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Abstract. Specification of the eddy exchange coefficients is perhaps one of the most difficult problems

in the numerical modeling of the planetary boundary layer. These coefficients have been computc::d

from finite-difference analogs 10 analytical expressions associated with surface boundary-layer similar-

ity theory, which is based on observations in an equilibrium surface layer. This procedure leads to

erroneous results in the region above the surface layer and in a non-equilibrium surface layer. In

addition, differencing problems arise in regions of small vertical wind shear. A new turbulence

transport model has been obtained through the closure procedures for the transport equations of the

Reynolds s.tress and the turbulent length scale. The new approach could be used to calculate Reynolds

stresses and eddy exchange coefficients throughout a non-neutral planetary boundary layer under

non-equilibrium conditions.

1. Introduction

Specification of the eddy exchange coefficients is one of the most difficult

problems associated with modeling the planetary boundary layer. These coeffi-

cients have been traditionally computed from finite-difference analogues to vari-

ous analytical expressions which are associated with surface boundary-layer

similarity theory. As the theory is based on observations in an equilibrium surface

layer, the procedure could lead to erroneous results in regions above the surface

layer, and in a non~equilibrium surface layer over inhomogeneous terrain. In

addition, differencing problems can arise in .regions of small wind shear, even over

homogeneous terrain. This paper summarizes some problems associated with

various' formulations of the eddy exchange coefficients over homogeneous and

inhomogeneous terrain. Results from a one-dimensional numerical planetary

boundary-layer model using a K-theory approach are presented to illustrate some

of the problems.

A turbulent transport model has been formulated in which the problems

mentioned above will not arise, and in which the Reynolds stresses and eddy

exchange coefficients are calculated. Shir (1973) used this model to study the

turbulent planetary boundary layer under neutral conditions, with results compar-

ing favorably with available data. A simpler form of the model, using the

turbulent energy equation, had been used by Shir (1972) to study the air flow over

a horizontally inhomogeneous surface. It also yielded realistic results, which were

in good agreement with observations. Recently, Lumley and Khajeh-Nouri (1974)
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developed a similar model, in which the closure procedures for the turbulence

transport equations were accomplished by functional expansions. However, the

effects of wall geometry were not considered, and there were many unknown

constants. Wyngaard el al. (1974) used a simplified version of the model to study

the atmospheric boundary layer under unstable conditions, with encouraging

results. These preliminary studies suggest that the turbulent transport approach

can ultimately advance our un<.lerstanding of turbulent flows in the atmosphere.

2. Problems With K-Theory over Homogeneous Terrain

This sectio!} discu,sses some of the problems associated with the specification of

the eddy exchange coefficients K (z) in a one-dimensional numerical boundary-

layer model over homogenepus terrain. Additional problems associated with two-

and three-dimensional models over inhomogenous terrain are discussed in the

following section.

Stevens (1959) was one of the first to incorporate the effects of the 'local

stability' at each level on the values of K(z) in the planetary boundary layer by

use of the following expression

K(z) = K(h)[1- n(z - h)]
1+aae/Jz '

(1)

where e is the potential temperature,. h is the height of the surface boundary

layer, and a, n, and K(h) are prescribed constants. A similar approach was tried

by Fisher and Caplan (1963), who used

K(z) = K*(z) exp [-a(z)ae/az], (2)

where a(z) and K*(z), the expected eddy coefficients under neutral conditions,

were specified,

Estoque (1961) introduced a surf~ce boundary layer based on similarity theory,

into a numerical planetary boundary-layer model. This allowed the mixing

coefficients in the upper numerical transition layer to be dependent on the

structure of the surface layer, via the computed values of K(h), as follows,

K(z)= K(h)(H - z)/(H - h), z>h, (3)

where H is the upper boundary of the transition layer. Values of K(h) were

computed from

K(z) = 121~~1 [<Pm(Ri )r2, z:5 h,
(4)

where I is the Prandtl mixing length, given as kz,. with k as the von Karman

constant,. V the horizontal wind speed, and cPmthe non-dimensional wind shear,

or stability function, which has a value of unity in a neutral, equilibrium surface

boundary layer. This function is dependent on the local Richardson number Ri,
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which is given by

Ri =~ a8/iJz
8m (a v/az)2'

(5)

where g is the acceleration due to gravity, and 8m is the space-averaged potential

temperature. Note that values of K(z) in the numerical transition layer obtained

from (3) are not dependent on local gradients, as were those obtained from (1) or

(2).

A new approach was tried by Pandolfo et al. (1963, 1965), in which K(z) in the

entire boundary layer was again made dependent on local stability by the

application of (4) to heights up to several kilometers. In applying that equation,

the following expression (from Blackadar, 1962) was used for the mixing length I

in the transition layer
I

kz

I=1+ kz/A'
(6)

where A is the value of I in the free atmosphere, in turn dependent on the

geostrophic wind speed. They used the following forms for the stability function

cPm: the Monin-Obukhov (1954) form for forced convection, and the Priestley

(1959) form for free cOflvection. However, a significant number of investigators

using this or similar formulations for K(z), i.e., those dependent on local values of

Ri, report the appearance of a local minimum value of K at a height of several

hundred meters, with geostrophic wind speeds less than about 8 m S-I.

During previously unpublished preliminary experiments with a one-dimensional

version (over homogeneous terrain) of the two-dimensional URBMET urban

boundary layer, Bornstein (1972) also used Equations (4) through (6). The initial

profiles of wind, potential temperature and eddy exchange coefficients; for a

typical case, as well as those after six hours of simulated time (at 2400 LST), are

shown in Figure 1. The wind profile at 2400LST shows a weak low-level jet, i.e.,
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slightly supergeostrophic speeds, at a height of several hundred meters, while the

corresponding K(z) profile indicates a 'local minimum' at that level. The corres-

ponding profile of potential temperature shows that the effects of surface cooling

have been confined to the layer below the local minimum.

The impediment of the downward tiow of heat, which results from such a local

minimum in this and other models, produces surface temperatures which are

lower than those actually observed, e.g., see the results of Pandolfo et al. (1963),

Wu (1965), Zdundowski et at (1967), Tag (1969), Luther (1969), and Sasamori

(1970). In addition, the same effect produc'ed urban circulation cells in the

preliminary two-dimensional version of URBMET (unpublished), which were

confined to the layer below the local minimum. With a different formulation for

K(z), discussed below, the loca!. minimum was eliminated, and the depth of the

circulation cells increased to a more realistic value.

The local minimum in the ,K profiles arises when the finite-difference analog to

Ri is evaluated in the region of a nocturnal low-level jet. A layer of small vertical

wind shear in the region of the jet results in a large value of the "finite-

difference" Richardson number Rid when it is computed by the numerical analog

to (5) given below

. g 82 - 81
RI", =-

(V
- V )

2 (Z2- Zt).
8m 2 1

(7)

The large value leads to a large value of cPm(Ri), and hence a small value of K,

when the following Monin-Obukhov form (for a stable layer) is used for cPm

cPm=(1-a Ri)-I.' (8)

However, Lile (1970) has observed that the largest values of K within the

elevated west-coast subsidence inversion occur in regions near the wind maxima.

His eddy viscosity was estimated from tetroon-derived observations of the pe.rtur-
bation velocities.

Thus, the values of Rid give valid estimates of atmospheric stability only in

layers of strong wind shear, e.g., in the surface boundary layer. Observations by

Lyons et al. (I 9t)4) have shown that when values of Ri~ were calculated from real

. data at heights of about one hundred metres, with small wind shears and

near-adiabatic lapse rates, the results were "quite imprecise".

The value of the "constant" a in (8) is related to the critical Richardson

number Ric (above which turbulence tend's to be suppressed) by

~=Ric>O.
a

(9)

Combining (4) and (8) shows that Rio is the maximum allowable value of Ri in

the Monin-Obukhov formulation. However, the correct value of Ric is uncertain;

for example, Crawford (1965), Panofsky and Prasad (1965), and Reiter and

Lester (1967) have shown that values of Rid and Ric must increase with layer
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thickness. In addition, Lyons et al. (1964) have concluded that "it is quite possible

that there is no unique value of Rio and that Ric will increase with increasing

height." Zdundowski er al. (1967) and Oke (1970a) have echoed this -thought.

If Ric does change with height, then from (9), a also changes with height.

Observations in stable layers, within 8 m of the surface, yield values of a ranging

from 7 (McVehil, 1964) to 0.3 (Neumann and Mahrer, 1971). Businger et al.

(1971) have stated that there are "still not enough data for substantiation" of a

particular value, although the latest estimates are close to 5, e.g., those of Oke

(1970a, 1970b), Webb (1970), and Okamoto and Webb (i970).

Other observations have shown that a is a function of stability; for example,

O'Brien (1965) found it equal to 7.5 for slight inversions, but equal to 3.5 for

extreme inversions. Panofsky el al. (1960) have found that the original value of

0.6, proposed by Monin and Obukhov (1954), gave a better fit to profile data over

a wider range of stability, than did a value of 4.5; which fit best over a narrower

range. Similar results were o'btained by Yamamoto (1959) and Takeuchi (1961),

while Lyons et aL (1964) report that a could be less than unity.

The values of a used in numerical planetary boundary-layer models have

generally been smaller than those derived from tower observations, because the

relatively large grid spacing used in the models, i.e., 25 to 100 m, yields large

values of Rid' In addition, the low -speeds, and hence, the small vertical shears,

especially in models of a sea breeze arising in otherwise calm conditions, also lead

to large values of Ri,:l. Hence, McPherson (1970) used a value of 0.03 for a,

Estoque (1961) used 1.0, and Neumann and Mahrer (1971) used 0.3; Zdun-

dowski et al. (1967) used a. value dependent on height, viz., 7 below 10 m, 1.25

above 100 m, and interpolated values inbetween. Various other methods have

been employed in numerical models when Rid becomes too large, and hence K(z)

too small; for example, Tag (1969) divided his values by 5, equivalent to reducing

a from 3 to 0.6. Estoque and Bhumralkar (1968) used a stability parameter S

given by

S =Jglaetaz
e",av/az'

(10)

in which wind shear appears to the first power and not to the second, as in (5). On

the other hand, Pandolfo et al. (1963) introduced a minimum value for K of

104 cm2 S-I, while Estoque and Bhumralkar (1969) used a value of Ri for the

entire boundary layer which, while averaged through the lowest 100 m, was not

dependent on the local stability at other levels.

Sasamori (1970) overcame the problem by using a third-order polynomial

developed by O'Brien (1970), which increased the magnitude of the computed

K-values at 200 m from 103 to 5 X 10" cm2 s-t, and wiped out an erroneously

predicted surface temperature inversion. This formulation, also used by Bornstein

(1972, 1:975) in the final version of URBMET, assumes that the following are
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known:

K(H*), (aK/aZ)H*, K(h), (aK/aZ)h,

where H* is the level at which K has decreased to some small value, not

necessarily the top of the transition layer. If the vertical variation of K at H* is

taken as zero, then K(z) is given by

K(z) = K(H*) + (~~:!:r {K(h) - K(H*)

+ (z - h)
[(

aK

) + 2 [K(h) - K(H*)J
]}

.
az h H* - h

The equation yi.elds parabolic curves under all stabilities, as predicted by Black-

adar (1962), Lettau (1962), and Lettau and Dabberdt (1970), and as observed

during night-time conditions by EJliot (1964). Deficiencies in this formulation

include the prescribed shape and value of H*, and the lack of dependence of K

on local stability.

The assumption concerning the shape of the vertical distribution of K described

above is somewhat arbitrary. The following vertical distribution of K under

neutral conditions best fits the results from the one-dimensional version of the

turbulence transport mode! of Shir (1973):

K= ki exp (-4i), (11 a)

where K, the dimensionless eddy coefficient, is related to K, the' dimensional

eddy coefficient, such t~at

K ==u*HK.

In addition, i the dimensionless height is related to z by

z=iH,

where

H = 0.5 Ll*/f,

where u* is the friction (scaling) veiocity and f is the Corio lis parameter. Note

that (11 a) is similar in form to that recommended by Arya (1973).

Interestingly, Businger and Arya (1974) assumed that the following form for K

is valid during neutral and stable conditions:

K
- ki

(
I

Vg

I

_

)= exp - - z
1+ cup", 2LI* '

(lIb)

where Vg is the geostrophic wind component orthogonal to the surface wind.

Note that if V~ is approximately 8u*, as has been predicted during neutral

conditions by the turbulence transport models of Wyngaard (1973) and Deardorff

(1970), then .both (1la) and (1lb) are very similar. Lamb et al. (1974) calculated
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the eddy diffusivity of virtual particles by employing a sub-grid turbulence model.

They also found that the optimal eddy diffusivity under neutral conditions is very

close to that described by Equation (11a).

The value of the local Richardson number may not always give a true estimate

of the total eddy mixing process under extremely unstable conditions. This is

because the unstable surface boundary layer is frequently capped by a near-

neutral Ekman layer, as shown by Kuo (1968). Thus, the effect on the Ekman

layer of thermals originating in the surface boundary layer would not be modeled

by an Ekman-layer formulation for K(z) which is dependent on local gradients.

These thermals are too large to be modeled by the -diffusion term and too small

to be simulated by the vertical advection term. Observational evidence for active

convection during near-neutral conditions aloft was presented by Ackerman and

Appleman (1975), while the "penetrative convection" term of Estoque and

Bhumralkar (1969) was an attempt to parameterize the Cumulus convection

process in a numerical boundary-layer model. Thus, an Ekman layer formulation

for K(z) which is dependent only on the gradients in the surface boundary layer

might better represent the total effect of the eddy process in the Ekman layer

under extremely unstable conditions. This is consistent with the observations of

Kuo (1968) who showed that the value of K at z in the Ekman layer at O'Neill

depended "not only on the local value of ae; dZ, but also on the integrated

stability, from the surface level up to the equilibrium level; that is, to the level

where 8 equals the surface value 8s'"

Thus, while standard approaches for specifying K(z) over homogeneous terrain

appear to be adequate under neutral conditions, there is no completely acceptable

formulation for describing them over the entire range of non-neutral conditions.

3. Problems With K-Theory over Non-Homogeneous Terrain

The previous section presented some of the problems that arise with formulations

for K(z), that have been used in numerical models of the equilibrium boundary

layer over homogeneous terrain. This section will discuss some of the additional

problems arising in layers over non-homogeneous terrain. In regions a and d of

Figure 2, the values of K(z) are obviously related to the surface roughnesses z~

and Zo, respectively, while in region c they are related to both roughnesses. A

following section will demonstrate that K(z) in region b is related to z~, and not

Zo, and that the value of tPntin, Equation (4) in a neutral non-equilibrium surface

boundary layer over heterogeneous terrain (region c) is not equal to unity; as it is

over homogeneous terrain. It is also not equal to unity in a neutral, equilibrium

planetary boundary layer over homogeneous terrain, as will also be shown in a

following section.

As Peterson (1971) has pointed' out, the profile K(z) over heterogeneous

terrain must depend on horizontal, as well as vertical, gradients. For neutral
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Fig. 2. Configuration of the flow over an inhomogeneous surface, in which the development of the
equilibrium boundary layer EBL and internal boundary layer IBL is shown.

stability, Heisenberg (1948) reasoned from turbulence theory that

K = E:1/3 1"'/3, (12)

where i::is the rate of dissipation of turbulent energy per unit mass, given by

E:= KS2. (13)

The quantity S i's related to the divergence and deformation of the flow by the

following,

[ (
au.

)
2

(
au. au

)
2

]

1/2

S= 2 ~ + -1.+~ ,
ax; aXk aXj

where the first term is the sum of three terms, and the last set of parentheses
includes nine terms.

Combining (12) and (13) yields the well-known expression

K= [2S.

(14)

(15)

For a boundary layer over homogeneous terrain, (14) simplifies to the form fOI

the wind shear appearing in (4), i.e.,

S = [(:~r+ (:~rr2. (16)

For a two-dimensional, incompres.sible, slab-s.ymmetric boundary layer, e.g., like

that in the URBMET model of Bornstein (1972, 1975), (14) becomes

-

[ (
au

)
2

(
aw

)
2

(
av

)
2

(
av

)
2

(
au aW

)
2

]

1/2

S- 2 - +2 - + - + - + -+- .
ax az az ax az ax

(17;
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The URBMET model is currently being used to simulate the flow of a neutral

planetary boundary layer over a discontinuity in surface roughness, and compara-

tive results from using both (16) and (17), will be available in the near future.

4. Turbulence Transport Model

The fast growing capabilities of the high-speed computer enables the exploration

of the possible application of high-order turbulence transport models to planetary

boundary-layer problems. A turbulence transport model for a neutral atmospheric

boundary layer was described in detail by Shir (1973). This model includes

equations which describe the dynamics of the Reynolds stresses, turbulence length

scale, and mean wind. Results from this model duplicated many interesting

aspects of the atmospheric boundary layer, in particular, the vertical distribution

of the eddy coefficients.

A. VERTICAL DISTRIBUTION Of" THE EDDY COEFFICIENT ABOVE THE SURFACE LAYER

The eddy coefficient, the ratio of the shear stress to the mean wind shear, was

calculated from computed values of these two quantities, and its vertical distribu-

tion is shown in Figure 3. Values equal ki near the surface and reach a maximum
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near z-= 0.3. It is of practical use in planetary-layer modeling to prescribe a

simple form for the vertical variation of the eddy coefficient. Equation (11a) is a

simple formula, which fits the predicted profile for i:$ 0.4, but as shown in the

Figure, it decreases too rapidly above this level. The following more complex.
form

K
. ki

[

-4i 1

]
=- e +-

2 16 i 1.6
(18)

fits the computed profile well throughout the entire layer.

Either Equation (11a), or (18) could be used for modeling neutral conditions.

However, the profile of K under non-neutral conditions has not yet been fully

investigated with the present turbulent transport model. The model could be

extended to non-neutral conditions by including the equations which govern the

mean temperature, temperature-velocity correlations, temperature variance, and

temperature time scale.

The non-dimensional wind shear <Pm was calculated, using the turbulent trans-

fer model of Shir (1~73), herein referred to as S3, from the following equation

kzaV
<Pm=--,

u* az
(19)

where the constant friction velocity u* is a specified scaling velocity, and the wind

shear is given by

av= l(
au

)2+ (
av

)2.
az 'J az az (20)

The following equations from S3 were used to evaluate the two gradients on the

right side of (20)

i (
au
)= 1 av - a2u'w',at az az az2 (21)

i (
av

)= -I au - o2V'W',
at oZ - az OZ2

- -
where u' w' and v' w' are given by (11g) and (11h) in S3, respectively.

The vertical distribution of <Pm in a neutral planetary boundary layer over a.

homogeneous surface, computed from the above equations, is shown in Figure 4.

Its value increased from unity at the surface to a maximum of 1.6 in the middle of

the planetary boundary layer, and then it decreased to a small value at the top of

the layer.

Thus, even under neutral conditions, large errors will result if cPm in (19) is

assumed to have a value of unity above the surface boundary layer. This results as

the mixing length above the surface boundary layer is not given by kz and

because u* is not constant above the surface boundary layer.

(22)
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Fig. 4. Vertical distribution of two forms of computed non-dimensional wind shear.

. The following more general form for the cPm in (19) does not make any

assumptions about the mixing length or the stress, and is frequently used in the

modeling of a neutral planetary boundary layer over homogeneous terrain

l

[

aV

f

CP~I= I

Ip a;'v~ '"
(23)

where Pm is the average density in the boundary layer, I is given by (6), and T is

given by

T

l

av
i

--K
Pm az

(24)

Note that combining (23) and (24) yields Equation (4).

In the S3 model, I was evaluated from its (lli),. which was derived from

cq31=-
£ '

(25)

where q is the square root of the specific turbulent energy, evaluated from (llj) in

S3, £ is its rate of dissipation, and c is a constant.

Excellent agreement was shown in Figure 5 of S:3between predicted values of I

and those observed by Blackadar (1962). In the S3 model, T is computed from

..3:.= (tI' W')2 + (v' W')2.
Pm .-

(26)
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Values of cP~(Figure 4) evaluated from (20), (25) and .(26) show that i"t,like cPm,

is not unity in a neutral boundary layer over homogeneous terrain. Its value

decreased from unity at the surface to 0.65 at the middle of the boundary layer,

and then to a small value at its top.

B. EFFECTS OF HORIZONTAL INHOMOGENEITY

When air flows over inhomogeneous terrain, e.g., over a change of surface

roughness or surface temperature, there exists a transition region (region c in

Figure 2), in which the turbulence i~ not in equilibrium, but in which it is still

adjusting to the new surface condition. Results from Shir (1972) indicate that the

adjusting process is rather slow, implying that the transition region occupies a

significant portion of the area above the new surface. In the transition region, the

eddy coefficients are not only a function of height, but also a function of the

downwind fetch from the edge of the change, as well as of both surface conditions.

The vertical distribution of K at various distances downwind from a change in

surface roughness (from 1 cm to 1 m) is shown in Figure 5. The change in the

K-profile starts near the surface and then gradually propagates upward. Values
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case;- it takes a distance of more than 10 km for the K -profiles to adjust

completely to the new surface conditions. Hence, if the K-profiles are assumed to

adj ust to the new surface conditions immediately, their values in the transition

region will be overestimated for the case of a rough-to-smooth change and

underestimated for the case of a smooth-to-rough change.

5. Conclusions

Formulations for the eddy exchange coefficients K(z) which are dependent on

numerical analogues to the finite-difference Richardson number Ria are only

valid in layers of monotonic wind speed changes. Thus, in a stable layer, at low

wind speed, the values of RiA become very large in the region of the night-time

low-level jet. This produces a minimum value oLK(z) in the very region where

observations have shown large values. In addition, this local minimum impedes.

the predicted downward flow of .heat and momentum, thus confining the effects of

night-time surface cooling to the layer below the local minimum.

Formulations in which the K-profiles are not dependent on local gradients,

and/or have a prescribed shape, are limited in that they cannot treat changes in

stability with height, as found, for example, in the case of an elevated subsidence

inversion. However, the effect on the Ekman layer of thermals originating in the

surface boundary layer would not be modeled by an Ekman-layer formulation for

K(z) which is dependent on local gradients. Thus an Ekman-layer formulation

which is dependent only on the gradients in the surface boundary layer might

better represent the total effect of the eddy process in the Ekman layer under

extremely unstable conditions. .
The value of the critical finite-difference Richardson number Ric (for the

transition to turbuJent flow) appears to depend on the thickness of the layer

through which it is evaluated. Numerical models of the planetary boundary layer,

which use relatively large vertical grid spacings (25 to 100 m), have correctly used

values of Ric which tend to be larger than those computed from observations on

relatively short towers.

Formulations for the eddy coefficients over non-homogeneous terrain that do

not consider non-equilibrium conditions, horizontal gradients, and the "history"

of the flow cannot yield entirely accurate results. Such conditions have begun to

be incorporated into' new turbulence transport models which will advance our

understanding of the turbulent planetary boundary layer.
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