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Points acquired by laser scanners are not intrinsically equipped with nor-

mals, which are essential to surface reconstruction and point set rendering

using surfels. Normal estimation is notoriously sensitive to noise. Near sharp

features, the computation of noise-free normals becomes even more chal-

lenging due to the inherent undersampling problem at edge singularities.

As a result, common edge-aware consolidation techniques such as bilateral

smoothing may still produce erroneous normals near the edges. We propose

a resampling approach to process a noisy and possibly outlier-ridden point

set in an edge-aware manner. Our key idea is to first resample away from

the edges so that reliable normals can be computed at the samples, and

then based on reliable data, we progressively resample the point set while

approaching the edge singularities. We demonstrate that our Edge-Aware

Resampling (EAR) algorithm is capable of producing consolidated point
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sets with noise-free normals and clean preservation of sharp features. We

also show that EAR leads to improved performance of edge-aware recon-

struction methods and point set rendering techniques.
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1. INTRODUCTION

The last two decades have seen a considerable amount of work on
surface reconstruction from scanned point clouds. The use of points
as a modeling and rendering primitive has also been studied exten-
sively [Gross and Pfister 2007]. Both tasks heavily rely on having
a quality normal associated with each point sample. In particular,
popular surface reconstruction techniques such as Poisson [Kazhdan
et al. 2006] and RBF [Carr et al. 2001] are guided by normal infor-
mation and the well-known surfel-based point set rendering [Pfister
et al. 2000] operates on oriented samples. However, points acquired
by laser scanners are not intrinsically equipped with normals; they
must be estimated from acquired image or geometry data. Acquired
data are often tempered with noise and even outliers which hinder
the computation of normals. We stress that normal estimation is sen-
sitive to noise since normals are measured as first-order derivatives
and numerical differentiation amplifies noise.

Computing noise-free normals is much more challenging in
the presence of sharp features, for example, see Figures 1 and
2. The desire to preserve the sharp features disallows the use
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Fig. 1. Points (222K) acquired by a laser scan (b) are corrupted with

noise and not intrinsically equipped with normals. Resampling the data

without accounting for surface singularities may smear the sharp features

after surface reconstruction (c). Our Edge-Aware Resampling (EAR) leads

to a piecewise smooth reconstruction (d) while preserving the sharp edges.

Point colors are the result of normal maps and the original object is shown

in (a).

of a naı̈ve point smoothing operator prior to normal estimation,
since such smoothing blurs the edges. Alternatively, one can
compute normals over the noisy point set, typically via Principal
Component Analysis (PCA), and then apply an edge-aware robust
smoothing operator, such as bilateral filtering [Jones et al. 2004]
or ℓ1-minimization [Avron et al. 2010], to the normals. While such
solutions can generally “separate” the two sides of an edge, in the
vicinity of the edge some erroneous normals may still persist since
the accuracy of these methods is limited by the noise level and
sampling rate. In practice, data near an edge are often unavoidably
undersampled and contain more noise than smooth regions, making
it difficult to recover sharpness directly at the edges.

Given a noisy point cloud with (possibly noisy) normals com-
puted by PCA, as shown in Figure 2(a) and 2(b), respectively,
Figure 2(c) and 2(d) show results of applying bilateral filtering over
the points and PCA normals. As can be seen, near the edge some
points have incorrectly assigned normal directions to agree with
point normals at the wrong side of the edge. These seemingly small
errors may be amplified on the reconstructed surface, leading to
visible artifacts, as demonstrated in Figure 2(e) by an edge-aware
surface reconstruction scheme using Robust Implicit Moving Least
Squares (RIMLS) [Öztireli et al. 2009].

To circumvent this inherent problem, our strategy is to resample
the noisy point set judiciously and in an edge-aware manner. In
particular, since normal estimation close to edges is not reliable,
our key idea is to first resample away from the edges. The result
is a set of oriented points away from the edges that are endowed
with reliable normals. Then based on these oriented points, we
progressively resample the point set while approaching the edges.
Thus, normal estimation proceeds from more reliable regions to
less reliable regions (close to edges). Using the resampling strategy,

we avoid having to compute noise-sensitive derivative measures in
difficult regions. Resampling and normal estimation near edges are
guided by reliable data, in particular, reliable normals.

Our resampling algorithm is built on a robust edge-aware projec-
tion operator which produces samples away from edges and a novel
bilateral projection operator which upsamples progressively so as
to fill the edge regions. Resampling away from edges is enabled
by incorporating normal information into the projection, allowing
the projector to be edge aware. Robustness to noise and outliers is
enabled by the use of the ℓ1-median for data fitting. As we approach
the edges, the bilateral projector considers both positional and cur-
rent normal information when computing the base, direction, and
distance of the projection. While the two latter attributes are the
result of optimizing a bilateral objective function, the base location
is chosen to achieve even point distribution and fast convergence.
The result of our resampling algorithm is a consolidated point set
with noise-free normals and uniform point distribution throughout
and clean preservation of sharp features; see Figure 2(g).

Previous works which also resort to resampling for point cloud
consolidation assume that the underlying surface is smooth [Alexa
et al. 2003; Lipman et al. 2007b; Huang et al. 2009; Miao et al.
2009; Öztireli et al. 2010]. Our Edge-Aware Resampling (EAR)
scheme respects singularities, allowing effective handling of piece-
wise smooth surfaces. We show that EAR and its associated normal
estimation facilitate the reconstruction of such surfaces by edge-
oblivious methods such as Poisson [Kazhdan et al. 2006], Alge-
braic Point Set Surfaces (APSS) [Guennebaud and Gross 2007],
and Delaunay-based Cocone [Dey and Giesen 2001]. At the same
time, it enhances the performance of edge-aware reconstruction
methods such as RIMLS; see Figure 2(h). We also show that EAR
can be applied to upsample a point set, leading to superior rendering
results [Pfister et al. 2000; Vergne et al. 2010] near sharp features.

2. RELATED WORK

Most point set resampling schemes aimed at consolidating a raw
point scan assume that the underlying surface is smooth. Early
work by Alexa et al. [2001] upsamples a point set through Voronoi
point insertion in local tangent spaces followed by Moving Least
Squares (MLS) projection. Lipman et al. [2007b] introduce the
parameterization-free, Locally Optimal Projector (LOP), which is
driven by the use of the ℓ1-median. LOP is shown effective in en-
hancing point sets while being robust to outliers and noise. Huang
et al. [2009] propose a weighted version of LOP which better deals
with nonhomogeneous point density in the input. Miao et al. [2009]
develop a simplification scheme for nonuniformly distributed point
samples, which adaptively reflects the intrinsic geometric features of
the underlying shape. Recent work by Öztireli et al. [2010] presents
a high-quality isotropic point sampling technique for a given sur-
face representation based on spectral analysis, kernel methods, and
matrix perturbation theory. None of these schemes was designed to
handle sharp features, and some required reliable normals as part
of the input. Our resampling approach also relies on ℓ1-median,
but unlike LOP, it estimates and utilizes normals, doing so in an
edge-aware manner.

Existing edge-aware point set resampling schemes either as-
sume that the sharp features are given or resort to explicit con-
struction of surface patches. For an accurate display of intersection
curves between point set surface sheets, the works in Pauly et al.
[2003], Guennebaud et al. [2004, 2008] present accurate rendering
of sharp creases and corners. These methods assume that the inter-
section curves that define the sharp features are given. Fleishman
et al. [2005] develop a piecewise surface-refitting algorithm which
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(a) noisy input with an edge (b) PCA normals (c) bilateral point smoothing (d) bilateral normal smoothing

(e) RIMLS + marching cubes on (d) (f) resampling (b) away from edge (g) resampling (f) close to edge (h) RIMLS + marching cubes on (g)

Fig. 2. Comparison between bilateral smoothing and the proposed EAR approach. Each point is colored according to its normal direction and such normal

maps are used throughout the article for rendering the results. The input (a) represents a fin shape containing a sharp edge; the point cloud (1K points) is

corrupted with noise. In each subsequent result (b–h), we show a 2D cross-section view taken at the blue curve indicated in (a), as well as a zoomed-in 3D

view into the red window shown in (a). The results demonstrate that our resampling approach can effectively remove noise, provide reliable normals, preserve

sharp features, and facilitate edge-aware reconstruction methods such as RIMLS [Öztireli et al. 2009].

allows projecting points and sampling the intersection of surface
patches from two sides of a sharp feature. Their method requires a
dense point set to start with while in practice, regions near sharp
features are often undersampled [Salman et al. 2010]. Generally
speaking, reliable fitting of surfaces is computationally expensive
and sensitive to input data noise and outliers. Our method does not
rely on explicit feature identification or patch fitting; it deals with
heavy noise and undersampling near edges by first resampling away
from edges and then propagating reliable information obtained there
to the edges.

Sharp features are dealt with extensively in the mesh processing
literature. A typical task is to smooth a mesh surface while preserv-
ing sharp features, for example, Hildebrandt and Polthier [2004],
Sun et al. [2007], and Huang and Ascher [2008]. Bilateral filter-
ing [Fleishman et al. 2003; Jones et al. 2003] for mesh smoothing
is related to our bilateral projector since both perform optimiza-
tion under a bilateral objective function. However, mesh smoothing
assumes an explicit connectivity among the points.

More relevant are meshless methods which smooth point set sur-
faces that contain sharp features. The methods of Adamson and
Alexa [2006] and Guennebaud and Gross [2007] assume explicit
representation of sharp features. Salman et al. [2010] first extract
sharp features from the point set and then directly generate piece-
wise smooth surface triangle meshes. Fleishman et al. [2005] and
Lipman et al. [2007a] analyze the point set around sharp features
and fit local surface patches over which points are projected. Algo-
rithms proposed in Merigot et al. [2009] and Weber et al. [2010]
mainly focus on detecting sharp features of a piecewise smooth
surface from its point cloud sampling. Other recent robust meth-
ods [Öztireli et al. 2009; Avron et al. 2010] reconstruct surfaces
from point clouds while respecting sharp features. All of these
methods can produce less than satisfactory results, for example,
erroneous normal estimates, near sharp features as a result of se-
vere noise and undersampling. Resampling the point set prior to
feature extraction, patch fitting, or surface reconstruction enhances
the performance of these methods on a raw point scan.

Given the importance of normals in surface reconstruction
and point rendering, it is not surprising that there has been a
tremendous amount of work on normal estimation from raw point
data. Most methods resort to PCA or its variants [Hoppe et al. 1992;
Alexa et al. 2001; Pauly et al. 2002; Mitra et al. 2004; Lange and
Polthier 2005; Huang et al. 2009]. Near or on sharp features, PCA
normals tend to smear information across discontinuities. Bilateral
smoothing of PCA normals [Öztireli et al. 2009] provides some
remedy but can still produce erroneous results (see Figure 2(d)
and 2(e)). Moreover, sharp features are often undersampled in
point scans which further hinders the performance of PCA.
Another set of techniques use Voronoi poles [Dey and Sun 2006]
or Voronoi-PCA [Alliez et al. 2007] to estimate normals. With
undersampling, such interpolation-based methods cannot infer
accurate normals near sharp features. In our work, we also rely on
bilateral processing of PCA normals, but only to roughly detect
edge locations so as to enable a resampling away from edges.
Normals at points close to edges are then derived from reliable
normals estimated away from edges instead of using PCA.

3. OVERVIEW

Our EAR algorithm takes as input an unorganized and unoriented
3D point scan corrupted with noise, outliers, and undersampling.
It produces a clean, uniform, and feature-preserving set of oriented
points that well approximates the underlying surface. An advan-
tage of the resampling approach is that the density of the point
set can be adjusted; for example, for point set rendering, a dense
point set is obtained. To obtain noise-free normals especially near
the possibly undersampled edge singularities, our resampling algo-
rithm is separated into two phases, as shown in Figure 3. The first
phase resamples a set of points away from edges, for which reliable
normals can be computed. In the second phase, we upsample to
increase point density, progressively filling regions near the edges.
Point insertion approaching the edges relies on the reliable normals
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(a) noisy input (b) resampling away from edges (c) edge-aware upsampling (d) upsampling for rendering

Fig. 3. Overview of EAR scheme. Given a noisy point scan (a) with 163K points, we first resample away from edges, leaving gaps near sharp features (b).

Based on reliable normals associated with the point set thus obtained, we upsample while approaching the edges and filling the gaps (c). Point density can be

further increased through upsampling to obtain a quality point set rendering (d). (Models Courtesy of AIM@SHAPE Shape Repository.)

(c) (d) 1

2
3

(b)(a)

Fig. 4. Upsampling via bilateral projection near a sharp feature: (a) using

both positions and normals yields a better point insertion location (solid

green dot) than using positions alone (dashed green dot); (b) both projection

directions shown fit nearby normals, but the one leading to solid red dot better

preserves point uniformity; (c) using bilateral weights properly projects the

point onto the latent surface (solid red dot), whereas using unilateral weight

pulls the point away (dashed red dot); (d) a series of progressive projection

operations upsample the sharp feature.

generated in the first phase, leading to clean reconstruction of the
sharp features.

Resampling away from edges. Starting with a noisy scan, such
as the one shown in Figure 3(a), we first perform PCA to estimate
normal directions and their consistent orientations as in Huang et al.
[2009]. Next we apply bilateral smoothing of these normals where
the weighting scheme accounts for both positional and normal infor-
mation. Iterative bilateral smoothing alone can generally distinguish
normals near edges and roughly reveal edge locations. However, the
normals may still smear across edges as shown in Figure 2(d). Our
strategy is then to not compute normals too close to edges but first
resample away, where normals can be estimated reliably. The re-
sampling is accomplished by a locally anisotropic projection which
accounts for the current normals. The result of this phase is a set
of oriented points with reliable normals, but leaving gaps close to
sharp features, as shown in Figure 3(b).

Edge-preserving upsampling. Based on the reliable normals, ori-
ented points are inserted and projected onto the latent surface, which
is the unknown underlying surface defined by the input point set.
For each inserted point, we first select its base location at a mid-
point between two existing points; see Figure 4(a). Then, the critical
question is along which direction to project the point, the green dot
in Figure 4(b), to better preserve the sharp feature. To simplify the
problem, we constrain the normal of the inserted point to be the

same as the projection direction. Hence, a careful determination of
the direction serves two important objectives: (i) it fits the normal
distribution of nearby points, and (ii) it helps maintain local point
uniformity. Once the projection direction is determined, we com-
pute an optimal projection distance so that the inserted point can be
moved onto the latent surface; see Figure 4(c).

The steps for determining the base, direction, and distance of the
projection offer an integrated solution for inserting an oriented point
at a sparse spot anywhere on the surface. To properly handle sharp
features, both positional and normal information are accounted for
in all steps, making the projection operator bilateral and edge aware.
As shown in Figures 4(d) and 3(c), repeating the preceding upsam-
pling process incrementally fills the gaps along edge singularities
and reconstructs the sharp features cleanly. The upsampling process
can continue to increase point densities to facilitate rendering of the
point set surface, as shown in Figure 3(d).

4. RESAMPLING AWAY FROM EDGES

The input to our algorithm is an unorganized set of points Q =
{qj }j∈J ⊂ R

3, typically unevenly distributed and containing noise
and outliers. The output of the resampling step described in this
section is an oriented point set S = {si}i∈I = {(pi, ni)}i∈I ⊂ R

6,
consisting of cleaned point locations pi that better represent the un-
derlying smooth surface away from edges, as well as their associated
reliable and edge-aware normals ni .

The process of estimating normals near sharp features is particu-
larly delicate and challenging. Traditional normal estimation meth-
ods, such as Hoppe et al. [1992], usually work accurately when the
underlying surface is smooth, but tend to smear information across
singularities such as corners or intersecting planes. Taking it as an
initial input, our approach amounts to an iteration between: (i) sep-
arating and smoothing normals over the obtained point set, and (ii)
resampling the points away from edges while holding the normals
fixed. Step (i) reveals the location of edges via normal separation
around edge regions, which enables an effective anisotropic projec-
tion operator in step (ii). The latter resampling away from edges,
in turn, can emphasize the edge locations (by sparsity) so that the
process in step (i) in the next iteration operates more accurately.

Separating and smoothing normals. The popular PCA-based
method for computing surface normal approximations from point
cloud data [Hoppe et al. 1992] uses local point neighborhoods.
Certain errors may thus be retained when the input is highly noisy,
as is typically the case near sharp features; see Figure 2(b). In order
to preserve sharp features, we therefore estimate the normal based
on an anisotropic neighborhood, as in the framework of bilateral
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normal smoothing [Jones et al. 2004; Öztireli et al. 2009].
In particular, for a given point si = (pi, ni), we measure the
difference between its assigned normal ni and other normals in its
neighborhood as

f (pi, ni) =
∑

siw′ ∈Nsi

‖ni − ni′‖2θ (‖pi − pi′‖)ψ(ni, ni′ ), (1)

where ‖ · ‖ is the ℓ2-norm, Nsi = {si′ |si′ ∈ S ∧ ‖pi − pi′‖ < σp}
under a given neighborhood size σp . The spatial and normal weight
functions are defined by

θ (r) = e−r2/σ 2
p , ψ(ni, ni′ ) = e

−

(

1−n⊤
i

n
i′

1−cos(σn )

)2

,

where the angle parameter σn scales the similarity of neighboring
normals and we set σn = 15◦ by default. Our goal is to minimize
∑

i∈I f (pi, ni), that is, the normal differences between all points
on the surface and their neighbors. This can be achieved through
iteratively updating ni for all i with

ni ←

∑

si′ ∈Nsi
θ (‖pi − pi′‖)ψ(ni, ni′ )ni′

∑

si′ ∈Nsi
θ (‖pi − pi′‖)ψ(ni, ni′ )

. (2)

The preceding formula works well to distinguish normals across
discontinuities, classifying their directions into two disjoint clusters
near each sharp edge due to the high variance of PCA normals in the
vicinity; see Figure 2(c). However, we can also see that direction
clustering does not really work for the point locations themselves,
and several points are incorrectly assigned a wrong normal direction.
Noise and outliers in the input make it impossible to directly obtain
a clear classification with respect to an edge in both spatial and
directional senses. Indeed, given such an oriented point set, RIMLS
may fail to reconstruct a surface that preserves sharp features; see
Figure 2(d) and 2(e). Thus, with the normals {ni}i∈I obtained by
(2), we now turn to adjusting the locations {pi}i∈I to complete a
split-step iteration for the set S.

Resampling. Several efficient resampling operators have been
designed to consolidate a noisy point set [Alexa et al. 2003; Lipman
et al. 2007b] while being oblivious to normals. These work well
when the underlying surface is smooth. For a resampling operator
to be edge aware, however, it must account for normals, even if
they may not be entirely accurate. We seek such an operator that
would be easily implemented, robust to heavy noise, and utilize
the estimated normals around edges. To this end, we alter the LOP
operator [Lipman et al. 2007b; Huang et al. 2009] and make it
normal or edge aware, allowing for resampling away from edges.

LOP takes as input a noisy point cloud, possibly with outliers,
and outputs a new point set which more faithfully adheres to the
underlying shape. The strength of LOP is that it operates well on
raw data, without relying on a local parameterization of the points
or on their local orientation. In intuitive terms LOP distributes a
set of points, within an optimization framework, to approximate
their ℓ1-median so as to achieve robustness to outliers and noise. At
the same time, a repulsion force is integrated into the optimization
formulation to obtain an even point distribution.

Although LOP works robustly for geometry reconstruction from
raw data, it is still an isotropic operator since the spatial weight
function θ (r) used there does not consider sharp geometric features;
see Figure 5(b). However, in our context, following the bilateral
smoothing step (2), the processed normal directions indicate where
the edges approximately are. Thus we define

φ(ni, pi − qj ) = e−(n⊤
i

(pi−qj ))2/σ 2
p ,

(a) 1% noise (b) LOP (c) σp = h (d) upsampling

(e) 2% noise (f) σp = h (g) σp = 3h (h) upsampling

Fig. 5. EAR under different noise levels and the effect of neighborhood size

σp . Given a noisy input (a) with 18K points, LOP effectively removes noise

(b) but the points are smeared across the edges. In contrast, our resampling

(c) yields reliable data including both point locations and normals away from

edges, which facilitates the subsequent upsampling (d) towards the edges.

When a higher level of noise is present in the input (e), the resampling

should employ a larger local neighborhood size σp to ensure a clearer patch

separation about the edges and better smoothness away from edges, for

example, contrasting (g) with (f), leading to higher-quality upsampling (h).

and adjust the locations of the point pi by replacing θ (‖pi − qj‖)
with φ(ni, pi −qj ) in the first term of the LOP expressions of Huang
et al. [2009].

Specifically, given a set of points Q as in the beginning of
this section, our anisotropic LOP algorithm defines a set of pro-
jected points P = {pi}i∈I ⊂ R

3 by a fixed point iteration
P k+1 = G(P k), k = 0, 1, . . ., where

G(P k) = argmin
P={pi }

⎧

⎨

⎩

∑

i∈I

∑

j∈J

‖pi − qj‖φ(ni, p
k
i − qj ) (3)

+
∑

i∈I

λi

∑

i′∈I\{i}

η(‖pi − pk
i′‖)θ (‖pk

i − pk
i′‖)

⎫

⎬

⎭

.

The repulsion function is η(r) = −r . We choose the initial set
P 0 as a random subset of Q and its initial normal estimates are
computed using PCA and smoothed using (2). The balancing terms
{λi}i∈I vary at each point but depend on just one parameter, 0 ≤
μ < .5, controlling the repulsion force, as explained in Lipman
et al. [2007b] and [Huang et al. 2009]. In general, larger values of μ
impose higher penalties on points that get close to other points. We
set μ = 0.45 by default. Besides the repulsion parameter μ, another
important parameter σp used in both spatial weighting functions φ
and θ is tunable based on a rough density measure h = dbb/

√
m,

where dbb is the diagonal length of the bounding box and m the size
of the input set. The default setting is σp = h.

The resulting operator is therefore edge aware and has the visible
effect of gently pushing points away from edges; see Figure 5(c)
for example. This is because the normal-dependent weight function
φ down-weights large variation in geometric similarity, defined as
the height difference of point qj over the tangent plane of the point
pi . If the noise level is high, we should increase the supporting
neighborhood size σp to ensure the necessary pushing-away
“strength” for a clearer point patch separation about the edges and
piecewise smoothness away from the edges, for example, compare
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si

(a)

Surface

v

(b)

sj

si

bk

sk sk

v

Fig. 6. Base location selection: (a) Inserting a point sk at the center of the

V-cell v then projecting it onto the surface may push it out of the V-cell; (b)

selecting midpoint under orthogonal distance picks bk instead of v. After

inserting sk and projecting it along its normal, the clearance at bk becomes

zero, preventing other points being inserted at bk .

the resampling results in Figure 5(f) and 5(g). The latter leads to
higher-quality upsampling and hence surface reconstruction results.

The bilateral normal adjusting formula (2) and the anisotropic
LOP (3) can be applied alternately several times (our default value
is 3), benefiting each other. Referring to the examples in Figure 5,
starting from our resampling with reliable normals, we are able to
progressively upsample the point set towards the edges; see Fig-
ure 5(d) and 5(h). Figure 2 further shows that such resampling en-
ables the RIMLS procedure to retain sharp features; see Figure 2(h),
in marked improvement over Figure 2(e).

5. EDGE-PRESERVING UPSAMPLING

Given an oriented point set S with visually bald patches along edges
as, for example, in Figure 5(c), we now describe how to carefully
resample points, approaching edges with reliable data. This is done
through a sequence of insertion operations. For each insertion we
add a new oriented point (pk, nk) that fulfills three objectives: (i)
pk lies on the underlying surface; (ii) nk is perpendicular to the
underlying surface at pk; and (iii) points are evenly distributed in
the local neighborhood after insertion.

Finding pk and nk directly under the aforesaid objectives requires
searching within the 5D solution space, which can be difficult, es-
pecially in the vicinity of sharp features. To make the problem
tractable, we design a novel projector, where the projection direc-
tion is constrained to be along the normal of the inserted point, that
is, pk = bk +dknk . The computation of the oriented point (pk, nk) is
then realized in three steps: finding a near-sparsest insertion base bk

(objective (iii)), optimizing the projection distance dk to move the
point onto the latent surface (objective (i)), and computing the nor-
mal direction nk so that it fits the neighborhood normal distribution
and best preserves sharp features (objective (ii)).

Base selection. The goal of choosing a good base bk is to en-
sure fast convergence to an even point distribution within the local
neighborhood, where the ensuing projection must be taken into ac-
count. Here we first discuss how to choose a base location in the
neighborhood of an existing point si . Discussion on how to pick si

is deferred to the end of this subsection.
When finding the base location for point insertion the classical

approach, for example, Alexa et al. [2003], uses a local Voronoi
construction and picks the center of the largest empty Euclidean
ball. However, the Euclidean distance does not take into account
the neighboring normals which dictate the ensuing projection. As
shown in Figure 6(a), in the vicinity of sharp features the projection
may push the inserted point outside its clearing space, keeping the
ball empty. This would attract subsequent points being inserted

(a) input (750 points) (b) LOP (375 points) (c) LOP (1,500 points)

(d) small σp (1,500 points) (e) large σp (1500 points)

Fig. 7. Resampling on a planar point set, which extends the example in

Figure 6 of Lipman et al. [2007b]. While LOP excels at downsampling (b),

using it for upsampling (c) leads to uneven point distributions. Our approach

inserts at midpoints of (b) with the largest clearances, yielding an evenly

distributed point set (d). The inner boundary of (d) is well preserved under

a small neighborhood size. Using a large neighborhood respects the outer

boundary only and fills the interior with evenly distributed points (e).

into the same base, namely the center of the ball, thus stalling the
upsampling.

Therefore, we incorporate projection direction information into
the distance consideration when searching for the largest clearance
ball. Specifically, considering an existing point si and its neighbors
in the set Nsi , we wish to insert at a location b in si’s neighborhood
that maximizes C(b) = minsi′ ∈Nsi

D(b, si′ ). Rather than using the
Euclidean distance for the distance function D(b, si′ ), we define
it as the orthogonal distance between b and the normal extension
at si′ ,

D(b, si′ ) = ‖b − pi′ − n⊤
i′ (b − pi′ )ni′‖.

Since the distance calculation considers the normal directions
of inserted points, which are also their projection directions, the
stalling problem is solved. Once a new oriented point sk is inserted
at b, we have C(b) = D(b, sk) = 0. The chance of further insertion
near b is significantly reduced since even after projection, the normal
extension at point sk passes through b; see Figure 6(b).

Computing the optimal position b in the neighborhood of si based
on D(·, ·) requires solving a constrained quadratic equation. To
quickly find an approximate solution, here we limit our search to
the midpoints between si and its neighbors in Nsi and select the
midpoint with the largest clearance as the base bk . Figure 7 shows
that while selecting among midpoints is only an approximation, it
is able to resample points with even distribution.

During the base selection we need to decide globally into which
neighborhood the next point should be inserted. Depending on the
application we may either want to insert the point where the density
is lowest (for uniform resampling) or place it along sharp boundaries
(for sharp feature enhancement). To achieve both objectives in a
unified approach, we define the priority for the neighborhood of a
given point si as

P (si) = max
si′∈Nsi

(2 − n⊤
i ni′)

ρC

(

pi + pi′

2

)

,
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(a) input (850 points) (b) ρ = 1 (c) ρ = 2

(d) ρ = 3 (e) ρ = 4 (f) ρ= 5

Fig. 8. Upsampling results by EAR for different edge-sensitivity parameter

values ρ. The input (a) contains 850 points and was upsampled to 1,500

points in all the cases shown in (b–f). Larger values of ρ give higher priority

to inserting points along the sharp edge.

(a) input (b) RIMLS (c) EAR (d) RIMLS

Fig. 9. EAR facilitates surface reconstruction. Given a sparse set (a) with

only 2,500 points, RIMLS reconstruction (b) does not produce a quality

piecewise smooth surface. With upsampling by EAR to 7,500 points (c), the

same RIMLS scheme results in a reconstruction of the Fandisk with better

quality and sharp feature preservation.

where ρ is an edge-sensitivity parameter. When ρ = 0, the neigh-
borhood priority for si is determined solely by the largest midpoint
clearance. Hence, inserting a new point in the neighborhood with
the highest priority actually places its base at the midpoint that has
the largest clearance over the whole surface. When ρ > 0, higher
priority is given to insert points along sharp edges where the nor-
mals vary; see Figure 8. In our context, as we first resample away
from potential edges to obtain reliable normals, at this resampling
step for edge regeneration, we use the default value ρ = 5 to give
higher priority near edges, achieving the effect of sharp feature
enhancement, as shown, for example, in Figures 3(c) and 9(c).

It is worth noting that the ability to adaptively sample the latent
surface is an important feature of our method. Careful inspection of
Figure 8 reveals that, with a high ρ value, our approach places all
newly inserted points along sharp edges and corners. Hence, if the
goal is to facilitate sharp feature reconstruction rather than direct
point set rendering as in Figure 3(d), only a small number of point
samples need to be inserted; see Figures 9 and 13 for examples.
This allows our approach to handle very large models.

Projection distance under a given normal. With the base location
bk selected, we now discuss how to project it onto the latent surface
along a given direction n, through determining the step size dk .
This is achieved by minimizing a weighted total projection distance
between p = bk + dkn and existing points in the neighborhood. To
handle points near sharp features, the weights of neighboring points
are determined based on distances in both Euclidean and directional

s1 s2 s3

s4 s5 s6 s1,s2,s3

(b)

(c)

bk

Surface nk

s1

s2

s3

s4
s5

s6

(a)

dk

s4 s5 s6

1 − T

||b −  ||

pk

pi

i

Fig. 10. Projection distance calculation. For each point si in (a), the Eu-

clidean distance weight and range space weight are obtained using the

corresponding weight functions shown in (b) and (c), respectively. The final

projected location pk is a weighted average of the projections of these points

on the straight line defined by bk and nk .

 bk

(a) (b) (c)

 bk  bk

0

0 0 0 n

n

n

n

n

n 0 0

nk
nk

nk

nk nk nk

sj

si
sj

si
sj

si

 dk dk dk

 fk  fk  fk

Fig. 11. A 2D example for normal determination. The first row shows

locally optimal normal directions (red arrow) under different situations. The

next two rows plot the directional difference and the projection distance,

respectively. Note that (b) and (c), while appearing similar, have different

desired normal directions for preserving even distribution after projection.

Table I. Timing for EAR on Four Raw Scans

IP-N FP-N RA-T OP-N RC-T

Figure 1 222,543 22K 49 sec 800K 42 sec

Figure 14 161,994 16K 31 sec 700K 36 sec

Figure 16 99,416 10K 17 sec 600K 29 sec

Figure 17 291,365 30K 58 sec 1.8M 73 sec
IP-N: number of input points; FP-N: number of noise-free points; RA-T: time for

resampling away from edges; OP-N: number of output points; RC-T: time for up-

sampling close to edges. All examples were run on an Intel(R) Core(TM) i7 CPU

860@2.80GHz with 2GB RAM.

spaces, giving the objective function

∑

si∈Nbk

(n⊤(p − pi))
2θ (‖p − pi‖)ψ(n, ni).

By fixing the spatial weight θ at bk , we thus obtain the step size

dk(bk, n) =

∑

si∈Nbk
(n⊤(bk − pi))θ(‖bk − pi‖)ψ(n, ni)

∑

si∈Nbk
θ (‖bk − pi‖)ψ(n, ni)

. (4)

As shown in Figure 10, the previous calculation is equivalent to
projecting all existing points onto the straight line defined by bk and
n = nk and then computing the weighted average location based
on weights determined using both Euclidean and directional terms.
In particular, the directional term ensures that points with normals
more similar to the input n have higher weights. When the input
normal n is accurate, this property ensures that the inserted point
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Input 1: 120◦ angle at edge; 1.0% noise. Input 2: 150◦ angle at edge; 1.0% noise. Input 3: 150◦ angle at edge; 1.5% noise.

(a) a profile showing normals computed by classical PCA are still noisy (red boxes show zoom-ins near the edge)

(b) PCA normals after bilateral normal smoothing do not reveal the edges

(c) normals after applying RIMLS to (b) showing quality degradation as noise and edge angle increase

(d) normals after applying �1-minimization to (a) showing quality degradation as noise and edge angle increase

(e) normals after applying EAR to (a) showing better handling of noise and revelation of soft edges

Fig. 12. A comparison between EAR (e) and several well-known normal estimation and processing schemes including PCA (a), bilateral normal smoothing

(b), RIMLS (c), and ℓ1-minimization (d) [Avron et al. 2010] (results Courtesy of Haim Avron). Three synthetic input point sets (shown in the first row) were

tested at two noise levels. For each input, the underlying shape is characterized by a soft edge (120◦ or 150◦ angle) with 1K points. The results shown via 2D

cross-sections demonstrate that our resampling approach is not only robust to noise but also capable of handling soft edges.

can be projected onto the latent surface even in the vicinity of sharp
features. Finding a good normal direction is therefore critical.

Normal determination. To finally determine pk = bk + dknk , we
now compute the normal vector nk . As shown in Figure 11, here we
have two selection criteria: (i) nk fits the normal distribution in the
local neighborhood of bk , that is, f (bk, nk) of (1) is small; and (ii)
the moving distance dk(bk, nk) defined by (4) is also kept small so
that the even distribution we had sought can be better preserved.

To compute nk efficiently, we limit our search to the two
neighborhoods surrounding ni and nj , respectively, where ni and
nj are the normals of the two endpoints used for generating bk;

see Figure 11. We first decide which neighborhood to use based on
moving distance dk , that is,

l = argmin
l∈{i,j }

dk(bk, nl),

and then compute the normal nk by minimizing f (bk, n) while
holding the directional weight ψ(n, ·) at the fixed normal direction
n = nl . This allows us to compute nk using (2) with a single
iteration. Note that when both endpoints si and sj are on the same
smooth surface, for example in Figure 11(a), the two neighborhoods
surrounding ni and nj overlap. Therefore, the final solution nk
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(a) input (515 points) (b) APSS (c) RIMLS

(d) MLS upsampling

(4,000 points)

(e) APSS over MLS (f) RIMLS over MLS

(g) EAR upsampling

(4,000 points)

(h) APSS over EAR (i) RIMLS over EAR

Fig. 13. Power of edge-preserving upsampling in our EAR scheme. For

a clean and oriented point set with a rather low density (a), APSS (b) and

RIMLS (c) cannot provide a good surface definition without upsampling.

MLS upsampling (d) improves the performances of APSS (e) and RIMLS

(f), but smears sharp features. With EAR (g), APSS (h) and RIMLS (i) suc-

cessfully preserve the sharp features. (Models Courtesy of AIM@SHAPE

Shape Repository.)

(a) raw scan (b) direct Cocone

(c) Cocone over MLS (d) Cocone over EAR

Fig. 14. Result comparison using the edge-oblivious Cocone surface re-

construction [Dey and Giesen 2001]. (Models Courtesy of Andrei Sharf.)

may be close to the average of ni and nj , providing a smooth
interpolation of existing normals.

6. RESULTS AND DISCUSSION

The presented EAR algorithm was tested on a variety of raw and
synthetic point scans. Processing times on raw scans are provided
in Table I. Unless specifically indicated in the captions, the default
parameter values as given in Sections 4 and 5 were applied for
obtaining the presented results. Next we first elaborate on some
typical obtained results and then discuss limitations.

Results. We first show EAR at work on a few synthetic models
containing both sharp and soft features separated by smooth sur-
face patches. In Figure 3, we use the Fandisk model to demonstrate

(a) input (b) σn = 60◦ (c) σn = 30◦ (d) σn = 15◦

Fig. 15. Results of applying EAR with different parameters before Poisson

surface reconstruction on a dense noisy Ramesses model (800K points). As

expected, small values of σn tend to better enhance sharp features, but

may over-sharpen highly curved areas. (Models Courtesy of AIM@SHAPE

Shape Repository.)

the capability of EAR to handle noisy input data; the input point
cloud was corrupted with both noise (2% of the bounding box) and
outliers (10% of the bounding box). The results show that EAR
not only smooths out noise in point positions, but also effectively
handles smooth variations and sharp changes in normals. Figure 12
compares our resampling scheme with several well-known normal
estimation and smoothing schemes including PCA, bilateral normal
smoothing, RIMLS, and ℓ1-minimization filtering on a set of shal-
low fin-shapes with different edge angles and noise levels. These
results demonstrate superior performance of our method in terms
of robustness to noise and effective recovery of soft edge features.
Figure 13 demonstrates the power of EAR, compared to MLS, in
resampling and more specifically, edge-preserving upsampling, a
highly sparse point set surface containing sharp features. With a
small amount of new insertions, the performance of reconstruction
methods such as APSS and RIMLS can be noticeably improved.

Figures 1 and 13–16 all demonstrate how our EAR scheme can
enhance the performance of existing surface reconstruction meth-
ods. Four representative techniques are chosen: RIMLS, APSS,
Poisson, and Cocone. The implementations of the first three are
from MeshLab and the last was provided by its authors. We also
implemented the well-known MLS projector which uses Voronoi-
based upsampling [Alexa et al. 2003], as the classical resampling
operator to compare our EAR scheme with. For all the existing al-
gorithms, we show the best results we were able to generate, follow-
ing the guidelines provided by the distributed codes and published
parameters.

The inputs in Figures 1, 14 and 16 are raw scans of real objects.
The typical imperfections associated with digital scans, such as
noise, outliers, nonuniform point distribution, and missing data, are
ubiquitous in these datasets. EAR removes noise and outliers, fills
in the missing parts, preserves sharp features and, at the same time,
facilitates various surface reconstruction methods. In particular, we
can observe the benefits of applying resampling prior to surface
reconstruction and EAR is evidently outperforming MLS with re-
spect to preservation of sharp features. The proposed two steps,
resampling away from edges and edge-preserving upsampling, are
both indispensable for a satisfactory reconstruction, as shown in
Figure 16 for a wide variety of parameter values.

Figure 15 presents results of applying EAR with different σn be-
fore Poisson surface reconstruction on a large noisy dataset, which is
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(a) raw scan (b) poisson over PCA normals (c) poisson over MLS (d) poisson over EAR

(e) RIMLS over PCA normals (f) RIMLS over S with σp = h (g) RIMLS over S with σp = 10h (h) RIMLS over EAR with σp = h

Fig. 16. Result comparison on a raw scan (a) using the edge-oblivious Poisson [Kazhdan et al. 2006] and edge-aware RIMLS surface reconstructions. (b)

Poisson over oriented PCA normals. (c) Poisson over a filtered and upsampled point set using MLS. (d) Poisson over output of EAR. (e) RIMLS over the same

oriented PCA normals used in (b). (f) RIMLS over an oriented point set S after resampling away from edges with σp = h. (g) RIMLS over the same point

set S with a much larger σp . (h) RIMLS over the output of the complete EAR with the same σp as in (f). The ability of EAR to lead to piecewise smooth and

feature preserving reconstructions in both scenarios is evident. (Models Courtesy of Andrei Sharf.)

(a) raw scan (b) MLS (c) radiance scaling over (b) (d) EAR (e) radiance scaling over (d)

Fig. 17. EAR for surfel point set rendering, where each output surfel is displayed using a single pixel and colored by its normal direction. The input scan

(a) of a shutter blind is noisy and unevenly distributed. MLS resampling (b) smears the edges whereas EAR (d) preserves them well. Comparing (c) and (e),

dominating edges are enhanced on EAR point set surface using radiance scaling [Vergne et al. 2010].

more challenging and contains geometric details of different sizes.
By decreasing the parameter value σn, we are capable of better en-
hancing sharp features. However, if σn is set too small, some highly
curved areas may be over-sharpened.

We also show the results of converting noisy and unoriented point
sets into clean point set surfaces with reliable, edge-aware normals
for direct surfel-based point set rendering. Both synthetic (Figure 3)
and raw (Figure 17) point scans were employed, demonstrating the
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(a) Raw scan (82K points). (b) EAR results.

Fig. 18. With accurate normals estimated near regions of close-by surface

sheets (a), our resampling algorithm performs well; see the middle zoom-

in in (b). However, the upsampling step is limited by the choice of the

σp parameter and may not fill sufficiently large holes present in the point

sampling; see zoom-in’s with black borders in (b).

Fig. 19. One limitation of our resampling scheme is that it is not designed

to handle open point sets; it may produce rough boundaries as a result.

capability of EAR for handling smooth surfaces as well as sharp
features under a unified framework.

Limitations. When the noise level in the input point cloud is
high or the captured object contains close-by surface sheets, the
initial normal orientation using oriented PCA may be erroneous,
subsequently causing errors in the resampling. This problem can
be alleviated by a more capable normal estimation technique, for
example, Huang et al. [2009], which can handle the close-by surface
sheet problem; this is illustrated in Figure 18. In the same figure, we
also see that relatively large holes in the input point sampling are
not filled by our upsampling step in EAR since this step is limited
by the choice of σp , which measures the size of the neighborhood.
A specifically chosen large σp would lead to better gap filling.
Also, we currently use a fixed neighborhood radius σp and angle
parameter σn. Although the default parameter setting has worked
well for most of our test cases, certain special situations may require
a careful tuning of these two parameters to deal with elusive sharp
features.

Another limitation of our EAR scheme is that it is not designed
to handle open boundaries and may produce less than satisfactory
results in that situation, as shown in Figure 19. Finally, under severe
noise or undersampling, our scheme may oversmooth geometric
details and sharp features or oversharpen an edge depending on the
edge sharpness, as can be observed in Figure 16 by comparing (e)
with (h) and in Figure 14(d), for example, see edges in the black
boxes. Currently, our scheme does not have an adaptive parameter
to locally control the sharpness of the resampling results.

7. CONCLUSIONS

We have described a novel resampling algorithm for converting
noisy scan data into a clean point set surface endowed with reli-
able normals. The core of our algorithm consists of two phases: a
robust edge-aware method which computes reliable normals away

from surface singularities is followed by a novel bilateral projec-
tor which progressively upsamples toward these singularities. Both
phases are edge aware and hence the resampling results preserve
sharp features. Specifically, the presented resampling algorithm en-
joys the following properties: (i) sharp edges are preserved and
smooth surfaces are maintained under a unified approach; (ii) the
resampling can reach any density requirement specified by users;
(iii) the reliable normals generated greatly facilitate existing surface
reconstruction methods.

In the future, besides research on open boundary handling, we
aim to develop a point set surface modeling system, where users
can perform local editing such as smoothing, edge enhancing, and
hole-filling directly using resampling tools presented in this article.
We would also like to design a real-time GPU-based resampling
algorithm, providing users with unlimited zoom capabilities when
viewing point set surfaces, without the need for mesh generation.
Finally, it is desirable to include an adaptive parameter to locally
control the sharpness of our resampling results, in particular when
sharp regions are severely corrupted and undersampled.
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