts, 2007).

4.4 Implications

Obviously there is much work to be done in terms of veri-

fying what might be termed the combined water and potas-

sium (CWAK) concept in terms of its applicability to other

tropical systems. But, nevertheless, the idea that variations in

canopy structure both within and between different forest and

savanna vegetation formation types can be explained through

a simple concurrent consideration of water and nutrients does

not sit comfortably with most current theories of tropical veg-

etation structure where notions of disturbance and the exis-

tence of alternative stable states (ASS) as mediated by fire

(or herbivory) as the prime drivers of structural and floris-

tic variations in tropical ecosystems have assumed dogma

status over recent years (Warman and Moles, 2009; Hirota

et al., 2011; Lehmann et al., 2011, 2014; Staver et al., 2011;

Favier et al., 2012; Hoffmann et al., 2012; Murphy and Bow-

man, 2012). Nevertheless, observational evidence for ASS is

at best circumstantial (Veenendaal et al., 2015).

The CWAK hypothesis, of course, does not require there

to be no effect of fire on tropical vegetation structure. But

rather, that fire be more a passive response to the presence of

flammable C4 grasses (Lloyd et al., 2008) as opposed to fire

being a major factor accounting for differences in savanna

structure and the nature of forest–savanna transitions per se

(Bond, 2008). Indeed, when examined in this context, recent

results do actually point to the “passive response hypothesis

being correct” (Diouf et al., 2012; Dantas et al., 2014), al-

though interacting effects of fire on long-term soil nutrient

availabilities and physical properties cannot be discounted
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(Cook, 1994; Mills and Fey, 2004; Cawson et al., 2012; Oliv-

eras et al., 2013; Kugbe et al., 2014).

In terms of an apparent lack of edaphic effects on tropical

vegetation structure, although some researchers have argued

that the spatial scale of variability in soil chemical proper-

ties is insufficient to account for observed spatial patterns

in vegetation structure (Lehmann et al., 2011; Favier et al.,

2012) this would seem, as much as anything else, to simply

reflect a basic misunderstanding of the purpose of large-scale

soil maps such as are generally employed at the national or

continental scale (levels 4 and 5 in Table 6.1 of Dent and

Young, 1981) and now widely available on-line. Such maps

were never constructed with the intention of providing an in-

dication of the exact soil resource at any location, but rather

to simply provide a broad overview of the soil resource at

national or regional levels, this often being as a first step to

more detailed mapping for future land use planning (Young,

1980; Dent and Young, 1981). Indeed, due to practical limits

in the number of field observations possible when mapping at

medium to high resolution, the hectare-scale soil–vegetation

associations as mentioned above in Sect. 4.3 often end up be-

ing one important factor in the generation of the smaller-scale

soil map itself (Trapnell et al., 1950; Young, 1980; Breimer

et al., 1986; Nyamapfene, 1988). As noted by Guy (1977)

working in the Zambesi Valley: “The very close relationships

between vegetation types and soils is well illustrated. . . . Be-

cause of this close relationship it is not hard to see why that

structure of each vegetation type changes over short distances

where pockets of soils unlike those surrounding them occur”.

Of course, we are by no means suggesting that all observed

variations in tropical vegetation structure should be explain-

able on the simple basis of the CWAK hypothesis. For exam-

ple, there are numerous cases where poor drainage may be

the reason for savanna vegetation types under conditions oth-

erwise suitable for forest (Cole, 1960, 1986; Haase and Beck,

1989; Cronje et al., 2008; Mantlana et al., 2008; Cochrane

and Cochrane, 2010), and it also seems reasonable to spec-

ulate that in some cases woody savanna tree extent could be

constrained by supra-low calcium concentrations in the sub-

soil (Cochrane, 1989). Also, with sodium capable of replac-

ing potassium in many of its physiological functions when

available at moderate concentrations (Wakeel et al., 2011;

Kronzucker et al., 2013), of considerable interest in terms of

refinement of the CWAK hypothesis is the existence of very

high biomass stands of Colophospermum mopane (J.Kirk ex

Benth.) J.Kirk ex J.Léonard and Acacia harophylla F. Muell.

in southern Africa and north-eastern Australia, respectively:

in both cases sometimes at low precipitation (< 0.8 ma−1)

but also on soils with a high exchangeable sodium content

and often also some form of physical constraint at depth

(Russell et al., 1967; Guy, 1977, 1981; Dye and Walker,

1980; Dowling et al., 1986). Whatever the case, as has also

recently been shown for the Amazon forests at a basin-wide

scale (Quesada et al., 2012), it is clear that a simple sampling

and/or consideration of soils for a few selected parameters

such as upper surface sand and clay content can in no way

allow for a reasonable assessment of likely edaphic effects

of tropical vegetation structure and function to have been

achieved.

5 Conclusions

Irrespective of rainfall regime, savannas are found on soils

of a consistently lower cation status than their forest coun-

terparts: these soils also being characterised by lower phos-

phorus concentrations and higher C/N ratios. Leaves of trees

growing within savanna stands are also typically of lower N

and K concentrations (dry-mass basis) than for forest stands,

but with little systematic difference in other elements (in-

cluding phosphorus) or photosynthetic capacity. Contrasts

between forest and savanna in the magnitude of their canopy

cover for any given precipitation regime are appreciably

greater than any differences in leaf-area-based physiological

traits.

Especially for savannas, canopy cover is not closely as-

sociated with mean annual rainfall. But when considered in

conjunction with soil water storage capacity and mean annual

precipitation, soil exchangeable K (expressed on an area ba-

sis) emerges as an excellent predictor of canopy cover. Soil

exchangeable Mg, or Ca, pH or texture metrics are much

less well associated. Soil exchangeable potassium is also

well associated with a range of structural and photosynthesis-

associated traits with, in almost all cases, other cations, pH

or soil texture metrics again of an inferior predictive ability.

For canopy cover and other stand-level structural traits,

such as mean canopy height and standing live biomass,

this potassium effect is modulated by variations in soil wa-

ter availability as evidenced by a co-occurring soil wa-

ter storage/precipitation interaction term in OLS multivari-

ate predictive model fits. This modelled interaction is com-

plex, and although the intuitive increase in canopy cover

with increasing soil water storage capacity is simulated

to occur at relatively high rates of mean annual precipi-

tation (PA & 1/5 ma−1), the opposite is observed for PA 6

& 1.5 ma−1. With most of the variation in soil water stor-

age capacity in the current data set being attributable to dif-

ferences in rooting zone depth as opposed to plant available

water storage per unit soil volume, it was confirmed through

numerical simulation that the presence of an impermeable

layer close to the soil surface can potentially have a benefi-

cial effect on annual water balances in a strongly seasonal en-

vironment. This unexpected effect arises as a consequence of

reduced drainage rates out of the shallow rooting zone more

than offsetting any higher runoff rates associated with ex-

treme rainfall events.
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Appendix A: List of symbols and abbreviations (with

typical units as appropriate)

ĈW model predicted crown area index (m2 m−2)

〈HU〉 mean canopy height (d > 0.1 m)

ρb soil bulk density (kg dm−3)

〈2〉 average value of canopy trait within plot (weighted according to species abundance)

[Ca]ex soil exchangeable calcium on a mass basis (mmol eq+ kg−1)

[Ca]s, a soil exchangeable calcium on a ground area basis (mol m−2)

[K]ex soil exchangeable potassium on a mass basis (mmol eq+ kg−1)

[K]s, a soil exchangeable potassium on a ground area basis (mol m−2)

[Mg]ex soil exchangeable magnesium on a mass basis (mmol eq+ kg−1)

[Mg]s, a soil exchangeable magnesium on a ground area basis (mol m−2)

[Na]ex soil exchangeable sodium on a mass basis (mmol eq+ kg−1)

[P]extr soil extractable phosphorus (mgkg−1)

[P]s, a soil extractable phosphorus on a ground area basis (mol m−2)

a annum

AIC Akaike’s information criterion

Amax leaf-level maximum CO2 assimilation rate (µmol m−2 s−1)

ASS alternative stable state

BU above-ground biomass (t ha−1)

CA projected canopy area (m2)

CaC canopy calcium on a ground area basis (mol m−2)

Cam leaf calcium on a mass basis (mgg−1)

Cm leaf carbon on a mass basis (mgg−1)

CNs soil carbon to nitrogen ratio (g g−1)

CW crown area index (m2 m−2)

D diameter at breast height (m)

H tree height (m)

H∗ upper 0.95 quantile canopy height (d > 0.1 m)

KC canopy potassium on a ground area basis (mol m−2)

Km leaf potassium on a mass basis (mgg−1)

L leaf area index (m2 m−2)

m metre

Ma leaf mass per unit area (g m−2)

MgC canopy magnesium, on a ground area basis (mol m−2)

Mgm leaf magnesium on a mass basis (mgg−1)

Na leaf nitrogen on an area basis (mgg−1)

Nm leaf nitrogen on a mass basis (mgg−1)

Nm leaf nitrogen on a mass basis (mgg−1)

OLS ordinary least squares

PA mean annual precipitation (ma−1)

Pa leaf phosphorus on an area basis (mgg−1)

PC canopy phosphorus on a ground area basis (mol m−2)

Pm leaf phosphorus on a mass basis (mgg−1)

SD standard deviation

s1, s1, fitted smoothing parameter

VIF variance inflation factor

α fitted parameter

δ13C leaf 13C/12C ratio relative to PDB (‰)

2 plant trait (general symbol)

θP plant available soil water (m)

µ data set mean value

6B sum of exchangeable bases in soil (mmol eq+ kg−1)

K leaf construction costs (mgglucoseg−1)

F forest vegetation formation type

S savanna vegetation formation type

V vegetation formation type

A vegetation formation-type affiliation of a species (forest or savanna)
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Appendix B: Numerical demonstration of potential

beneficial effects of restricted root zones

Given the results of Sect. 6, with our best-fit statistical model

predicting that, other things being equal, a reduced water

storage capacity is more associated with higher canopy leaf

areas than is the case for deeper soils under low rainfall con-

ditions (PA / 1.5 ma−1), but with the opposite being true un-

der higher rainfall regimes, we investigate here the nature

of this soil water storage − −precipitation interaction using

a simple water balance model as described on pp. 136–138

of Moene and van Dam (2014) with and without a physical

barrier in the upper soil layers.

B1 Model description

The model is constructed by first considering all in- and out-

flowing water amounts, viz.

1W = (P −E−R−D)1t, (B1)

where W is the amount of water stored in the soil column

(m), P denotes the precipitation rate (md−1), E is the evapo-

ration rate (md−1),R is surface runoff (md−1),D is drainage

or deep percolation rate (md−1) and 1t is the considered

time interval (d).

Here the soil is considered as a uniform reservoir of depth

Zt, which can be filled with precipitation and which grad-

ually releases water to the vegetation and the sub-soil. All

precipitation is assumed to infiltrate unless the reservoir is

saturated, in which case surplus precipitation flows away as

surface runoff.

Reduction of potential evaporation EP is assumed to occur

when the soil moisture content drops below a critical value

θC according to

E(θ)= βW(θ)EP with βW =











1 for θC ≤ θ < θS

θ−θW
θC−θW

for θW ≤ θ < θC

0 for θ = θW

,

(B2)

where E denotes the actual evapotranspiration, θ is the soil

reservoir moisture content (m3 m−3), βW is a reduction co-

efficient for transpiration (dimensionless) and θS, θC and θW

are the saturated, critical and wilting point moisture contents

(m3 m−3), respectively.

In the absence of any restriction to vertical water flow, per-

colation is described with free drainage below the soil reser-

voir using a hydraulic conductivity function:

D = kh(θ), (B3)

where kh (mh−1) is the soil hydraulic conductivity, the mois-

ture dependence of which is described here according to the

Brooks and Corey (1964) model as applied to the conduc-

tivity equation of Mualem (1976) by Tomasella and Hodnett

Figure B1. Key temporally varying inputs as used in the simula-

tions (a) potential evapotranspiration (shown as daily totals) and

(b) precipitation (shown as monthly sum).

(1997), viz.

kh = ksat

(

θ − θW

θS − θW

)η

, (B4a)

where ksat is the saturated soil hydraulic conductivity (mh−1)

and η is a function of parameter b in the water release curve

retention mode of Brooks and Corey (1964), denoted herein

as bBC according to

η = η1bBC + η2. (B4b)

To estimate ksat we utilise the Ahuja et al. (1984) gener-

alisation of the Kozeny–Caraman equation as applied by

Tomasella and Hodnett (1997), viz.

ksat = Bφne , (B5)

where φe is the effective porosity of the soil, defined as the

total porosity (φ) minus the water content at a matric poten-

tial (ψ) of −33 kPa, and B and n are fitted parameters.

To relate ψ to θ we used the tropical soil van Genuchten

(VG) pedotransfer function as applied to tropical soil by

Hodnett and Tomasella (2002). The VG function is

θ = θR +
θS − θR

[1 + (α/ψ)a]b
, (B6)
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Table B1. Effect of presence of restricted soil layer on simulated total duration of low aeration (φ > 0.1 m3 m−3) or low soil moisture status

(θ < θC) for the four precipitation scenarios shown in Fig. B1. In all cases the evapotranspiration rate refers to that estimated for a soil

with a restricted layer at 0.3 m depth with the number of days calculated and compared (with in brackets) that predicted to be the case in

simulations giving the same annual evapotranspiration rate but with no restricted layer present: KEN-01∗ is all rainfall events at KEN-01

multiplied by 0.7. (see text)

Weather site Precipitation Evapotranspiration Days Days

station (ma−1) (ma−1) (φ > 0.1 m3 m−3) (θ < θC)

TUC-01 0.54 0.52 0(0) 342(350)

KEN-01∗ 1.01 0.71 28(0) 284(303)

KEN-01 1.51 0.87 94(0) 248(285)

TAP-04 2.15 1.51 62(0) 168(215)

where θR is the “residual” water content and α, a and b

are empirical constants (for which b is generally taken to

be equal to 1 − 1/a). To avoid confusion with the Brooks

and Corey (BC) equation (whose parameters are used in

Eq. B4b), we hereafter denote a and b of Eq. (B6) as aVG

and bVG also noting the numerical equivalences between the

parameters of these two different equations (Morel-Seytoux

et al., 1996).

To define the required parameters for the running of the

model, we first must specify a specific soil type; the one

chosen here being the soil below the stunted forest at TUC-

01; a silty loam at the driest end of the transect. On the ba-

sis of that texture classification, the five parameter values of

the pedotransfer functions of Hodnett and Tomasella (2002)

were obtained, these being α = 0.191 kPa−1, aVG = 1.644,

bVG = 0.391, θR = 0.223 m3 m−3 and θS = 0.601 m3 m−3.

Soil water content at field capacity θFC was then estimated

using Eq. (B6) with ψ = −33 kPa yielding a value of θR =

0.336 m3 m−3. This then allowed φe (Eq. B5) to be estimated

according to (Shukla, 2013)

φe = 1 −
ρ

2.65
− θFC, (B7)

with ρ being the measured average soil bulk density

(1.47 gcm−3) and 2.65 representing a (default) soil parti-

cle density. To obtain values of B and n for inclusion into

Eq. (B5), we took the values obtained by Tomasella and

Hodnett (1997) as derived from a regression of log(ksat) on

log(φe) across a range of tropical soil types, viz. B = 56 540

and n= 4.5359 yielding ksat = 26.40 mm h−1. The soil mois-

ture dependence of the soil hydraulic conductivity was then

estimated through Eq. (B4), with η1 = 3.701 and η2 = 1.843

as suggested by Tomasella and Hodnett (1997), this with

bBC = 0.644 then yielding η = 4.89.

To obtain an estimate of βW in Eq. (B2), we took θW = θR
and θW = 0.3θFC∗ (Dunin and Aston, 1984) where θFC∗ is

a slightly modified field capacity to that used in Eq. (B7),

being taken at ψ = −10 kPa (Moene and van Dam, 2014),

this then yielding θFC∗ = 0.445 m3 m−3.
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B2 Driving variables and model progression

To drive the model, we first used meteorological data col-

lected as part of a study into Amazon forest productivity

at the dry margin of the Amazon Basin in Bolivia (Araujo-

Murakami et al., 2014; Doughty et al., 2014). We took data

from the first year of measurements and estimated on a half-

hourly basis values of EP for input into Eq. (B2) according

to the FAO Penman method (Allen et al., 1998), viz.

EP =
0.408(Rn −G)+ γ 900

TK
u2(es − ea)

1+ γ (1 + 0.34u2)
, (B8)

where EP is the reference (potential) evapotranspira-

tion (mm d−1), Rn is the net radiation at the crop

surface (MJm−2 d−1), G is the soil heat flux density

(MJm−2 day−1), TK is the mean daily air temperature

at 2 m height (K), u is the wind speed at 2 m height

(ms−1), es is the saturation vapour pressure (kPa), e is ac-

tual vapour pressure (kPa), 1 is the slope of the vapour

pressure/temperature curve (kPa ◦C−1) and γ is the psycho-

metric constant (kPa ◦C−1).

Even with measurements of incoming solar radiation, Q,

neitherRn norG had been directly determined at the KEN-01

site. By estimating the (Rn −G) term in Eq. (B8), we there-

fore made the simple assumption that G= 0.1Rn (Moene

and van Dam, 2014) as well as assuming Rn = 0.8Q (Mi-

randa et al., 1997). On a half-hourly basis (the resolution

of the provided meteorological data) the estimation of EP

then allowed for an estimate of the change of soil moisture

with time in the absence a relatively impenetrable layer to be

made, viz.

dθ

dt
=

1

Zr

[

P −βEP − ksat

(

θ − θW

θS − θW

)η]

. (B9)

To simulate the effects of an impenetrable layer, the ksat term

in Eq. (B9) above was set to 1.0 mm s−1; a value in the range

of those reported for an almost totally impermeable layer

in the sub-soil of an Amazon Plinthosol (de Moraes et al.,

2006).

We then undertook two sets of analyses with water sup-

ply and demand as described as above, but with varying ksat.

For both scenarios simulations were undertaken for a range

of soil depths by repeated model runs with the effective root-

ing depth Zr increasing from 0.08 to 2.40 m in 10 mm incre-

ments.

As well as being evaluated at the KEN-01, we also

investigated the effect of different precipitation regimes

through substitution of the KEN-01 precipitation values

(PA = 1.51 ma−1) with the hourly record of a site close to

TUC-01 and made in an apparently very dry year (Steininger

et al., 2013) (PA = 0.54 ma−1) and the wettest year of an

hourly 6-year record from a site in the Amazon forest region

proper (TAP-04), as provided by Kim et al. (2012) (PA =

2.15 ma−1). Providing a fourth (so as to provide a series of

precipitation regimes in approximately 0.5 m increments) we

also generated an artificial regime of PA = 1.1 ma−1 by sim-

ply multiplying each KEN-01 precipitation event by 0.7.

Figure A1 shows the seasonality of these four precipitation

patterns are shown along with the simulated potential evap-

oration rate (as obtained using input radiation, wind speed,

temperature and humidity data from KEN-01 and held as in-

variant across all four sites).
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Figure B2. Simulated effects of the presence or absence or impermeable layer on soil water budgets across a range of rooting soil depths as

affected by the precipitation regimes (PA) of Fig. B1b. (a) PA = TUC-01, (b) PA = 0.7KEN-01, (c) PA = KEN-01 and (d) PA = TAP-04. In

all cases the main y axis has been scaled with a maximum value equal to the mean annual precipitation at TAP-04 (PA = 2.15 ma−1). Insets

in (a–c) show same data, but with the y axis according to PA at the site in question. Shown are model predictions for evapotranspiration (E),

drainage (D) and runoff (R) as (1) a function of rooting depth where for the restricted case maximum rooting depth (Zmax) is assumed to be

restricted by an impermeable layer at the same depth (“restricted” case) and (2) where there is no imposed restriction on Zmax (“unrestricted”

case).
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B3 Simulation results

Figure B2 shows the simulated dependencies of all water

fluxes into and out of the soil according to the model as de-

pendent on the rooting depth (Zr), where for the “restricted”

case it is assumed that an impermeable layer constrains the

depth to which the supported vegetation can extract water. In

the case of “unrestricted” rooting, free drainage is allowed to

occur below Zr, which then reflects – in some sort of crude

way – the ecological strategy of the vegetation above in terms

of its below-ground carbon investment directed towards wa-

ter acquisition.

Starting with the lowest precipitation regime (Fig. B2a:

TUC-01), it can clearly be seen that in neither case is ex-

tending Zr& 0.8m likely to be of any profit for the vegetation

(with both drainage and runoff being zero beyond this value).

The water flux through evapotranspiration does, however, in-

crease with Zr up until around 0.6 m, but with a far more

rapid increase inE with Zr occurring for Zr& 0.2m in the re-

stricted case. This can be seen because of much less drainage

than the unrestricted case at low Zr; something which is only

offset to a minor degree by the marginally increased runoff.

At the ca. 100 % higher precipitation regime of Fig. B2b,

very different patterns emerge with an increase in E with Zr

up until at least 2.4 m in both cases. Though with this depen-

dency in both cases distinctly non-linear and, for the lowest

rainfall regime, with the restricted case showing a much more

rapid rise in vegetation water use as rooting depth increases

up until about 0.25 m and, at any given Zr, always with high

E predicted for the restricted vs. unrestricted case. The lat-

ter effect can be attributed to the reduction in drainage asso-

ciated with the impeded layer being less than offset by the

higher runoff.

A broadly similar pattern is observed at a higher rainfall

of about 1.5 ma−1 (KEN-01: Fig. B2c) though here drainage

fluxes for the restricted case show a different pattern: first

increasing then decreasing with increased Zr. This can be

regarded as a consequence of R declining faster than E as

the restricted layer depth decreases; the implication being

that of the extra water infiltrating the soil as rooting depth

increases at lower Zr, only some of it can be used by the

vegetation above, the rest necessarily going as drainage. Be-

yondZr
∼= 0.6 m – this also being the minimum soil depth for

which R is modelled to be zero – the expected decline in D

with increased Zr occurs, this being complemented entirely

by increased E.

Under the highest examined precipitation regime of TAP-

04 (P = 2.15 ma−1), a broadly similar pattern to KEN-01

is observed, but with the more rapid increase in E with Zr in

the restricted case now extending to about 0.6 m. Beyond this

depth, there is simulated to be little effect of the higher pre-

cipitation regime onD for either the restricted or unrestricted

cases as compared to KEN-01, with all the extra rainfall be-

ing utilised by the vegetation in both cases (Fig. B2d).

Figure B3. Simulated soil water budget components as affected by

the presence of an impermeable layer at KEN-01. (a) Precipitation,

(b) drainage and runoff, (c) ecosystem transpiration and (d) soil wa-

ter content. Solid lines: impermeable layer at 0.3 m depth. Dashed

lines: with the same annual evaporation; but with no barrier to ver-

tical water flow (rooting depth of 0.7 m). Red bar in (b) shows sim-

ulated daily runoff totals (impermeable layer only). Also shown in

(d) are the prescribed minimum (critical) soil water content for plant

water uptake (θc) and field capacity (θc).

Overall, Fig. B2 suggests that, according to these simula-

tions at least – as hypothesised – a restricted root zone may

be beneficial in at least some situations – at least when com-

pared to the unrestricted case at the same Zr. Yet, it is also

important to bear in mind that when compared at the sameE,

there are very different temporal patterns for the two cases

examined here. This is shown in Table B1, where for each of

the four precipitation regimes examined in Fig. B2, we have

calculated both the numbers of days at which θ < θC (indi-

cating some degree of simulated effect of soil water deficit

on E as modulated by the βW term in Eq. B2) and those for

which the air filled porosity (φ) was modelled as being less

than 0.1 m3 m−3, this being one general indicator of poten-

tially waterlogged conditions (Wesseling et al., 1957). Here

for each PA regime, the unrestricted–restricted comparison is
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at the same simulated E as that found for the restricted case

with Zr = 0.3 m. For all four PA, the equivalent Zr for the

unrestricted case is just over 0.7 m.

This shows that for all four PA regimes there are no sim-

ulated indications of any water logging in the well-drained

case but with up to 3 months of unfavourable conditions of

soil aeration predicted with a restricted layer present. On the

other hand, time spent under conditions of some sort of soil

water deficit is reduced by the presence of the restricting

layer with differences of nearly 50 days under the highest

TAP-04 rainfall regime examined.

This effect is probed further in Fig. B3 where the simulated

annual patterns (daily values) of P , R,D, E and θ are shown

for KEN-01 with the yearly total evapotranspiration in both

cases equal to the Zr = 0.3m restricted case. Here the higher

runoff of the restricted case can be seen, with the unrestricted

soil showing a corresponding lagged drainage response im-

mediately after high precipitation periods (Fig. B3a and b).

This general “buffering” in the absence of any root zone re-

striction is also seen in both the E and θ responses during

periods of soil water depletion or refill (Fig. B3c and d) with,

most noticeably, θ always at a much lower value for the unre-

stricted case – even during the wet season when E is clearly

not limited by soil water availability.
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B4 Caveats

It must be emphasised that in many ways the model applied

here is a crude one. For example – in terms of defects – see

also page 138 of Moene and van Dam (2014):

1. It assumes that runoff occurs only when a soil becomes

saturated; in reality runoff will also occur when the pre-

cipitation flux is higher than the maximum infiltration

flux into the soil. In savannas that bias may potentially

be a large one because of hydrophobicity caused by fire

(DeBano, 2000); furthermore, this is also the case for

more strongly seasonal environments with extreme dry–

wetting events: the limited rapid infiltration of water

into very dry soils being especially an issue for soils of

a relatively abundant clay content (Shukla, 2013; Moene

and van Dam, 2014).

2. The critical moisture content θC is merely an assumed

one, defined on the basis of one Australian study (Dunin

and Aston, 1984). Most likely it would also vary ac-

cording to variations in Zr and in response to the pres-

ence/absence of any restrictive layer (Guswa, 2010).

3. Likewise in both cases we have assumed that βW (a di-

mensionless coefficient relating E to EP – see Eq. B2)

is dependent only upon the soil water content. In prac-

tice it will vary with other factors, such as leaf area in-

dex, which also vary seasonally, therefore giving rise to

a more linear E vs. θ relationship than that prescribed

here (Quesada et al., 2008). As an example, with the re-

strictedZr = 0.3 m soil most likely supporting a decidu-

ous forest under KEN-01 conditions (Torello-Raventos

et al., 2013), the simulated out of season vegetation wa-

ter uptake around day 150 would be most unlikely to

actually occur due to an absence of leaves. It might also

be expected that if Zr is restricted, the supported veg-

etation would have a more aggressive water use strat-

egy than would otherwise be the case, therefore deplet-

ing the root zone more quickly – subsequently creating

space to absorb the next rain(s) (Guswa, 2010).

4. Any evaporation direct from the soil surface has been

ignored.

5. Vertical variations in root distributions have not been

accounted for.

6. Capillary rise has not been considered.

7. The simulated pattern in EP comes from a single site

(KEN-01). Thus, for example, anti-correlations between

precipitation amount and potential evaporation rates

(due to reduced radiation inputs and low vapour pres-

sure deficits on wetter, cloudy days) have been broken

for the TUC-01 and TAP-04 simulations.

Nevertheless, whilst the above means that little emphasis

should be placed on the precise nature of the various indi-

vidual predictions, the general principles as established by

the simulations still remain valid.
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The Supplement related to this article is available online

at doi:10.5194/bg-12-6529-2015-supplement.
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