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Synopsis 

The need for an adequate method to account for eddy currents in 
magnetic materials has been apparent for some time, especially since the 
development of high quality magnetic amplifiers. This paper correlates 
existing theories of eddy currents in saturated iron. In particular an 

Li        approach originally suggested by A. G. Ganz is treated in a comprehensive 
mathematical analysis based on classical field theory. 

This approach seems well suited to account for the influence of eddy 
currents upon the transfer characteristics of magnetic amplifiers using 

- - "sharp" core materials. It is shown that the method is useful also in 
more conventional applications, such as inductive and conductive heating 
of solid iron. 
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EDDI-CURRENT PHENOMENA IN FERRO-MAGNBTIC MATERIALS 

j Introduction 
1. 

Interest in eddy currents in solid iron masses has kept pace with the 
f - development of electromagnetic devices generally.    The first problems arose in 

the design of eddy current brakes far flywheels.    Then the u»e of iron wire for 
telephone lines and iron rails for the supply of power to alternating current 

. . locomotives led to new problems.    It was recognized that the saturation of the 
iron was an important factor, and many authors have presented their theories to 
take saturation into account.    Following the appearance of Rosenberg's work, 
others have made an academic problem of substantiating it or elaborating upon it. 
Recently the damping effect of eddy currents in the solid yokes and pole pieces of 
direct current machines has become important.    Still more recently, it has been 
recognized that the saturation effect is important in computing the core losses in 
thin steel or alloy sheets.    Representative references in the field are listed in 
the bibliography (references 1 to 6). 

CA new method for computing the effect of saturation has been suggested 
by A. G. Ganz (?).    The method seems to be a significant departure from other 
efforts to account for magnetic non-linearity in iron.    Many attempts to handle 
the problem mathematically have introduced the non-linearity as a sort of correction 
to the linear theory, always keeping in mind that the treatment should reduce to 

\_\ the linear theory as a special case.    An almost, exact parallel can be found in the 
various approaches to the non-linear problem of the magnetic amplifier.    On the 

[- one hand there is the formulation by fitting some useful function, such as the 
hyperbolic sine or a finite power series, to the magnetization curve.    On the other 
hand, a radically different approach exists in which all resemblance to linear 
behavior of the magnetic material is discarded.  (These various analyses of the 
magnetic amplifier are outlined and compared in reference (8)  ). 

The point to be made is that any refinement of the linear theory which 
j I attempts to account for non-linearity leads to very cumbersome mathematical 
| forms.    The fresh approach using what might be termed a limiting case for a 

beginning, may, if carefully applied, lead to a mathematical formulation even 
1 simpler than in the linear case.    This seems to be true of the method suggested 

by Ganz.    It is the purpose of this paper to show a logical transition from the 
linear theory of eddy currants in solid media to the method of Ganz, and to show 
the applicability of the method in typical problems.    Two other theories, those 
of Rosenberg and of Barth, will be included for compari&cBi 

i L 
r. 

I n 
Ccaparison of Linear and Limiting Kon-Linear Theories 

n j The linear theory will be reviewed by the use of a simple situation. 
An infinite half-space with its surface in the x,y plane is excited such that 
the total magnetic flux carried in the x direction per unit of width in the y 

j direction is   Ra.  $>mfi# &31*** •    There is no y or z component of flux.    The z 
-- direction extends into the material normal to the x,y plane.    The permeability 

of the material is  fx  , its conductivity is cr   , and the radian frequency is 
U>   .    Taking "IT, the induction, to be the field variable, the field equations 

L are By   =   Bz    *   0, and (using MKS units) 

i      Jt 0.) 
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60 e* J     1 '») (2) 

where B0, a complex number, is the induction at the surface. The total flux per 
unit width is 

••'.    r- 

in 

f 

I] n      Substituting into (2) / , . 

Expressed in a different form equation (4) becomes 

[_      where 0max is a real number. 

The behavior of Bj as a function of time and of depth is illustrated in 
Figure 1. The upper curve is the total flux 0(t) while the lower curves give 
the flux density as a function of time at the various levels. At any instant, 
the flux density varies as a damped sinusoid with depth; thus there are alternate 
positively and negatively magnetized bands of material. The existence of these 
alternate bands can be seen also by inspecting the time function at various levels. 

Now the same situation is analyzed once more, but with the linear 
magnetic material being replaced by a material having the non-linear magnetic 
characteristic shown in Figure 2. This material is magnetized to saturation if 
the field intensity is different from zero, and it is possible to change the flux 
density only at H - 0. The statement implies that if the flux density is changing, 
H must be zero. However, the converse statement is not necessarily true; if H 
is zero, the flux density is not necessarily changing. Thus it ia possible to 
have regions within this material where H is zero but where the flux density can 
have any constant value less than or equal to the saturation induction. The 
particular constant value woiild depend upon the state in which the material was 
left during some previous process. 

The mechanics of supporting a function 0(t) - fee yWt* »      will 
now be investigated. First it will be assumed that H at any point is a periodic 

j       function with fundamental radian frequency CO and no average value. If this 
function has serccc only at discrete values of ( </t t) which are T   radians apart, 
the corresponding induction B will be a square wave of period 2ir/u) and ampli- 
tude Bs- On the other hand, a square wave of B at any point can be supported by 

!       a discontinuous function H ( cot), due to the possibility (discussed above) that 
B may remain constant when H is zero. Thus it seems reasonable to postulate that 

•       the induction at any point in the material is either constant at some value de- 
; '       pending on previous treatment or a sauare-wave with amplitude B» and period 

2ir/co. 
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Inspection of Figure 1 gives 3ome insight as to how the square waves 
giving B as a function of time might combine to give a total flux 0 (t) which is 
sinusoidal.    In Figure 1, the induction at any level s is a sine wave versus 
time, but whose phase is shifted with respect to the level above.    The next 
question is,  can a succession of square waves which are phase shifted with re- 
spect to one another add to a sine wave?    Figure 3 shows a finite group of these 
square waves and their instantaneous sum.    (The resemblance to the calculation of 
the m.m.f. of a distributed winding in a rotating machine is apparent).    If 
there are enough square waves, phase-shifted in a particular manner which can 
be computed, a smooth sine wave 0 (t) results. 

The computation of this phase shift as a function of depth is better 
approached by a change of variable.    At some instant say ( t-Otl the induction 
above the level zi(Figure 3) is - Ba while below that level it is  •+• Bs.    At a 
later instant ( fcOt)2 the induction above the level Z2 has become -Bs while 
below Z2 it remains +BS.    Thus a surface of separation between the two saturated 
states has moved from z\ to Z2 during the interval (t2 - ti).    The phase shift 
between the square waves of induction at these two levels will be   to (t2 - t]_) 
radians.    The distance (z2 - ^l) that the surface of separation has moved, and 
the phase shift oi(t2 - ti) radians, are both related to the change in flux per 
unit width     &0 which has occured during that time. 

The surface of separation will stop when there is no further need 
to "subtract flux" by causing this change to take place.    The maximum distance 
that this surface travels, beginning at z    -   0, will be the depth of penetration 

&    .    Vhen the surface of separation has reached the depth    9.« S   , the flux 
per unit width will be - 0iaSiX-    The depth of penetration is" 

(6) 

This movement from *•= O to %•=• fc has occurred in a half cycle, since the 
flux per unit width nas been changed from ^j^ to -0max. Thus, the phase shift 
between square square waves of B versus ( to w at ?=0 an(* 2*S is "ft radians, 

The d epth of penetration & is seen to be a variable depending on 
0maxj while in the linear material the depth of penetration is a property of 
the material at a given frequency (equation 4). This behavior is expected, 
since in the linear material it is possible to increase &% j^^ if more flux is 
required; in the nonli.iear material the induction is limited to Bs, and more 
flux can be obtained only if § increases* 

The position of the surface of separation will now be determined as 
a function of the flux 0.    Let the location of the surface be z'. The flux 
per unit width contributed when the surface moves from z1 to ( y> 4- A 7'  ), 
changing the state from -f-Bs to - Bs, will be * 

&$ =   -2BSA^' (?) 
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Passing to the limit A^-^0 yields the differential equation for z1 

The integration will be performed beginning at th'i time when (ps + Pr*\A% 
and 3' •» o • (Calculations begun when <£>= - VVIAX would proceed in the 
same way wit- a change in sign, such that z' is always a positive in- 
creasing function.) Thus,   J. 

'*, r**x 
or 

3'W = 
-   ^*t& 

The next problem is to compute the pliase shift at different depths. 
The square wave of B versus (   C/d t) at any levsl c may be expressed by 

JM = BSDM^) (ID 

where the symbol " LJ (*X) " represents a periodic function of x which is a 
square ware of amplitude 1 and period \2v/u*).    The angle ^ is the phase 
displacement between the origin of the square wave at depth z and the origin 
of the square ware at z = 0, so ^ will be a function of z. The origin 
of the square wave is taken at the center of the positire flat portion. 

Equation (10) was derived assuming that at time zero, the flux is 
a positive maximum and is being decreased. Thus, at time zero all the material 
was previously magnetized to -+- B8 induction, and will be changed during the 
subsequent half cycle to - B8 induction. At z • 0 the origin of the square 
wave would be located at  y> — — T/2.  , since at time zero, that value of 
I( oot -ys     ) must be V/2, , The further dependence of y/ upon z can be de- 

duced from Equation (10;, since when the surface of separation is located 
at »' "Sfg*   we must have ( u>t — y* ) « "K/z at that level. Thus, setting 

' If now 0 = Re 0max «
J    is substituted in (12), the relationship between 

yL,      and z for that case is 

) g, feg? [f-C*i(£+*')] - |[t+^U^   (13) 

or 
9 

\l* </> = 2-r- -1 (14) 
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Thus, ^(O)- -Vz and "p(£)* V2 , signifying that the square waves are 
phase shifted by a naif period ever the depth 5 • Fo;" 3>S » that is, 
helov the depth of penetration, no change in induction occurs. 

The results of this computation for B as a function of depth and 
tine are summarized in Figure 4* The same values of fl^ax and U>    are used 
in Figures 1 and 4, while values of /U   and tr    have been chosen so that 
the extinction of the field takes place in about the same depth in both cases. 
The peak value of induction is seen to be much higher in Figure 1 than in 
Figure 4, while the phase shift is larger in Figure 4. The different phase 
shift might have been anticipated; in the linear case, Figure 1, the contribu- 
tion to 0 (t) by the lower levels, where the phase is advanced, has been re- 
duced due to the damping affect. In the non-linear case this gradual damping 
does not exist. This comparison also validates the idea of using square waves 
of flux; the saturation induction is reached very early in the cycle in Figure 
1. 

An Intermediate Theory 

A theory to account for saturation which is in a sense intermediate 
between the linear theory and the limiting non-linear theory has been proposed 
by Barth (reference 3). It is assumed that the flux density varies sinusoidally 
with time at any level, as in the linear theory, but that the amplitude cf the 
sine wave is Bg at every level (except possibly in that part of the material 
which experiences no change in induction). The differential equations of the 
field are used as in the linear theory. The field equations become, in MKS units, 

I 

0 
n \   Curl   ? = " |f {     AW W'O 

Curl   H -7 J = <rb 

(16) 

L which reduce to the form 

'• ( curl curl r7= -ff |f 

L. At this point in the linear theory, the relationship O * M H 
is used, to yield the equations 

*v ?«o , ,,_, 
—r -r ^ ft '17' 

( gaJdi* B - AS   = ~hr ft 

which can be reduced to equation (l). However, in the present case, the 
transition from equation (16) to equation (17) cannot be made. Instead, 
it is found 

div  B-O        ^ (18) 

f 
(   9*** "r "    "" " "^u 



f! 
Before proceeding, it is necessary to expand equations (18) and interpret them 

I        according to the assumed field distribution. 

Again it is assumed that B has only and x-component and this component 
I        varies only with z .^Therefore ^iv B^*0 is automatically satisfied. It is now 

assumed thatTTand h'are co-linear vectors, although they bear no linear re- 
lationship to one another. ThusTThas only an x-component. By symmetry, it is 
assumed that this component varies only with z. In this particular situation, 

)        therefore, d\ v Tf^ O also. The field equations now reduce to 

rr - * -r (19) 

It is now assumed that Hg and Bx at any level z are both sinusoidal 
time functions, and that they are in phase. Thus 

where both *Js   and H are real functions of z. Substituting into squation (19), 

fl(He^) -jwBse'* (ai) 

(These equations neglect the hysteresis effect, while in Earth's original paper 
this effect is taken into account by introducing a constant phase difference 
(3  between H and B in equation (20).) 

On performing the differentiation in equation (21) and equating real 
and imaginary parts, the following differential equations are obtained: 

. •     .•»        D (22) 
2Uf  + H y - ">r vs 

where the dot signifies differentiation with respect to z. By inspection of 
these equations, Barth concluded that H must be parabolic in the variable 
(^•/3o) while <// must be logarithmic in the same variable. The result ob- 
tained by Barth is that 

H- H0(|.)
2 

f -- a *~ (Q (23) 

37? H« 
i 
T I 2   •/  S 
1 V \|   600-6 

1 

•o 

I 
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where the coordinate z is measured from the level zQ,  inside the material, 
positive toward the interface between iron and air. The field intensity applied 
at the surface is H0, The flux per unit width turns out to be 

(24) 

from which„ also, 

(25) fr* J* 
7  b*«*x 

The Theory of Rosenberg 

Rosenberg's treatment (reference 2) assumes that the flux density is 
a sinusoidal function, without phase shift from layer to layer, and with a con- 
stant amplitude B ^ between z = 0 and z - a. The amplitude Bmax and the 
depth of penetration a are related, however, the connecting variable being the 
field intensity at the surface H#j in turn, H0 and Bmax are related through the 
saturation curve. The two expressions for a corresponding to equations (23) and 
(25) for ss are (in MKS units) 

*  60C"Brv»*.> 
(26) 

When 0,-^ is given and it is required to find B^^, H0 and a, the com- 
putation is basedupon the elimination of a in equations (26): 

B^AX (27) 

The saturation curve relates Bma- to H0. With oo   and 0* fixed, 0aax may be 

plotted versus H0. Thus H0 
andBmax may be found, and either of equations (26) 

determines a. 

Rosenberg noted in the original paper that the two most prominent 
assumptions, that is, that the amplitude of the flux density is constant and 
that the phase shift from layer to layer is negligible, introduce compensating 
errors in the computation of eddy current loss. Barth found that the inclusion 
of phase shift but the omission of time harmonies yields about the same results 
as the Rosenberg treatment. It will be shown that the Ganz treatment, which 
takes both these effects into account, yields higher losses. 

Eddy Currents According to the Treatment of Ganz 

A basic assumption in Ganz's treatment is that a change in induction 
can take place only when H =0. Therefore, the sum of all the field in- 

ssparaticn between the states —B_ s^id *i-Ba must be 
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zere.    This statement allows th« derivation of a relationship among the flux, the 
externally applied field, and the eddy currents. 

The field equations which relate the density of eddy currents to the rate 
of change of magnetic induction are 

7=<rl 

» CHrl E "   it 

(28) 

The second of equations (28) says that the electric field intensity E ii every- 
where irrotational, because the induction can be only ±*irBs where T* is the 
unit vector in the x-directlon.    The only possible irrotational vector S under the 
conditions set for the problem is a vector varying in time but not varying with 
pesition at a given instant.    To find out whatf is, it is necessary to convert 
the second of equations (28) to the integral form, yielding 

<r£ 

-A (f S-<i? 
(29) 

It JJ 

where C boundsS and traverses S in the usual counter-clockwise sense. 

The line integral in aquations (29) will be zero if C lies entirely on 
one side of the surface of separation between -Bs and   -+-Bg0    However, if C cuts 
this surface, then the integral over ojill have a time derivative depending upon 
the velocity of the surface of separation and the length of the segment common 
to both IT and the moving surface.    Thus a discontinuity in E is expected at the 
moving surface. 

The integrals in equations (29) are easily evaluated in the particular 
example being considered.    Since B has only an x-component, the surface"S^is 
taken in the y,z plane.    The' Surf ace of separation between states -B, and -t-Ba 

is an x,y plane moving in the z-directien.    The segment common to both these 
surfaces will be    ^ y meters long.    The electric field £ will have a y-component 
only, which will (at any instant) take constant values above and below the 
surface of separation, with a discontinuity at the surface.    The situation is 
illustrated in Figure 5. 

Let the induction (in the x-direction) be -B, above the surface and 
-T- B, below, with the surface moving at velocity ( <k"%/}fc ) meters/sec.    k\ 
time t, let IT have 3^ area in the region of -Bg induction and Sj, area in the 
region of + B, induction.    At time (t -t- a t) the surface will have moved a 
distance ( jU'/*lt)#{ £ t) meters, so that now there will ba Cs, +(4tf/itX&bfo<i}l 
area in the region of -Bg induction and [52 - (d}7dt)(&{)(&*)]      area in the 
region of-f-Bs induction.    The integration in equations (29) becomes 

1 

s r*» H - e^'-„ ^ =  Tt  
(30) 
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or 

h ^-%^-^% 

M' (31) 

Equation (31) gives the discontinuity in the electric field existing at the 
moving surface separating -Ba and-t-B-. 

There can be no electric field below the moving surface, for if it 
were to exist, energy would be required to sustain the resulting eddy currents, 
and there is no such energy available. Therefore, 

During the succeeding half cycle, By reverses sign, since in that interval the 
induction is being changed from -B to -t-B8 and ( dl'/dt        ) remains posi- 

The eddy currents flow with uniform density (at any instant) in the 
space (O^V<^/ ) and there are no «ddy currents below the level z'„ The 
total current contained in the eddy cz" snt paths is, by equations (28) and 
(32) 

Is=2'6sCrj/J amp/meter (33) 

during the half cycle in which the material is being changed from 4-B8 to 
-B . During the following half-cycle, Ie changes sign. Since the field 
intensity must be zero at the surface between -Bs and 4-Bs, the applied field 
intensity must be the opposite of equation (33); in other words, the applied 
field must be - Ie amperes per meter. 

An expression for the applied field J8 can be obtained from 
equations (33) and (10)$ that is, for sinusoidal flux variation, 

js=-2e,<riv    2Bs  x *e, it)   eB,l?u*   1 At   (34) 

In the present case, 0 = 0max co»CMi'^so tnat during the half cycle when 
0 proceeds from -f- ^ax to ~ max 

T - _ <££    jf       (\-Crt oot)/^ ooi      amp/meter      (35) 
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Equation (35 is similar to Equation (9) of reference 6. The wave form of J8 
is repeated during the following half cycle but with reversed sign (it is con- 
venient to establish a new time origin each half cycle). 

Historical Development of the Non-Linear Treatment 

Rosenberg's treatment of eddy current loss in solid iron was the first 
attempt of practical value to account for the effect of saturation. It was 
based on an hypothesis which fitted quite well with the overall test results 
then known. However, the essential nature of the field problem was not considered, 
since Rosenberg neglected both the phase shift in the field from layer to layer 
and the fact that the induction at any depth must have prominent time harmonics. 
Barth made the next step by removing one of these assumptions; his work took the 
phase shift into account but still neglected the effect of time harmonics. As a 
result both Rosenberg's and Barth's treatments yield a sinusoidal flux for a 
sinusoidal current, which is known to be in error, especially when core materials 
are used whose characteristics approach Figure 2. It has been shown here that the 
Ganz treatment takes into account both the phase shift and the time harmonics. 
The test results reported by Hale and Richardson (reference 6} confirm its validity. 

Applications of the Gang Treatment 

Applications of this new theory have been restricted so far to the 
computation of eddy-current loss in thin sheets (reference 6) and the explanation 
of certain effects in pulse transformer cores (reference 7}. To illustrate the 
versatility of the theory, it will be used in two other problems of continuing 
interest. These are the computation Of losses in solid iron conductors, and the 
design of inductive heating apparatus for use on a charge of solid iron. 

Losses in Iron Wire 

The first problem is to deduce the field configuration within the wire 
under the assumptions used by Ganz. The current will flow in the axial direction, 
and the wire will become magnetized in a circumferential sense. Suppose for the 
moment that a steady direct current flows in the wire. The current density will 
be uniform, and application of Ampere's law shows that H has a value everywhere 
within the wire, being zero at the center only. According to the assumed magnetic 
characteristic, the induction will be Bs everywhere within the wire, directed 
circumferentially. Now if the direct current is reduced to zero the wire will 
remain in this magnetic state. 

Next suppose that a direct current of opposite sign is to be established. 
The new steady magnetic state will be at saturation induction, but in the opposite 
direction. The change in induction can occur only if H - 0. Ampere's law leads 
to the conclusion that there must be a circular region within the wire which carries 
no current, such that H • 0 at the boundary of this region; the induction is the old 
value of (say) - BB in teat region. The new current to be established is forced to 
flow outside this region. As the new current builds up, the region of - Bs is forced 
to shrink toward the center, and after a time complete reversal cf the induction 
within the wire may be accomplished. 

Figure 6 shows the wire, with the boundary between state +Ba and 
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- B8 located at r = r1. This moving boundary causes a change in the flux- 
linkage with that part of the wire within the boundary, that is, r <C r1, 
while the part of the wire in the region r' < r < R sees no change in flux 
linkage (except the change in the field outside the wire, which is common to 
both regions and need not be considered). Since the axial electric field is the 
same in both regions, the resistance drop in the region carrying current can be 
equated to the drop due to induced e.m.f. in the region carrying no current. 

Right-handed cylindrical coordinates are used (Figure 6). At time t, 
the surface of separation is located at r • r'.  The electric field in volts 
per meter, EZ)impressed along the element whose area is dS is to be computed. 
The flux linkage with that section at time t is 

A«« -Bs(r'-r5) + Bs(e-r'J 
webers/meter    (36) 

At time (    •£ + A"fc     ), the surface has moved to (r1 -f- A   r1) and the flux 
linkage has changed to 

A(***)«-Ba[(rW)-«s]+e!,[*-(rW)]  •*-**-*"     {37) 

On passing to the limit, it is found that 

a-"26**' 
If'. 

which is independent of rs. Therefore every element dS within the region 
/*) <f*< r  sees the same electric field impressed, which is 

Outside this region the electric field Ez is used up in ohmic drop only. 
(Consequently there is no reactive voltage due to partial flux linkages within 
this type of conductor). 

The current density in the conducting annulus is 

ft 

The total current being carried by the wire is 

£„   vJ(Rz-r'*) <u) 
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f] 

i 
! 

or 

£(t) = -ZB,Tr£r(Rr-r^ *£ (it <«) 

i; 
which can be integrated to find the coordinate r' as a function of time: 

T-2ir Bsr {RW)dr' = f* iOWt (A3) 

The situation shown in Figure 6 calls for i(t) to be positive, since the 
induction is being changed to +B8. If for example i(t) is a sinusoidal 
function, then equation (43) would become  (0$ oot  Jt ir) 

f1res<rrr
/3-3RV/+2(?3]= l•*(.\-wU) M 

L J    60 

Three situations can be recognized in equation (44)• First, the 
maximum current might not be sufficient to cause the surface of separation 
to move all the way to the center. An equivalent effect is caused by an 
increase in frequency. Under such conditions, the depth of penetration will 

which can be computed from equation (44) as 

l! |Tr6s<rS2(3R-5)=   Si 

(45) 

irv^X 

3 "   ^v   "    V'N    "' u> (46) 

) If now there is pronounced skin effect, that is    C^-^ *, the depth of 
' penetration is 

Ij 

i: 
VtrR 

rt -r  (47) 
RB5^ 

which expressed in terms of the maximum apparent surface current density, 

5W>X '^' 

>rBs 
The second situation which may be identified in equation (44) is 

that the current and frequency might be such that the surface of separation 
just reaches the center (r1    =   0) at the end of a half cycle.    The current 
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necessary to cause this condition is found from equation (44)? 

Im** S   JTT^XT DS   R amperes (49) 

' The third situation occurs if the current is so large that r1 

beeches zero before the end of the half cycle; if so, the wire exhibits a con- 
/ stant resistance for the remainder of the half cycle, equal to its d-c re- 
/ sistance. 

The effective resistance may be computed for the case of pronounced 
i skin effect (     & «   (Z. ).    The loss density as a function of time will be 

in general (from equation 41) 

AVL\   _    J      _ t   lw watts/meter3 (50) 

1 and the loss per meter of length will be 

P(t)   -x       Li!!  watts/meter (51) 

in which r1  is a function of time which can be deduced from equation (43)« 
p The result is 

Pit)   =     /TTS- I  rt mtts/meter (52) 
j: '     \/Zit(?tr   Jiyiim 

If the current is a sinusoidal function, 

1 Pfr)   £      T /     * j ;        watts/meter   (53) 

1 The average power dissipated in heat over the half cycle will be 

P       =     f1 

or 

I   &£^'    .i   f * jWZ<9       jp (54) 

wnen this power is expressed in terms of the depth of penetration, as 
computed from equation (47), it becomes 

P*. = iL • I" • —W-      »tt./Mt.r     <56) 
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The effective resistance of the iron wire is defined by the expression 

V*.    s    (  -=r-— 1      ohms/meter (57) 

A conductor whose corss section is not circular, such as a r&ilj, 
can be treated according to formula (57) if the perimeter of the cross 
section is substituted for the quantity fa j^. 

The depth of penetration (equation 48) is identical with that 
given by Rosenberg. It must be recognized, however, that there is a basic 
difference between the field models assumed by Rosenberg and by Ganz. This 
difference leads to higher losses computed according to the Ganz treatment, 
as will be shown in equation (59) •  These similarities and differences will 
now be examined. 

Rosenberg assumes that the current density, at any instant, is a 
maximum at the surface of the conductor and decreases at a uniform rate with 

I depth, becoming zero at depth 8 • Further, the current density at any level 
Li is in time phase with the current density everywhere else. Thus the depth 

of penetration and the depthwise average current density are related according 

n to 

LwA*   K   ^RS JlWlX (5gX 

\ while the actual maximum current density, at the surface of the conductor, is 

According to the Ganz treatment, there is an annular region at any 
instant in which the current density is uniform while the rest of the con- 
ductor carries no current.    The thickness of this annulus varies with time 

| | and the current density within the annulus varies with time also (equations 
> 43 &nd 40).    However, when the annulus is thickest, the current is maximum, 

and the current density at that instant is the same as the average given by 
Rosenberg (equation 58).    Thus it is expected that the Ganz and Rosenberg 
theories should give the same depth of penetration. 

[The ratio of loss jier meter computed by Rosenberg to that com- 
puted according to the Ganz treatment is 

P* - [2 w*      1   /HE-       4**-1 (59) 

or, the Ganz treatment yields (4/TT ) = 1.273 times as much loss as 
Rosenberg's theory in the case of iron conductors with pronounced skin 
effect. The increased loss is attributed to the combined effect of phase 
shift within the field and the presence of time harmonics, both of which 

j were neglected by Rosenberg. 
\ 

i 
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(^ InductlTe Heatiidt of Iron in Single-Phase Field; 

i 

i 

-, 

The relationship between the surface field intensity and the to+al 
eddy current given by equation (33) for a plane configuration may be used for the 
treatment of inductive heating effects if the least dimension of the surface to 
be heated is much greater than the depth of penetration. For example, if the 
applied field intensity is a sinusoidal function, equation (33) becomes 

28sr}' $' = JU* "*-"* h *rvu»>c   "  (60) 

for each half cycla. The location of the surface of separation between states 
- Bt and -f-B8 is 

(o^h) (61> 

meter (62) 

V    6s u> tr 

which is equivalent to equation (48), 

The current density in the conducting layer will be 

J~    1'   ~    /ojW^JfAwix I        » amp/meter v©3) 

and the loss per square meter of surface area is 

] The average loss is 

I fty    -        J^     -fc~ x    7    i- watts/meter 
(65) 

which in the equivalent of equation (55)• Thus for sinusoidal currents, the 
conductive and inductive heating processes are identical within the iron, and 
the same loss formula applies. This fact has been noted by Thornton (section 
3.1 of reference 9). 

Practical design of an inductive heating installation requires a 
means to compute the terminal voltage of the exciting winding. The real part 
of this voltage (in phase with the eliciting current) will supply the resistive 
drop in the exciting circuit plus the equivalent resistance drop induced by 
the eddy current losses. The reactive part will consist of the reactive drop 



1 
I 
F 

1 •• The electric field induced in the exciting current sheet due to 
flux to.thin the iron is given by equation (32), which when combined with equa- 

f" tion (61) yields 

I 
I 
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induced by the eddy currents plus the reactive drop due to stray magnetic 
.fields (for example, the field existing in the space between the exciting 
winding and the surface to be heated).    The real and reactive parts of the 
voltage induced by eddy currents will be computed next.    The other components 
of terminal voltage may be computed by well-known methods. 

Cc /ft>.k,Y  *, .)       (ot6*Z) 
^       V ff- '    yi-crtoet/ 

(66) 
cr 

which reduces to 

cr 

ZBj *** »4>**y       / (x+   —) volts/meter (67) 

By Fourier analysis, the fundamental component is found to be 

/ on    .    T *   f & i 4 .1 
fc £,   , «   /£^W     JL a^^b + 2 c<da,t (68) 

The phase angle between the electric field and the exciting current is 

ao& - z/<s   =  0.895 
If there are N turns in the exciting coil, each of length U 

meters, distributed over an axial length Jt   meters, the formula relating 
voltage and current (exclusive of voltages due to external ohmic drop and 

i stray fields linking the exciting circuit) is 

\]= 2.S3  *£g TiTfpT        -it. (TO) 
Ij x. 

where V is the rms of the fundamental voltage, I is the rms of the sinusoidal 
exciting current, f is the frequency in cycles/sec, and   p   t» */tr) is the 
resistivity of the iron in ohm-meters.    The power delivered to the iron is 

r=   2.51      —     y^fp watts (71) 

The new theory provides a means for computing the power factor of 
the load reflected into the exciting winding by the eddy currents. Such 
a computation was not possible using the Rosenberg treatment, since the effect 
of phase shifts within the field were not taken into account. The power 
factor of the eddy-current load is seen to be quite high. The relatively 
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I s 
low power factor encountered in inductive heating installations is due to the 

r reactive voltage of the unavoid ably large stray magnetic field3. 
j 

The wave form of induced e.m.f. as given by equation (6?) has been 
checked experimentally, with the results being presented in Figure 7 and Table 

II. Sinusoidal current was forced by connecting an adequate resistance in series 
with the exciting coil. The sinusoidal current trace is included for phase 
comparison, and its calibration varies among the different oscillograms. The 

j~ voltage calibration is the same for all. 

j. 

D 

The specimen tested was a closed ring of square cross section, 0.5 
inch by 0.5 inch, with mean diameter 5.375 inches, mads of a particular grade 
of cast iron having good uniformity and high carbon content. Accordingly, 
the saturation induction is quite low and the resistivity is high being 0.68 
microhm-meter. Magnetic data are given in Table 2. The ring was covered 
with two layers of ordinary black friction tape and then closely wound with 
143 turns of AWG-10 enamel covered copper wire. A search coil of 12 turns 
was placed outside the exciting winding. T&sts were made at 60 cycles. 

The oscillograms show the characteristic sharp rise in voltage at 
the beginning of each half cycle, and gradual decay, as given by equation (67). 
Furthermore, they show the distinctive behavior expected when the depth of 
penetration £> becomes approximately equal to. or greater than,half the thick- 
ness of the ring. The induced e.m.f. is sharply reduced to a small value and 
remains there until the magnetic process starts again at the beginning of the 
next half cycle, the peak voltage at the beginning of the half cycle being 
unaffected by the later complete magnetic re-orientation of the ring. 

The peak to peak search coil voltage has been computed according 
to equation (67), further modified by Rosenberg's suggestion for determining 
B3 as discussed under "Additional Remarks" below. The depth of penetration 
S has been computed according to equation (62) using the same modification. 

These results, together with the measured search coil voltage, are presented 
in Figure 8. The oscillograms show the characteristics of over-excitation 
at about 20 amperes exciting current, while the dpeth of penetration becomes 
equal to half the thickness of the ring at 24 amperes. (It should be noted 
again here that all computations are based upon the assumptions of an in- 
finite plane configuration). 

Additional Remarks 

A very detailed set of experiments has been reported recently by 
Thornton (reference 9), in which the losses in mild steel pipe were deter- 
mined as a function of frequency and of current. The objective of the experi- 
ments was to present an empirical method of design for conductive and in- 
ductive heating of iron vessels and pipes. It was found that the loss at 
constant frequency varied as the 1.57 power of the current while the Ganz 
theory predicts an exponent of 1.50. 

A somewhat empirical way of determining B , originally proposed 
by Rosenberg, does in fact lead to a loss exponent for this type of steel 
which is as near 1.57 as the accuracy of available information allows. 
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Rosenberg proposed that the value of B8 to be used in a given problem should 
correspond to the maximum current carried per unit periphery of the conductor 
(equations 26 and 27). If the magnetization curve for hot-rolled steel sheets 
(structural or "mild" steel) as given in handbooks is used in this way to compute 
the loss exponent, excellent agreement with Thornton's value is obtained. Hev^ver, 
the agreement extends only over Thornton's raiige of test information which begins 
at about 7 oersteds, already well into the region where the induction ceases to 
change rapidly with applied field. 

This anpirical method of assigning Bs may be justified somewhat by 
inspection of equation (55)• It is seen that the loss varies S3 the square 
root of Bs. The .induction increase? only moderately with increasing applied 
field when appreciable saturation is present, and the theory does not apply 
in the case of small saturation. In view of the siaall changes in B3 to be ex- 
pected, and the further appearance of Bs under the radical, the method for 
taking the variation of B3 into account is not critical. Thus the correlation 
between Bs and field intensity as obtained from the saturation curve could be 
expected to yield reasonably good results. In substantiation, the mechanics 
of the Ganz theory shows that the oaximum field intensity is just equal to the 
maximum amperes per unit of periphery, so that higher values of induction than 
that taken from the saturation curve would not be expected. 

Conclusions 

It has been shown that the theory of alternating fields in solid iron 
proposed *>y Ganz is a significant advance, in that the objections to Rosenberg1s 
treatment are overcome. Furthermore, a logical transistion from the classical 
theory to the theory of Ganz has been demonstrated. The losses computed accord- 
ing to the new theory are somewhat higher than those predicted by Rosenberg, as 
would be expected since the new theory accounts for both time harmonics of 
current density and phase shifts in the magnetic field. Formulae have been pre- 
sented which show the usefulness of the new theory as a design method for in- 
ductive and conductive heating installations. 

Table 1 

I 
|,                                                                            Oscillograms of Figure 7 

JOscillogram                             Exciting Current, rms Search coil volts 
peak to peak 

1 (upper left)                                     2.5 0.61 

I         3                       7.5 1.31 
I!        4                        10.0 1.58 

5                       15.0 1.97 
i          6 (lower left)              20.0 2.30 
I          7 (upper right)             25.0 2.54 

8                        30.0 2.76 
.         9                        35.0 2.97 
I         10                        40.0 3.06 

11 45.0 3.27 
12 (lower right)             50.0 3.30 

L 
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Table 2 

Magnetization Curve of Cast Iron Ring, by Flux-meter 

H, amp/meter B> weber/sq. meter 

0 

2000 
3000 
4000 

0 
1000 °'55 

0.76 
0.85 
0.90 

6000 °-97 
8000 1'0} 

10000 1*0'* 
12000 1*05 
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CAPTIONS FOR FIGURES 

Figure 1. Flux per unit width .and flux density- in the classical theory with con- 
stant permeability e 

Figure 2. Assumed magnetic characteristic. 

Figure 3» Arrangement of square -waves adding to a smooth periodical function. 

Figure 4* Sinusoidal flux per unit width in saturated solid ion and square 
waves of flux density at various depths. 

Figure 5. Definition of symbols used in the plane configuration. 

Figure 6. Definition of symbols used in the cylindrical configuration. 

Figure 7. Induced e.m.f. of a search coil wound on a solid iron ring excited 
with sinusoidal current. 

Figure 8. Computed and measured search coil voltage. 
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