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Abstract
Magnetic levitation of miniaturized objects is investigated in this paper.
A magnetic levitation setup is built to implement one-dimensional magnetic
levitation motion. It was observed that as the levitated object becomes
smaller, magnetic levitation suffers more from undesired vibrations. As a
solution, eddy current damping is offered and implemented successfully by
placing conductive plates close to the levitated object. An analytical
expression for damping coefficient is derived. Experimentally, it is shown
that eddy current damping can reduce the RMS positioning error to the level
of more than one third of its original value for a 0.386 g object levitated in
an air-gap region of 290 mm. The proposed system has the potential to be
used for micro-manipulation purposes in a high motion range of 39.8 mm.

1. Introduction

There has been a great deal of research on micro-manipulation
and micro-positioning using magnetic principles. Magnetic
levitation is a promising technology which can be applied
for such applications, since it does not use long-reached and
jointed parts. Therefore, wear and maintenance problems
caused by friction are completely eliminated. Magnetic
levitation has uses in teleoperation [1–3], micro-positioning
stages [4–7], magnetic bearings [8, 9] and micro-electronic
fabrication [10–12]. Although, magnetic levitation systems
realized up to now can achieve micro-accuracy, the levitated
structures are in macro scale.

In 2002, Morita et al [13] introduced a micro-levitation
system that levitates a small iron ball of 2 mm in a range
of 40 µm. The system balances the weight of the ball by
utilizing motion control of the levitation unit which carries
a permanent magnet. The distance between the levitated
object and the assembled permanent magnet is controlled to
equate the attractive force to the weight of the levitating object.
Although magnetic levitation of the ball in one degree of
freedom (1-DOF) is achieved, experimental results indicate
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that the ball experienced high vibrations. Also, the motion
range of this setup is limited with the stroke of the piezoelectric
actuator which is on the order of microns.

In this work, we propose using a macroscopic magnetic
drive unit for high-precision levitation of micro-objects. The
system allows positioning of an object in a large air-gap by
controlling the magnetic field generated by electromagnets.
The motivation behind this study is that, due to non-contact
manipulation, magnetic levitation eliminates friction and
adhesion forces which are the two dominant forces in micro-
scale. In addition, since the power required for motion is
generated by the magnetic drive unit, the levitated device
itself does not require to carry any power source or controller.
This allows reducing the dimensions and complexity of the
levitated object. Therefore, it is possible to realize a levitating
micro-electro-mechanical system (MEMS) that can achieve
numerous tasks using the proposed technology. Since such
a device has the ability to combine sensing, processing
and actuation on a single structure, it can be applicable to
micro-assembly and micro-manipulation tasks in hazardous
environments and portable clean room applications.

Towards the goal of micro-levitation, magnetic levitation
experiments of mm-sized NdFeB (Neodymium Iron Boron)
permanent magnets are presented. Similar to Morita’s results
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Figure 1. Schematic of magnetic levitation system.

[13], it was observed that magnetic levitation suffers from
high vibrations due to contactless motion and low environment
stiffness. In addition, it was observed that undesired vibrations
increase for magnetic levitation as the object size gets smaller.
Therefore, vibration is a big challenge to overcome for micro-
levitation studies.

Teshima et al [14] suggested eddy current damp-
ing (magnetic damping) in order to damp vibrations in a
superconducting levitation system; however, the discussion
was mostly based on experimental work. A damping coef-
ficient was determined from the experimental measurement of
dynamic stiffness of the system. In fact, eddy current damp-
ing is the optimum way of adding extra damping to levita-
tion systems because of its non-contact nature. Moreover,
eddy current damping does not affect the controller algorithm
or the complexity of the system and does not degrade over
time [15].

Although the studies related to eddy currents go back
to Maxwell [16], the problem of eddy currents in bounded
conductors was first discussed by Jeans using the image method
[17]. Smythe [18] solved the same problem in a more practical
way and his results were used by Davis and Reitz [20] to explain
the eddy currents in bounded conductors and to calculate
the forces applied by the eddy currents to a magnet nearby.
Saslow [19] provided a fine explanation of Maxwell’s eddy
current theory as well as some examples of the effects of eddy
current and an overlook to Jeans’s studies. Various studies
followed these pioneers that discuss braking and damping
effects of eddy currents [21–24]. In this study, eddy current
damping is employed for a magnetic levitation system to
improve the levitation precision of miniaturized objects and
a damping coefficient is derived to quantify the damping
effect.

This paper is organized as follows. Section 2 explains
the magnetic levitation system and the controller algorithm.
Experimental results of levitation of various permanent
magnets are presented in section 3. In section 4, eddy current
damping is introduced to the system and derivation of a
damping coefficient is described. In section 5, the performance
of the proposed damping mechanism is evaluated based on the
levitation experiments.

2. Magnetic levitation system

The schematic of the magnetic levitation system is shown in
figure 1. The set-up consists of a controller, a CCD laser line
displacement sensor, an iron yoke and seven electromagnets
connected with a pole piece. Since the vertical motion of
the object is examined, the laser sensor measures the ẑ-axis
position only. The 0.2–40 mm measuring range of the laser
sensor results in a motion range of 39.8 mm for the levitated
object. The position feedback is provided at every 5 ms. The
real-time controller communicates to the system through 16-bit
A/D and 16-bit D/A converters with operating ranges of ±5 V
and ±10 V, respectively. A host computer with a graphical
user interface is used to gain access to the system.

The levitation system uses a proportional derivative
closed-loop controller. The position of the levitated object
is continuously detected by the laser sensor and sampled
by the A/D converter. Based on the position data, the
velocity of the object is calculated by a difference equation.
Multiplying the position and the velocity with controller gains,
the current that needs to be applied to the electromagnets
is determined. Since the same current is applied to all
electromagnets, the object moves along the central axis of
the air-gap. The controller is designed by a state feedback
controller design approach. For 1-DOF levitation, the
governing equation of motion can be written as

m
d2z

dt2
= Flev − mg, (1)

where m is the mass of the levitated object, g is the gravitational
acceleration and Flev is the ẑ component of the levitation force
applied by the magnetic drive unit. For a permanent magnet
that has a net dipole moment of p0 in ẑ direction, the vertical
levitation force can be expressed as [25]

Flev = p0
∂Bz

∂z
, (2)

where Bz is the vertical magnetic flux density generated by
the levitation system. Due to the effect of yoke and pole
piece, obtaining a formula for magnetic flux density is very
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Figure 2. Picture of the levitation system.

challenging. Therefore, in a previous study of the authors, an
experimental method was followed to derive a formula for the
levitation force to be [26]

Flev = αIz + βI, (3)

where α and β are fitting constants, I is the current applied to
the electromagnets and z is the distance between the object
and the pole piece. Substituting equation (3) into (1), the
differential equation of the system is derived as

m
d2z

dt2
= αIz + βI − mg. (4)

The state variables are chosen as position (z = x1) and
velocity ((dz/dt) = x2) of the levitating object. Defining
the input of the system as the current (I ) applied to the
electromagnets, state equations of the system can be obtained
as shown below

dx1

dt
= x2, (5)

dx2

dt
= α

m
Ix1 +

β

m
I − g. (6)

By linearizing the system around multiple working points
(I0, z0) using Lagrange’s method, the state matrices can be
found as

X =
[

x1

x2

]
, U = I,

dX

dt
= AX + BU, (7)

A =
[

0 1
α
m

I0 0

]
, B =

[
0

α
m

z0 + β

m

]
. (8)

Using a proportional derivative control strategy, the current can
be determined by

I = I0 − [K1(x1 − z0) + K2x2], (9)

where K1 and K2 are the feedback gains determined by pole
placement.

3. Levitation of NdFeB magnets

To test the capability of the system for levitation of small
magnets, various permanent magnets were levitated. The
picture of the experimental set-up is shown in figure 2. The

Table 1. Magnet properties and experimental RMS position error.

(a) (b) (c) (d)

Magnet weight (mg) 5950 757 386 140
Radius (mm) ×

thickness (mm) 5 × 10 2.5 × 5 2.5 × 2.5 2 × 1.5
RMS error for 22.58 32.75 55.90 50.42
z = −0.084 m (µm)

RMS error for 19.07 43.55 78.25 134.77
z = −0.083 m (µm)

Average RMS error (µm) 20.83 38.15 67.08 92.60

experiments were carried out with different sizes of cylindrical
NdFeB magnets. The weights and the dimensions of the
magnets are summarized in table 1. Step inputs were applied to
the system as reference for the levitated object to follow (shown
as dashed lines in figure 3). For each magnet, feedback gains
were recalculated (K1, K2) and fine-tuned experimentally to
obtain the best possible performance.

The experimental results are illustrated in figure 3. It
is observed that when the levitated object size is decreased,
less precision is obtained. The RMS position errors for each
experiment are calculated (table 1)1. The overshoot due to
the step input and noise cause smaller objects to experience
higher vibrations around the reference position. The average
position error is 20.83 µm for the largest magnet while it is
92.60 µm for the smallest one. Therefore, the levitation of
small objects suffers from the low environment stiffness and
requires a damping mechanism.

The drastic increase in the positioning error for small
objects might be because of the increasing effect of noise on
a smaller object. Due to the scaling laws, the electrostatic
force becomes dominant in micro-scale, while gravitational
force loses significance. Therefore, electrostatic noise in the
environment is more effective on a smaller object. Also,
any inherent noise in the system, which can be caused by
measurement noise and conversion errors is more disturbing
for a smaller object. In addition, air drag force which is
neglected in the dynamic equation of motion in the controller
design is more significant for a smaller object. The air drag
force is scaled down by two (proportional to surface area) while
the mass of the system is scaled by three (proportional to
volume) resulting in a larger acceleration due to a = F/m.
All these factors contribute to the larger deflection in the
positioning of small objects.

4. Eddy current damping

Because of non-contact motion and low environment stiffness,
an additional mechanism is required to suppress the
oscillations of the levitated object. The authors propose
an eddy current damping mechanism (magnetic damping)
to improve the precision of motion because of its ease of
employment and contactless operation. In addition, eddy
current damping does not require a change in the controller
algorithm or does not increase the cost or complexity of the
system. In this section, a quantitative analysis of magnetic
damping is presented that forms the guidelines of optimum
eddy current damper design for magnetic levitation systems.

1 RMS error is calculated starting from the second crossing of the position
data with the reference input, so the first overshoot is not taken into account.
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Figure 3. Step responses of cylindrical objects with different dimensions (radius × thickness): (a) 5 mm × 10 mm, (b) 2.5 mm × 5 mm,
(c) 2.5 mm × 2.5 mm, (d) 2 mm × 1.5 mm.

Eddy current damping can be introduced to the system
by placing non-ferromagnetic (aluminium, copper, bronze,
brass, etc) plates underneath the levitated object. Since
levitated objects are cylindrical, disc-shaped plates are used
that simplifies the analytical calculation of flux passing through
the plate to a great extent. The 6061-Al disc is placed on a glass
stand, below the working domain of the magnet (figure 1).

During the oscillations of the levitated object, a changing
magnetic field is generated in the air-gap region. The time-
varying magnetic field has two sources: (1) The change in the
field generated by the electromagnets (when the position of the
object changes, the controller adjusts the currents supplied to
the electromagnets); (2) The self-magnetic field of the moving
permanent magnet. If a conductor is placed in the varying
field, circulating eddy currents are formed. The direction of
the current is such that magnetic field generated by this eddy
current opposes the change in the field itself. Consequently,
the conductor serves as a damper to the levitating magnet.

The experimental results presented in section 3 reveals
that small objects have an oscillatory motion of levitation.
Therefore, the magnetic flux in the vicinity of the object
oscillates, as well.

In order to calculate the damping coefficient, flux
penetrating the Al-disc should be determined. The magnetic
flux has two components: �em and �pm that are the fluxes
generated by the electromagnets and the permanent magnet,

Figure 4. Oscillatory motion of the permanent magnet above the
circular plate.

respectively. Although �pm can easily be calculated,
calculation of �em is quite complicated because of the effect
of the pole piece that connects the electromagnets. Therefore,
oscillatory motion of the object is approximated by a sine
function as illustrated in figure 4. For simplicity, flux
penetrating the disc can be expressed as

�(t) = �ref − �1 sin(2πf t), (10)
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where �ref is the flux penetrating the disc when the magnet
is at reference position and f is the frequency of oscillation.
Therefore, the flux penetration when the magnet moves to the
lower peak position becomes �ref + �1 (figure 4). Then �1

can be written as

�1 = �peak − �ref , (11)

where �peak is the flux penetration for the magnet’s lower peak
position. The flux penetration through the plate due to the
permanent magnet can easily be calculated when a circular
plate is used. In spherical coordinates, magnetic flux density
of the permanent magnet can be written as [27]

B = µ0

4π
p0

(
r̂

2 cos θ

r3
+ θ̂

sin θ

r3

)
, (12)

where p0 is the dipole moment of the magnet and θ is the angle
from the central axis. Flux passing through the plate is equal
to the flux passing through the outer surface of the semi-sphere
shown as the dashed line in figure 4. Then penetrating flux can
be found as

�pm =
∫

B · ds =
∫

sph
B · r̂ds

=
∫ cos−1 z′√

z′2+r2

0

∫ 2π

0
Brr

2 sin θ dφdθ (13)

= µ0

2
p0

r2

(r2 + z′2)3/2
,

where z′ is the object-disc distance and r is the radius of the
disc.

Equation (11) can be decomposed into components from
the permanent magnet (pm) and the electromagnets (em):

�1 = (�pm,peak + �em,peak) − (�pm,ref + �em,ref). (14)

Then, using equation (13), �peak and �ref take the
following forms:

�peak = µ0

2
p0

r2

(r2 + (z′ − h)2)3/2
+ �em,peak, (15)

�ref = µ0

2
p0

r2

(r2 + z′2)3/2
+ �em,ref . (16)

Substituting equations (15) and (16) into (14), the
analytical expression for �1 can be obtained as

�1 = µ0

2
p0

[
r2

(r2 + (z′ − h)2)3/2
− r2

(r2 + z′2)3/2

]
+ ��em.

(17)
Obtaining an expression for �1 suffices to derive a damping
coefficient since the �0 component in equation (10) does not
have a time dependence and does not contribute to the varying
magnetic field.

Representing the conducting disc as N turns of wire and
using equation (10), the induced electromotive force in the
conductor can easily be found as

Vind = −N
d�

dt
= N2πf �1 cos(2πf t). (18)

Figure 5. The effect of disc radius and disc–object distance on
damping coefficient. h = 0.2 mm.

(This figure is in colour only in the electronic version)

Then the average power dissipation in the conductor can be
calculated as

Pavg = 1

T

∫ t0+T

t0

V 2
ind

R
dt = (N2πf �1)

2

2R
, (19)

where T = 1/f is the period of the motion and R is the
resistance of the path that eddy currents travel.

Denoting the force causing the vibrations as F and
assuming that the magnet moves with an average speed of v

during oscillations, the power dissipation can be written as

Pavg = Fv. (20)

The frequency of vibration is found as f = v/(2h) using the
maximum deflection during oscillation which is denoted as h

in figure 4. Then equation (19) takes the form

Pavg = (N2π�1)
2

2R
·
( v

2h

)2
= (Nπ�1v)2

2Rh2
. (21)

Substituting equation (21) into (20) yields

F = (Nπ�1)
2

2Rh2
v. (22)

Using the relationship between the force and velocity, F = cv,
it is now possible to write the damping coefficient as follows:

c = (Nπ�1)
2

2Rh2
. (23)

To investigate the optimum damping, this damping
coefficient should be expressed as a function of plate
parameters. For that purpose N can be written as

N = dr

a
, (24)

where d is the disc thickness, r is the disc radius and a is the
cross-sectional area of the current pathway. The resistance of
the path of current can be calculated by

R = l

σa
, (25)
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Figure 6. Step responses of 2.5 mm × 2.5 mm magnet with/without eddy current dampers: (a) no damper, (b) 19 mm × 4.5 mm disc,
(c) 19 mm × 9 mm disc, (d) 51 mm × 9 mm disc.

where l = N2π r
2 = Nπr . Substituting equation (25) into

(23), the damping coefficient can be found as

c = dπσ�2
1

2h2
. (26)

Equation (26) indicates that damping introduced by the
disc is proportional to the disc thickness and conductivity.
However, it should be emphasized that eddy currents penetrate
up to a certain depth from the surface of the disc, which is given
by the penetration depth. Therefore, it is expected to observe
a saturation of the damping, if the disc thickness is increased
further than the standard penetration depth.

The other two parameters that affect the damping
coefficient are the disc radius (r) and disc-object distance
(z′) which are the variables that change �1 in equation (26).
Intuitively, disc radius (r) should have a similar effect on
damping as the disc thickness (d), i.e. increasing disc radius
should increase the damping. However, when the disc is
placed close to the magnet, a larger disc will cut through more
returning flux (flux with a positive ẑ component) and there will
be a decrease in the net flux penetrating the disc, resulting in a
smaller damping.

The relationship between the damping coefficient and
the disc radius can be investigated by using equation (17).
Figure 5 illustrates the term in square brackets in equation (17),

plotted for a certain deflection from the reference position
(h). ��em is not included, since there is not an analytical
expression for the magnetic field generated by the magnetic
drive unit that consists of electromagnets, pole piece and a
returning yoke. However, due to the effect of the returning
yoke, electromagnets generate a uniform magnetic field in
the motion range of interest. Therefore, ��em has a linear
effect on the plot in figure 5, which would simply shift
the curve up for increasing disc radius without affecting the
observed behaviour. The plot indicates that up to a certain
limit, increasing disc radius increases the damping effect.
Although a further increase in radius increases the ��em

term in equation (17), the change in damping will not be as
significant because of the decrease observed in the plot. The
critical radius for which damping is maximized (around 10 mm
in figure 5), is a function of maximum deflection (h) and disc-
object distance (z′). Therefore, to maximize the damping
effect, damper dimensions and location should be set using
equation (17).

5. Levitation of NdFeB magnets with damping

The proposed mechanism was applied to the levitation of the
magnet with 2.5 mm radius and 2.5 mm height. In section 3, it
was demonstrated that this magnet experiences large vibrations
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Table 2. Disc dimensions and RMS position error with damping.

(a) (b) (c)

Plate radius (mm) × thickness (mm) 19 × 4.5 19 × 9 51 × 9
RMS error for z = −0.084 m (µm) 42.69 22.10 20.16
RMS error for z = −0.083 m (µm) 45.89 22.72 20.44
Average RMS error (µm) 44.29 22.41 20.30

during levitation. To observe the effect of eddy current,
levitation of the same magnet was carried out with eddy current
damping in this section. Three Al-6061 discs were prepared
with different radii and thicknesses as specified in table 2. The
same reference input was given to the system while the discs
were placed as dampers. For all experiments, the discs were
kept at z = −0.090 m which resulted in a maximum disc-
object distance of 7 mm.

For comparison, the experimental results without damping
and with different dampers are illustrated in figure 6. The
experiments confirm that eddy current damping is very
effective in suppressing vibrations. Even the smallest disc
(19 mm × 4.5 mm) improved the levitation performance
significantly (figure 6(b)). It was observed that as the
disc thickness increased, higher precision was achieved
(figure 6(c)). In addition, as equation (17) implies, increasing
the disc radius from 19 to 51 mm did not result in a significant
change in precision. The RMS error decreased from 22.41 to
20.30 µm (figures 6(c) and (d)) due to the behaviour plotted in
figure 5.

Using a two-step input allowed one to observe the effect of
disc-object distance on damping, as well. The disc was located
at z = −0.090 m. When the object was levitated from −0.084
to −0.083 m, the disc distance increased from 6 to 7 mm.
The RMS position errors for each height were calculated
separately. Although, it is hard to observe the difference with
the naked eye, table 2 indicates the slight increase in error for
z = −0.083 m compared with z = −0.084 m. Therefore, the
damping effect decreases and larger vibrations are observed
when disc-object distance increases as illustrated in figure 5.

6. Conclusion

In this paper, the issues of downscaling in magnetic
levitation—particularly damping of oscillations is discussed.
Levitation of tiny magnets of various sizes was demonstrated
towards the goal of micro-levitation. It is observed that when
the size of the levitated object decreases, less precision is
achieved. Eddy current damping was proposed to improve
the performance of levitation of miniaturized objects without
a need to change the controller algorithm. Aluminium discs
were placed underneath the levitated object to generate the
eddy currents. To quantify the damping effect, a damping
coefficient was derived by modelling the disc as multiple turns
of coil. It was shown that damping can be optimized by varying

the radius, thickness, conductivity of the disc and the distance
between the disc and levitating object. The experiments
with the damping mechanism verified that excessive energy
that causes vibrations is dissipated as eddy currents in the
disc. The proposed system has the capability of levitating
a 2.5 mm × 2.5 mm magnet in a motion range of 39.8 mm in a
290 mm air-gap. As future work, a 3D controller algorithm
will be developed that will realize a system for potential
applications in micro-positioning and micro-manipulation.
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