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Synopsis

The need for an adequate method to account for eddy currents in
magnetic materials has been apparent for some time, especially since the
development of high quality magnetic amplifiers. This paper correlates
existing theories of eddy currents in saturated iron. 1In particular an
apprcach originally suggested by A. G. Ganz is treated in a comprehensive

[ ]
+ . .
mathematical analysis based on classical fiesld theory.

This approach seems well suited to account for the influence of eddy
currents upon the transfer characteristics of magnetic amplifiers using
"sharp" core materials. It is shown that the msthod is useful also in
more conventional applications, such as inductivz and conductive heating
of solid iron.
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EDDY-CUHRENT PHENOMENA IN FERRO-MAGNETIC MATERIALS

Introduction

Interest in eddy currents in solid iron masses has kept pace with the
development of electromagnetic devices generally. The first problems arose in
the design of eddy current brakes far flywheels. Then the use of iron wire for
telephone lines and iron rails for the supply of power to alternating current
locomotives led to new problems. It was recognized that the saturation of the
iron was an important factor, and many authors have presentel their theories to
take saturation into account. Following the aprearance of Rosenberg's work,
others have made an academic problem of substantiating it or elaborating upon it,
Recently the damping effect of eddy currents in the solid yokes and pole pieces of
direct current machines has become important. Still more recently, it has been
recognized that the saturation effect is important in computing the core losses in
thin steel or alloy sheeis. Representative references in the field are listed in
the bibliography (references 1 to 6).

A new method for computing the effect of saturation has been suggested
by A. G, Ganz (7). The method seems to be a significant dsparture froem other
efforts to account for magnetic non-linearity in iron. Many attempts to handle
the problem mathematically have introduced the non-linearity as a sort of correction
to the linear theory, always keeping in mind that the treatment should reduce to
the linear theory as a special case., An almosi exact parallel can be found in the
various approaches to the non-linear problem of the megnetic amplifier. On the
one hand there is the formulation by fitting some useful function, such as the
hyperbolic sine or a finite power series, to the magnetization curve. On the other
hand, a radically different approach exists in which all resemblance to linear
behavior of the m2gnetic material is discarded. (These various analyses of the
magnetic amplifier are outlined and compared in refcrcnce (8) ).

The point to be made is that any refinement of the linear theory which
attempts to account for non-linearity leads to very cumbersome mathematical
forms. The fresh approach using what might be termed a 1limiting case for a
beginning, may, if carefully applied, lead to a mathematical -formulation even
simpler than in the linear case. This seems to be true of the method suggested
by Ganz., It is the purpcse of this paper to show a logical transition from the
linear theory of eddy currerts in solid media to the method of Ganz, and to show
the applicability of the method in typical problems. Two other theories, those
of Hosenberg and of Barth, will be included for comparieomi

£

near and Limiting Non-Linear Theories

The linear theory will be reviewed by the use of a simple situation.
An infinite half-space with its surface in the x,y plane is excited such that
the total magnetic flux carried in the x direction per unit of width in the y
direction is Ra ¢, 2j«t . There'is no y or z component of flux. The z
direction extends into the material normal to the x,y plane. The permeability
of the material is 4t , its conductivity 1s oo , and the radian frequency is
(w0 « Taking B, the induction, to be the field variable, the field equations
are By = By = 0, and (using MKS units)

2'Bx _ 2B
?}"x =K TEX ()
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The solution is

B.=® B,

where By, a complex number, is thc induction at the surface. The total flux per
unit width is
B. j»t

¢(¢;=/°§x dy = e (3)

e(i“’t ~Jjwpr's) (2)

/ ‘

yjcﬁfll’

Substituting into (2)
('ut ‘\/ SWMOT 3)
Be= G Jjope Brox € ‘ J°F (&)

Expressed in a different form equation (4) becomss

v (B, (et X [T
B=be—1"—e LR £ e
Jwpe

where @ is a real number.

The behavior of By as a function of time and of depth is illustrated in
Figure 1. The upper curve is the total flux @#(t) while the lower curves give
the flux density as a function of time at the various levels, At any instant,
the flux density varies as a damped sinusoid with depth; thus there are alternate
positively and negatively magnetized bands of material. The existence of these
zlternate bands can be seen also by inspecting the time function at various levels.

Now the same situation is analyzed once more, but with the linear
magnetic material being replaced by a material having the non-linear magnetic
characteristic shown in Figure 2, This material is magnetized to saturation if
the field intensity is different from zero, and it is possible to change the flux
density only at H = 0, The statement implies that if the flux density is changing,
H must be zero. However, the converse statement. is not necessarily true; if H
is zero, the flux density is not necessarily changing. Thus it is possible to
have regions within this material where H is zero but where the flux density can
have any constant value less than or equal to the saturation induction, The
particular constant value would depend upon the state in which ths materisl was
left during some previous process,

jmt
The mechanics of supporting a function g{t) = K2 ¢M~x e will
now be investigated. First it will be assumed that H at any point is a periodic
function with fundamental radian frequency ¢ and no average value, If this
finction has zerces only at discrele values of { w ©) wnich are T radians apart,
the corresponiing induction B will be a square wave of period 2w /W and ampli-
tude Bg. On the other hand, & square wave of B at any point can be supported by
a discontinucus function H ( wt), due to the possibility (discussed above) that
B may remain constant when H is zero, Thus it seems reasonable to postulate that
the induction at any point in the material is either constant at some value de~
genc/ling on previous treatment or a square-wave with amplitude Bg and period
T/W.



aming

-—————

-3 -

Inspection of Figure 1 gives some insight as to how the square waves
giving B as a function of time might combine to give a total flux @ (t) which is
sinusoidal., In Figure 1, the induction at any level z is a sine wave versus
time, but whose phase is shifted with respect to the level a:2ve, The next
question is, can a succession of square waves which are phase shifted with re-
spect to one another add to a sine wave? Figure 3 shows a finite group of these
square waves and their instantaneous sum. (The resemblance to the calculation of
the m.m.f. of a distributed winding in a rotating machine is apparent)., If
there are enough square waves, phase-shifted in a particular manner which can
be comprted, a smooth sine wave @ (t) results.

The ccmputation of this phase shift as a function of depth is better
approached by a change of variable, At some instant say ( twt), the induction
above the level z)(Figure 3) is - Bg while below that level it is + Bg, At a
later instant (wt)g the induction above the level z2 has become -Bg while
below z2 it remains —-Bg., . Thus a surface of separation between the two saturated
states has moved from zj to 2z during the interval (t2 - t1). The phase shift
between the square waves of induction at these two levels will be o(t2 - tl)
radians, The distance (23 - 21) that the surface of separation has moved, and
the phase shift W (t, - t7) radians, are both related to the change in flux per
unit width O @ which has occured during that time,

The surface of separation will stop when there is no further need
to "subtract flux" by causing this change to take place. The maximum distance
that this surface travels, beginning-at z = 0, will be the depth of penetration
& . Vhen the surface of separation has reached the depth 3= 2 , the flux
per unit width will be - @ . . The depth of penetration is"

& = ?"—"‘g: (6)

This movement from 3= to = $ has occurred in a half cycle, since the
flux per unit width has been changed from ¢mﬁ§ to —fpax. Thus, the phase shift
between square square waves of B versus ( wt) at 3:0 and 3= & is T radians,

The d epth of penetration & 1is seen to be a variable depending on
¢ﬂ‘u’ while in the linear material the depth of penetration is a property of
the material at a given frequency (equation 4). This behavior is expected,
since in the linear material it is possible to increase By mayx if more flux is
required; in the nonli:ear material the induction is limited to Bg, and more
flux can be obtained only if § increases,’

The position of the surface of separation will now be determined as
a function of the flux @#. Let the location of the surfacs be z'. The flux
per unit width contributed when the surface moves from z' to ( 5' + A}' )
changing the state from 4-Bg to - Bg, will be

A(l) = -ZBS Agi (7)
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Passing to the limit l&qb-»c) yields the differential equation for z'

d
L (®
d¢ 285
The integration will be performed beginning at the time when ¢-— +¢mnx
and 3'=0 . (Calculations begun when = — PpaxWould proceed in the
same way wii* change in sign, such that s' is always a positive in-
creasing function.) 'l'hus 5

¢
3'(¢) 233 / -Aé (9)

MAX

/ = ¢Mx ~ ‘b(t)
3 = 28,

The next problem is to compute the phase shift at different depths.
The square wave of B versus ( evt) at any level £ may be expressed by

B(wt) = Bs O(wt-¥) ()

where the symbol " 0 ('X) " represents a periodic function of x which is a
square wave of amplitude 1 and period (2+/d). The angle ¥ is the phass
displacement between the origin of the square wave at depth = and the origin
of the square wave at z = O, so Y/ will bte a function of z. The origin
of the square wave 18 taken at the ceriter of the positive flat portion.

or

(10)

Equation (10) was derived assuming that at time zero, the flux is
a positive maximum and is being decreased. Thus, at time zero all the material
was previously magnetized to -~ Bg induction, and will be changed during the
subsequent half cycle to - B induction. At 2z = O the origin of the square
wave would be located at, Y = — W/2 , since at time zero, that value of
{ wt - ) must be /2 . The further dependence of ¥ upon z can be de-
duced from Equation (10), since when the surface of separation is located
at 3'=3¢ we must have (Wt = ) « /2 at that level. Thus, setting

J(rF)=z Py — b (L)
5= ZBs o

If now = Re ¢nax G“wt is substituted in (12), the relationship between
"P and z for that case is

$ .
3= ‘Ez_mg_: [1_00—3(_2":4.\//)] = 3 [1+ dM\PJ (13)

or

i = 2-%—1 (14)
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 Thus, Y (0)= "‘yz and \41(5)= 1'72 , signifying that the square waves are

phase shifted by a half period cver the depth 5 . For 3>& , that is,
below the depth of penetration, no change in induction occurs.

The results of this ccmputation for B as a function of depth and
time are swmmarized in Figure 4. The same values of @nay and ¢V are used
in Figures 1 and 4, while values of A{ and ¢~ have been chosen s¢ that
the extinction of the field takes place in about the same depth in both cases,
The peak value of induction is seen to be much higher in Figure 1 than in
Figure 4, while the phase shift is larger in Figure 4. The different:.phase
shift might have been anticipated; in the linear case, Figure 1, the contribu-
tion to @ (t) by the lower levels, wherc the phase is advanced, has been re-
duced due to the damping affect. In the non-linear case this gradual damping
does not exist. This comparison also validates the idea of using scuare waves
of flux; the saturetion induction is reached very early in the cycls in Figure
1.

An Intermadiate Thesry

A theory to account for saturation whick is in a sense intermediate
between the linear theory and the limiting non-linear theory has been proposed
by Barth (reference 3). It is assumed that the flux density varies sinusoidally
with time at any level, as in the linear theory, but that the amplitude cf the
sine wave iz Bg at every level (except possibly in that part of the material
which experiences no change in induction). The differential equations of the
field are used as in the linear theory. The field equations become, in MKS units,

Cur"E’:"‘%—;B' div B =0
curl H =I J'—O't

which reduce to the form
A Sy
f divr B =0

— Y} (15)
H= -0 2=
l curl curl >t

—p —
At this point in the linear theory, the relationship B-= ’4 H
is used; to yield the eguations

div B=0 R
9fad dv B - AB = —po ==

v -

(17)

\

which can be reduced to equation (1). However, in the present case, the
transition from equation ?16) to equation (17) cannot be made. Instead,

it is found
div B=0 (18)

T_aH=-052
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Before proceeding., it is necessary to expand equations (18) and interpret them

&ccording to the assumed field distribution.

Again it is assumed that B has only and x-component and this component
varies only with z,_ Therefore divB =0 1is automatically satisfied. I% is now
assumed that B and R are co—linea_x_-’ vectors, aithough they bear no linear re-
laticnship to one another., Thus H has only an x-camponent. By symmetry, it is
assumed that this component varies only with z. In this particular situation,
therefors, div H = O also. The field equations now reduce to

2¢H
L o )—B?‘ (19)
D}z 2t

It is now assumed that H, and B, at any level z are both sinusoidal
tine functions, and that they are in phase., Thus

W swt
Hy=H e!” e’ : (20)
)
Bx = BS e’w e’
where both './d and H are real functions of z. Substituting into sjuaticn (19),
i¥

(21)

4 (Hei?) = jwo Bs e

(These equations neglect the hysteresis effect, while in Barth's original paper
this effect is taken into account by introducing a constant phase difference
l3 between H and B in equation (20).)

On performing the differentiation in equation (21) and equating real
and imaginary parts, the following differential equations are obtained:

- HP?® =0
e . © e (22)
2HY +HY = wo Bs

where the dot signifies differentiation with respect to z. By inspection of
these equations , Barth concluded that H must be parabolic in the variable
34 o) while must be logarithmic in the same variable., The result ob-
tained by Barth is that

(H=h (2
) 4= 2 2. (3) (23)
3, [ 347 Ho

\ ‘ wO‘BS
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where the coordinate z is measured from the level =, inside the material,
positive toward the interface bstween iron and #ir. The field intemsity applied
at the surface is Hy. The flux per unit width turms out to be

. (wt - 'iw\"\/?)
P(t) = 5_., e! (21)

from whick, also,

= /3 b’“"‘" (25)

The Theory of Bosggberg

Rosenberg's tieatment (reference 2) assumes that the flux density is
a sinusoidal fux.tion, without phase shift from layer to layer, and with a con-
stant amplitude B bstween 2z = O and z = a. The amplitude Bygx and the
depth of penetratﬁ a are relatad, howsver, the connecting variable being the
field intensity at the surface Hg; in turn, He and Bysy are related throughk the
saturation curve. The two ressions for & corresponding to equations (23) and
(25) for z, are (in MKS m:xg

[2h
w ¢ Bm&x (26)

a- = %')‘/BM'X

is givern and it is required tofind : s Hy and &, the com-
putation is basegAx on the elimination of a in equations 6)

qux - / ZHp Bma:‘ (27)
wr

The saturation curve relates B ,, to Hy. With ¢ and 6 fixed, ., may be

plotied versus Hy. Thus H, an?imﬁmx may be found, and either of equations (26)
determines a.

Rosenberg noted in the original paper that the two most prominent
agssumptions, that is, that the amplitude of the flux density is constant and
that the phase shift from layer to layer is negligible, introduce compensating
errors in the computation of eddy current loss. Barth found that the inclusion
of phase shift but the omizsion of time harmonies yielde about ths same resultis
a8 the Rosenberg treatment. It will be shown that the Ganz treatment, which
takes both these effects into account, yields higher losses.

Eddy Currents According to the Treatment of Ganz

A basic assumption in Ganz's treatment is that a change in induction
can take place only when H = 0. Therefore, the sum of &ll the fie;d in-

Lansities at the surf

eparat;m between the states -B and '1'03 must ve
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gzere., This statement allows the derivation of a relationship among the flux, the
externally applied field, and the eddy currents.

The field squations which relate the density of eddy currents to the rate
of change of magnetic induction are

J=cE )
Cur'E"' el

\ 2t _
The second of equations (28) says that the electric field intenzity E is every-
where irrotational, because the induction can be only & 1 Bg where Ti_s_the
unit vector in the x-direction. The only possible irrotational vecter E under the
conditions set for the problem is a vector varying in time but not varying with
pesitien at a given instant. To find out what Yis s it is necessary to convert
the second of equations (28) to the integral form, yielding

J- o€
/& T = =2= -r. —
P Ar DtJJ(SB A4S

- —y
where C boundsS and traverses S in the usual counter-clockwise sense.

(29)

rmy

The line integral in sguations (29) will be zero if C lies entirely én
one side of the surface of separation betwsen -By and +B;. However, if C cuts
this surface, then the integral over § 4ill have a time derivative depending upon
the velocity of the surface of separation and the length of ’_the segment common
to both S and the moving surface. Thus a discontinuity in E is expected at the
moving surface,

The integrals in equations (29) are easily evaluated in the particular
example being considered. Since B has only an x-component, the surface T is
taken in the y,z plane. The:surface of separation between states ~By and +Bg
is an x,y plane moving in the z-direction. The segment common to both these
surfaces will be A y meters long. The electric field E will have a y-component
only, which will (at any instant) take constant values above and belew the
surface of separation, with a discontinuity at the surface. The situation is
illustrated in Figure 5.

Let the induction (in the x-direction) be -Bg above the surface and
+ B, belew, with the surface moving at velocity ( d3 /At ) meters/sec. At
time t, let 5 have S area in the region of -By induction and S, area in the
region of + By induction. At time (t + & t) the surface will have moved a
distance (A ’/At)*( O t) meters, so that now there will bs CS,f(d}’/JtXA‘tKAlJﬂ
area in the fegion of -By induction and [ S - [4374t)(at)(84)] area in the
region of 4 Bg induction. The integration in equations (29) becomes

7
c 3 ] Z Bg (dy/dt) (at)(ay)
[._\3 S’AEI(A‘&) - E‘J\ 3’+Aqd\l(6‘3) = At (30)

|

i 4 e At s st
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or

(31)

=2@@'

3 3, 3'eay at

t ‘3""3

Bquation (31) gives the discontinuity in the electric field existing at the
moving surface separating -Bg and +B,.

There can be no electric field beiow the moving surface, for if it
were to exist, energy would be required to sustain th2 resulting eddy currents,
and there is no such energy available. Therefore,

— 47 ——
Ey= 26 5] (0¢3 <3); (B,| o =~ B8)
Eg = O (3I$ 5')
During the succeeding half cycle, Ey reverses si%n, since in that interval the
a

inductien is being changed from -B, to +Bg and 3' /dt ) remains posi-
tive. ’

(32)

The eddy currents flow with uniform density (at any instant) in the
space ( 0 €3, <2’/ ) and there are no eddy currents below the level z'. The

total current confained in the eddy cu ant paths is, by equations (28) and

(32)
LAY
Ie =7 BSO' 5 ﬁ amp/meter (33)

during the half cycle in which the material is being changed frem 4B, to

-B During the follewing half-cycle, I, changes sign. Since the field
in’ensity must be zero at the surfacze betveen -Bg and +Bg4, the applied field
intensity must be the opposite of equation (33), in other words, the applied
field must be - I, amperee per meter.

An expression for the applied field J, can be obtained from
equations (33) and {10); that is, for sinusoidal flux variati on,

4>m-4>ce) 1 dcb

In the present case, g = cos(wt) so that during the half cycle when
¢ proceeds from 4 Byax to - m

-

J.= - wr :mx (1..&,1 w{') sim wt  amp/meter (35)
S
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Equation (35 is similar to Equatio: (9) of reference 6. The wave form of Jg
is repeated during the following half cycle but with reversed sign (it is con-
venient to establish a new time origin each half cycle).

Historical Development of the Non-Linear Treatment

Reosenberg's treatment of eddy current loss in solid iron was the first
attempt of practical value to account for the effect of saturation. I% was
based on an hypothesis which fitted quite well with the overall test results
then known. However, the essential nature of the field problem was not considered,
since Rosenberg neglected both the phase shift in the field fram layer to layer
and the fact that the induction at any depth must have prominent tims harmonics.
Barth made the next step by removing one of these assumptions; his work took the
phase shift into account but stiil neglected the effect of time harmonics., As a
result bothh Rosunberg's and Barth's treatments yield a sinusoidal flux for a
sinusoidal current, which is known to be in error, especially when core materials
are used whose characteristics approach Figure 2, It has been shown here that the
(Ganz treatment takes into account both the phase shift and the time harmomics.
The test results reported by Hale and Richardson (reference 6) confirm its validity.

Applications of the Ganz Treatment

Arplications of this new theory have been restricted so far to the
computation of eddy-current loss in thin sheets (reference 6) and the explanation
of certain effects in pulse transformer cores (reference 7). To illustrate the
versatility of the theory, it will be used in two other problems of continuing
interest., These are the campuiation of losses in solid iron conductors, and the
design of inductive heating apparatus for use on a charge of solid iron,

Losses in Iron Wire

The first problem is to deduce the field configuration within the wire
under the assumptions used by Ganz, The current will flow in the axiel direction,
and the wire will become magnetized in a circumferential sense, Suppcse for the
moment that a steady direct current flows in the wire, The current density will
be uniform, and application of Anpere's law shows that H has a value everywhere
within the wire, being zero at the center only. According to the assumed magnetic
characteristic, the induction will be Bg everywhere within the wire, directed
circumferentially. Now if the direct current is reduced to zero the wire will
remain in this magnetic state.

Next suppose that a dirsct current of oppoesite sign is to be established.
The new steady magnetic state will be at saturation induction, but in the opposite
direction. The change in induction can occur only if H = O, Ampere's law leads
to the conclusion that there must be a circular region within the wire which carries
no current, such that H = 0 at the bcundary of this region; the induction is the old
value of (sa7) -~ Bs in that region, The new current to be established is forced to

flow outside this region. As the new current builds up, the region of - Bg is forced

to shrink toward the center, and after a time complete reversal ¢f the induction
within the wire may be accomplished.

Figure 6 shows the wire, with the boundary between state +Bg and
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- Bg located at r = r'. This moving bcundary causes a change in the flux-
linkage with that part of the wire within the boundary,that is, r < r!,

while the part of the wire in the region r*< r < R sees no cienge in flux
linkage (except the change in the field outside the wire, which is common to
both regions and need not be considered). Since the axial electric field is the
same in both regions, the resistance drop in the region carrying current can be
equated to the drop due to induced e.m.f. in the region carrying no current.

Right-handed cylindrical coordinates are used (Figure 6). At time t,
the surface of separation is located at r = r', The electric field in volts

per meter, Ez,impressed along the element whose area is dS is to be computed,
The flux linkage with that secticn at time t is

M) = -Bg (r'-rs) +Bs (R-r)

;ebers/meter (36)

At time ( €+ At ), the surface has moved to (r' + A r') and the flux
linkage has changed to

A+t = ~B[(rrar) 1] + B, [R-(rear)] vevers/mter (o)

On passing to the limit, it is found that

32 = -26¢ 2—'{ (38)

which is independent of rg. Therefore every element dS within the region
O «r< r sees the same electric ficld impressed, which is

Ey= ~28,%, (0er<r) o

Qutside this region the electric field E, is used up in ohmic drop only.
(Consequently there is no reactive voltage dve to partial flux linkages within

this type of conductor).

The current density in the conducting annulus is

J= -06-28Bs Z‘,Ei (r'< r<R) (40)

The total current being carried by the wire is

(= rJ(R?*-r?) (41)



or
/
. o2 1z2) dr
L(t)=“ZBSTr0-(R"r ) dt (42)
which can be integrated to find the coordinate r' as a function of time:

re B
jR-zw Ber (R%-r'3)dr’ = [ i(dt ”

o

The situation shown in Figure 6 calls for i(t) to be positive, since the
induction is being changed to +B,. If for example i(t) is a sinusoidal
function, then equation (43) would become (0 < wt &1!')

‘§'1TBS G‘{rls—-?) R*r’+2 Rs] = IZ)""‘ (1- cos wot) (44)

Three situations can be recognized in equation (44). First, the
maximum current might not be sufficient to cause the surface of separation
to move all the way to the center. An equivalent «ffect is caused by an
increase in fregquency. Under such conditiona, the depth of penetration will

b 8: R - r:’nin
£< R (45)

which can be computed from equation (44) as

2 :
:23"11' 850" S (3R‘<§) = 21""“" (46)

w

If now there is pronounced skin effect, that is §<< R, the depth of

penetration is
j
/ = (47)
TR Bsw©o

1R

o

which expressed in terms of the maximum apparent surface current density,
ISM): = (_IM,‘ /Z-n R) amperes per meter, is

B g ZISMI\K‘ (l;8)
wo Bs

The second situation which may be identified in equation (44) is
that the current and frequency migit be such that the surface of separation
just reaches the center (r' = 0) at the end of a half cycle. The current
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necessary to cause this condition is found from equation (44):

3
Ty = 5700 B RY amperes 1)

The third situation occurs if the current is so large that r!
beccmes zero before the end of the half cycle; if so, the wire exhibits a con-
stant resistance for the remainder of the half cycle, equal to its d-c re-

sistance,

The effective resistence msy be computed for the case of pronounced
sikin effect ( $ << R ). The loss density as a function of time will be

in general (from equation 41)

(.&) = _J;_ ¢ - ‘-'2 (t) vatts/meter> (50)
N A GiTh
and the loss per meter of length will be

P(t) =
2 /
vo (R*-r"?)
in which r' is a function of time which can be deduced from equation (43).
The result is

watts/meter (51)

pLe) = B T 2
t) = : watts/meter 52
zeRe [ [ iodt |

If the current is a sinusoidal function, .
¥ B w [ At wi ]
3 2 > = tts/meter (53)
P() Im JZTTRO‘ 1.,an£ watts/meter

The average power dissipated in heat over the half cycle will be

~ Tk ’ B L
PM = Imx Bsw . "1‘ f Aw"ze d@ (54)
Z‘\TRU T‘ o ‘,1_0019'

or
Bw = e _Bi‘f_ s 4_@ watts/meter (55)
mox 2r Ro 3w

When this power is expressed in terms of the depth of penctration, as
computed from equation (47), it becomes

~ 12 g 1 (56)
PW = IM e 77 R oo watts/meter
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The effegtive resistance of the iron wire is defired by the expression
Pmr = I geﬂ.' yielding

rras

16 { .y
Re{f = 5; (—-——-—-ﬁ !?80-) onms,/meter (57)

4 conductor whose corss seciion is not circular, such as a rail,
can be treated according to formula (57) if the perimeter of the cross
section is substituted for the quantity 2w R.

The depth of penetration (equation 48) is identical with that
given by Rosenberg. It must be recognized, howsver, that there is a basic .
difference between the field models assumed by Rosenberg and by Ganz. This
difference leads to higher losses computed according to the Ganz treatment,
as will be shown in equation (59). These similarities and differences will

now be examined.

Rosenberg assumes that the current density, at any instant, is a
maximum at the surface of the conductor and decreases at a uniform rate with
depth, becoming zero at depth © . Further, the current density at any level
is in time phase with the current density everywhere else. Thus the depth
of penetration and the depthwise average current density are related according
to

IMA’A = ZTTRS JMAX (58)

while the actual maximum current density, at the surface of the conductor, is

2 jww\x'

According to the Ganz treatment, there is an annular region at any
instant in which the current density is uniform while the rest of the con-
ductor carries no current. The thickness of this annulus varies with time
and the current density within the annulus varies with time also (equations
43 and 40). However, when the annulus is thickest, the current is maximum,
and the current density at that instant is the same as the average given by
Rosenberz (equaticn 58). Thus it is expected that the Ganz and Rosenberg
theories should give the same depth of penetration.

PRy

The ratio of loss per meter computed by Rosenberg Lo that com~
puted according to the Ganz treatment is

L 2
Pe_[2 Do ]/ 2 IM] -
% |3 @Zmise J/ 13w (2nR)ér

or, the Ganz trestment yields (4/1 ) = 1.273 times as much loss as
Rosenberg's theory in the case of iron conducteors with pronounced skin
effect. The increased loss is attributed to the combined effect of phase
shift within the field and the presence of time harmonics, both of which

were neglected by Rosenberg.
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Inductive Heatiig of Iron in Single-Phase Fields
The relationship be¢tween the surface field intemsity and the total

eddy current given by equation (33) for a plane configuration may be used for the

treatment ¢f inductive hea’ing effects if the least dimension of the surface to
be neated is much greater than the depth of penetration. For example, if the
applied field intensity is a sinusoidal function, equation (33) becomes

2850 3 j_z = Loy din Wi (60)

for each half cycls. The location of the surface of separation between states
- B. and +B’ 18

3:'= B = f ] amwt dt (Oéf‘ %) (61)
s

and the depth of penetration is

/ = . ’ 2 35"“‘% meter C o (62)
3vu~x -45 \ Bstu)tr

which is equivalent to equation (i8).

The current density in the conducting layer will be

- J e o it
J = -il = /85 wo Zf-'mx S amp/met.er2 (63)
é /1= 263 0t

and the loss per squan meter of surface area is

2
P: 3’ I— = Jm”‘ / BJ“) Jm tt ) watts/meter2 (64)
o J1-cawt ’

The average loss is

¥. Se—
'2 v - ?I-TET‘ ‘]f»: DS / SL.‘J watts /meter2 (65)
o

which is the equivalent of equation (55). Thus for sinusoidal currents, the
conductive and inductive heating processes sre identical within the iron, and
the same loss formula applies. Thiz fact has been noted by Thornton (section
3.1 of reference 9).

Practical design of an inductive heating installation requires a
means to compute the terminal voltage of the exciting winding. The real part
of this voltage (in phase with the exciting curreat) will supply the resistive
drop in the exciting circuit plus the aquivalent resistance drop induced by
the eddy current losses. The reactive part will consist of the reactive drop

it Btk A ot &
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induced by the eddy currents plus the reactive drop due to stray magnetic
fields (for example, the field existing in the space between the exciting
winding and the surface to be heated). The real and reactive parts of the
voltage induced by eddy currents will be computed next. The other components
of terminal voltage may be camputed by well-known methods.

The electric field induced in the exciting current sheet due to
fiux within the iran is given by sguation (32), which when combined with equa-

tion (61) yields

; £ ) 7
- 8 jmax dww 0565 /55 '
E = fjwrf } ({ ) (66)

yf cos et

which reduces to

2 8_{ () Irmovv ( o %)/;) volts/meter (67)

E =
o
By Fourier analysis, the fundamental caxponent is found to be
(o0 . T )
& ADJM JSmanc r_g- 0“ b)f -+ = 4 Cojwt (68)
1(“'\4 o L3Tl' 3 J

The phase angle between the electric field and the exciting current is
o

O= tan~ 05 = 26.6

cnb = 2/5 = 0,895

If there are N turns in the exciting coil, each of length U
meters, distributed over an axial length /£ meters, the formula relating
voltage and current (exclusive of voltages due to external ohmic drop and
stray fields linking the exciting circuit) is

\/_ 2,83 Nz./_lil. /BS{:F volts (70)

where V is the rms of the fundamental voltage, I is the rms of the sinusoidal
exciting current, £ is the frequency in cycles/sec. and P (= 1/0'/ is the
resistivity of the iron in ohm-meters. The power dclivered to the iron is

¥2 13/1-
2.53 N Z‘;{I ,/ B, ‘Fr watts (1)

The new theory prcvides a means for computing the power factor of
the load reflected into the exciting winding by the eddy currents. Such )
a computation was not possible using the Rosenberg treatment, since the effect
of phase shifts within the field were not taken into account. The power
factor of the eddy-current load is seen to be quite high. The relatively

(69)




M Yy ey o xw

) ' o~

oy

TN .~

0 it

Fu,,.n\ '

- 17 =
low power factor encountered in inductive heating installaticns is due to the
reactive veltage of the unavoidably large stray magnetic fields,

The wave form of induced e.m.f. as given by equation (67) has been
checked experimentally, with the results being presented in Figure 7 and Table

1. Sinusoidal current was forced by connecting an adequate resistance in series

with the exciting coil. The sinusoidal current trace is included for phase
comparison, and ite calibration varies among the different oscillograms. The
voltage calibration is the same for all.

The specimen tested was a closed ring of square cross section, 0.5
inch by 0.5 inch, with mean diameter 5.375 inches, mads of a particular grade
of cast iron having good uniformity and high carbon content. Accordingly,
the saturation induction is quite low and the resistivity is high being 0.68
microhm-meter. Magnetic data are givenn ir Table 2. The ring was covered
with two layers of ordinary black friction tape and then closely wound with
143 turns of AWG-10 enamel covered copper wire. A search coil of 12 turns
was placed outside the exciting winding. Tssts were made at 60 cycles.

The oscillograms show the characteristic sharp rise in voltage at
the beginning of each half cycle, and gradual decay, as given by equation (67).
Furthermore, they show the distinctive behavior expected when the depth of
penetration 2 becomes approximately equal to, or greater than,half the thick-
ness of the ring. The induced e.m.f. is sharply reduced to a small valus and
remains there until the magnetic process starts again at the beginning of the
next half cycle, the peak voltage at the beginning of the half cycle being
unaffected by the later complete magnetic re-orientation of the ring.

The peak to peak search coil voltage has been computed according
to equation (67), further modified by Rosenberg's suggestion for determining
Bg as discussed under "Additional Remarks" below. The depth of penetration

S has been computed according to squation (62) using the ssme modification,
These results, together with the measured search coil voltage, are present.ed
in Figure 8. The oscillograms show the characteristics of over-excitation
at about 20 amperes exciting current, while the dpeth of penetration becomes
equal to half the thickness of the ring at 24 amperes. (It should ke noted
again here that all computations are based upon the assumptions of an in-
finite plane configuration).

Additional Remarks

A very detailed set of experiments has been reported recently by
Thornton (reference 9), in which the losses in mild steel pipe were deter-
mined as a function of frequency and of current. The objective of the experi-
ments was to present an empirical method of design for conductive and in-
ductive heating of iron vessels and pipes. It was found that the loss at
constant frequency varied as the 1,57 power of the current while the Ganz
theory predicts an exponent of 1.50.

A somewhat empirical way of determining B_, originally proposed
by Rosenherg, does in fact lead to a loss exponent for this type of steel
which 1s as near 1.57 as the accuracy of available information allows.
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Rosenberg proposed that the value of B, to be used in a given problem should
correspond to the maximum currenti carried per unit periphery of the conductor
(equations 26 ard 27). If the magnetization curve for hot-rolled steel sheets
(structural or "mild" steel) as given in handbocks is used in this way to compute
the loss expcnent, excellent agreement with Thorntors value is obtained. However,
the agroement extends only over Thoernton's range of test information which begins
at about 7 oersteds, already well into the region where the induction ceases uo
change rapidly with applied field.

This empirical method of assigning Bg may be justified somewhat by
inspection of equation (55). It is seen that the loss varies as the square
root of Bg. The induction incrsases only moderately with increasing applied
field when appreciable saturation is present, and the theory does not apply
in the case of small saturation. In view of the suall changes in B, to be ex-
pected, and the further appearance of Bg under the radical, the method for
teking the variaticn of Bg into account is not critical. Thus the correlation
between By and field intensity as obtained from the saturation curve could be
expected to yield reasonably good results. In substantiation, the mechanics
of the Ganz theory shows that the naximum field intersity is just equal to the
maximum amperes per unit of periphery, so that higher values of induction than
that taken from the saturation curve woculd not be expected.

Conclusions

It has been shown that the theory of alternating fields in solid iron
proposed hy Ganz is a significant advance, in that the objections to Rosemberg's
treatment are overcome. Furthermore, a logical transistion fiom the classical
theory to the theory of Ganz has been demonstrated. The losses computed accord-
ing to the new theory are somewhat higher than those predicted by Rosenberg, as
would be expected since the new theory accounts for both time harmonics of
current density and phase shifts in the magnetic field. Formulae have been pre-
sented which show thc usefulness of the new theory as a design method for in-
ductive and conductive heating installatiocns, .

Table 1

Oscillograms of Figure 7

Oscillogram Exciting Current, rms Search coil volts
: peak to peak
1 (upper left) 2.5 0,61
2 5.0 1.00
3 7.5 1.31
l" 10.0 1-58
5 15.0 1.97
6 {lower left) 20.0 2.30
7 (upper right) 25.0 2.54
8 30,0 2.76
9 35.0 2.97
10 40.0 3.06
11 45.0 3.27
12 (lower right) 50,0 3.30
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Table 2

Magnetization Curve of Cast Iron Ring, by Flux-meter

H, amp/meter

0
1000
2000
3000
4200
6000
8000

10000
12000

B, weber/sq. meter

0

0.55
0.76
0.85
0.70
0.97
1.01
1.04
1.05
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Figure 1.

Figure 2,
Figln'e 39
Figure 4.

Figure 5,
Figure 6,

Figuro 78

Figure 8,

CAPTIONS FOR FIGURES
Flux per unit width and flux denaity in the classical theory with con-
stant permeability.
Assumed magnetlic characteristic.
Arrangement of square waves adding to a smooth periodical function.

Sinusoidal flux per unit widtih in saturatsd solid ion and sguare
waves of flux density at various depths.

Definition of symbols used in the plane configuration.
Definition of symbols used in the cylindrical configuration.

Induced e.m.f. of a search coil wound on a solid iron ring excitead
with sinusoidal current.

Computed and measured search coil voltage.
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A Compured depth of penetration
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P

I

c¢amp.

14 _inch

30

2.5

2.0

15

Search Coil Volrage
L0

o5

o

0 0 20 30 40 50

1 urre 0. 1-/MN. S.
rigure 8 Exciting € nY, aQmp. r:m.S.




	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033

