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Abstract

This paper proposes a novel steganography technique, where edges in the cover image have been used to embed

messages. Amount of data to be embedded plays an important role on the selection of edges, i.e., the more the

amount of data to be embedded, larger the use of weaker edges for embedding. Experimental results have shown

that the proposed technique performs better or at least at par with the state-of-the-art steganography techniques but

provides higher embedding capacity.
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1 Introduction
Steganography is an art of secure transmission of mes-

sages from a sender to a receiver. It should ensure that no

one can reliably conclude on the secret communication

between the sender and the receiver. To achieve such a

secrecy, the message is hidden in some cover media which

may not raise any suspicion on the possibility of carrying

the secret message to the third party. Embedding intro-

duces distortion in the cover medium. The embedding

distortion in visual and statistical properties of the cover

mediummay lead steganographic detectability. The objec-

tive of any steganographic technique is to preserve these

properties while embedding the message in the cover

media.

Images are preferred medium for the current steganog-

raphy techniques. Content adaptability, visual resilience,

and smaller size of images make them good carrier to

transmit secret messages over the internet. There exists

a large number of image steganography techniques which

are accompanied by various attacks on the steganogra-

phy systems. Security of any steganography technique

depends on the selection of pixels for embedding. Pixels

in noisy and textured area are better choice for embed-

ding because they are difficult to model. Pixels in edges

can be seen as noisy pixels because their intensities are

either higher or lower than their neighboring pixels due

to sudden change in the coefficient gradient. Due to these

sharp changes in the visual and statistical properties,

edges are difficult to model in comparison to pixels in
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smoother area. Therefore, edges make a better option to

hide secret data than any other region of an image where

a small distortion is much more noticeable. Figure 1a is

an image with 20% of pixels modified to produce dis-

tortion. The image has some smooth parts such as sky

and some parts with high concentration of edges, such

as trees and buildings. Some areas from both smoother

part and high texture part are cropped and zoomed as

shown in Figure 1b,c. It can be seen that the modified pix-

els in the smoother parts are clearly noticeable, whereas

it is hard to detect these distortions in the high texture

parts. In this paper, we have proposed a steganography

technique which can hide the secret message only in the

edges of the cover image. The proposed steganography

technique is found to have excellent security against ste-

ganalysis attacks. The performance of the technique is

analyzed by testing on ‘break our steganography system’

(BOSSbase) ver. 1.01 [1] and ‘break our watermarking sys-

tem’ (BOWS2)a databases, each having 10,000 grey scale

images.

The paper is organized as follows. Section 2 discusses

some well-known steganographic techniques. Various

observations which are used to propose the stegano-

graphic technique are discussed in Section 3. An efficient

edge-based steganography technique has been presented

in Section 4. Experimental results have been analyzed in

Section 5. Conclusions are given in the last section.

2 Literature review
There exist several steganographic techniques to embed

data securely in a carrier medium and tools to detect reli-

ably the presence of any secret message in a steganogram.
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Figure 1 Effect of embedding in an image. (a) Cover image. (b) Smooth part. (c) Textured part.

Steganographic technique consists of embedding and

extracting mechanism. Image-based steganographic tech-

niques can be classified into two categories: spatial

domain and frequency (transform) domain.

A secret message is generally considered as an

encrypted data, where bits of encrypted message are

embedded in pixels of the cover image. The trivial

steganography technique is based on the least signifi-

cant bit (LSB) substitution in which the LSB of the pixels

is modified to embed the secret message. In the spatial

domain, this type of techniques can be broadly classified

into two categories: LSB replacement and LSB matching.

In case of LSB replacement [2,3], the least significant bit

of each pixel of the cover image is replaced by the next bit

of the secret message to be embedded. In LSB matching

[4], if there is a mismatch between least significant bit of a

byte in the cover image and next bit of the secret message

to be embedded, then embedding, in general, is done by

increasing or decreasing randomly the content of the byte

of the cover image by 1, except at the boundary values. In

some techniques, the decision to increase or decrease the

content of a byte is governed by the score of the distortion

function [5]. Embedding in two least significant bits is an

extension of LSB replacement. There are multiple ways to

embed data by flipping the least and the second least bits

of a cover image [6].

In case of transform domain, the LSB-based embed-

ding is done by modifying the LSB of non-zero DCT

coefficients of a cover image. There exist several ways to

embed data in transform domain such as modification of

quantization table, heuristic based, utilizing non-shared

selection, and side information at sender side [7].

Steganalysis tools track the distortion caused during

the data embedding to detect the presence of the secret

message in an image. These tools are classified as visual,

structural, and non-structural [8,9]. Visual steganalysis

attacks analyze images for some distortions which are vis-

ible to human vision system. The distortions could be

visible in stego image or in LSB plane extracted from the

stego image. Structural attacks analyze structural proper-

ties of an image to find any anomaly which are introduced

by steganography. Structural detectors such as histogram

attack [10], sample pair analysis (SPA) [11], RS method

[12], and weighted stego [13] can reliably detect pres-

ence of stego data and even estimate message length.

Non-structural detectors use feature extractors to model

cover image and to compute distortion between the cover

and the stego image to detect embedding. A classifier

is trained by the feature set from large number of stego

and cover images. During training, the classifier learns

the differences in features, and this learning is used to

classify a fresh image into stego or clean image. Non-

structural detectors such as subtractive pixel adjacency

matrix (SPAM) [14] and spatial-rich model (SRM) [15]

claim better probability of detection of embedding in a

stego image. Features based on steganalysis techniques

use support vector machine (SVM) or ensemble classi-

fiers [16] for supervised learning. SVM is not suitable

for any high-dimension feature vector, while this is not

the case with ensemble classifier but its performance is

comparable to SVM.

Most of the current steganography techniques are based

on model-preserving principles. These techniques are

designed by finding a model for cover images, and embed-

ding modifications are done in such a way that this model

is preserved. Highly undetectable stego (HUGO) [5], ASO

[17], universal wavelet relative distortion (UNIWARD)

[18], and maximum mean discrepancy (MMD) [19] are
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designed on this principle. HUGO preserves features used

by SPAM for steganalysis, thus preserving features space

model. Similarly, UNIWARD preserves a wavelet-based

model, while MMD preserves parametric-based model.

Generally, these techniques embed message by minimiz-

ing a defined embedding distortion function heuristically.

But, in [20], a non-heuristic distortion function is used to

preserve the Kullback Leibler distance.

In [21], an embedding technique, known as pixel value

difference technique (PVD) has been proposed. In this

technique, the image is divided into non-overlapping

blocks of adjacent pixels which are randomly selected,

and data is embedded into each of its pixels. The amount

of data embedded, i.e., the number of last significant

bits used, is directly proportional to the differences in

the intensities of adjacent pixels. This uneven embed-

ding in PVD leads to unusual steps in the histogram of

pixel difference in the stego image. An improved tech-

nique (IPVD), proposed in [22], has exploited this vulner-

ability. Adaptive edge LSB technique (AE-LSB) [23] has

also removed this uneven pixel difference by introduc-

ing a readjusting phase and has provided better capacity.

All these techniques are edge adaptive in a way that

they can embed more data where pixel difference is

high but they have one fundamental limitation. These

techniques consider pixel pair at random, rather than

selecting on the basis of higher differences. So, they

may end up by embedding data at random places in the

image and by distorting the texture in LSB plane of the

image. Performance of these techniques are found to be

poor [24].

In hiding behind corners (HBC) [25]b technique, corner

pixels are used to contain hidden data. Data is embed-

ded by using simple LSB substitution. Such embedding

leads to many structural asymmetries and could easily be

detected by structural steganalysis tools like chi-square

[10], sample pair analysis (SP) [26], and weighted stego

(WS) [27]. Thus, the HBC technique which maintains

texture in LSB plane, offers poor security.

Edge adaptive image steganography (EALMR) [24] tech-

nique is based on LSB matching revisited (LSBMR) [3]

technique which alleviates some of the above said lim-

itations. EALMR calculates the difference between two

adjacent pixels. If this difference is greater than a pre-

defined threshold, then both pixels are marked as edge

pixels, and one bit of data is hidden in each of them using

LSBMR. This technique has some limitations. Difference

of intensities of adjacent pixels may not be an edge point;

any such technique may embed data in smoother parts

even though there are some unused prominent edges. So,

any well-known edge detection algorithm can be used to

find edge pixels and to hide data in the detected edges.

Further, since EALMR compares a pixel with its adja-

cent pixel, it can find edges only in one direction. To

overcome this limitation, an image can be divided into

some non-overlapping but equal size blocks, and each

block is rotated in the range of set {0°, 90°, 180°, 270°} to

see edge pixels in more than one direction inside a given

block. But, poor edge selection results in detection by ste-

ganalysis tools like targeted attack [28] and blind attacks

SPAM [14] and SRM [15].

In [5], HUGO steganographic technique is presented.

Its design is derived from the image model obtained from

the feature set of SPAM steganalyzer. It is based on the

minimum-embedding impact principle, where embed-

ding is done in such a way that the distortion in a stego

image is minimum. It preserves a model utilized by SPAM

steganalyzer to derive steganalytic features in such a way

that it does not over-fit to a SPAM feature set. Dimension-

ality of the feature set has been tremendously enhanced so

that the technique is not detectable byminor modification

in SPAM steganalyzer. Instead of using Markov transi-

tion matrix to compute SPAM features, co-occurrence

matrix is used to derive those features. But, it may have

minor degradation in performance. Detectable parts of

the model are identified by Fisher linear discriminant

(FLD criteria) [29]. It rates individual features’ importance

for embedding changes. The parts of the model not vul-

nerable to embedding changes are identified using criteria

optimized in FLD. In [30], it is shown that HUGO is vul-

nerable against steganalysis that uses other models drawn

from different domains.

In [31], embedding distortion cost is computed through

directional residual obtained using Daubechies wavelet

filter bank [32]. The objective is to limit the embedding

changes to those parts of the cover image that are diffi-

cult to model in multiple directions. Embedding is done

in textures or noisy parts and avoiding smooth regions

and clean edges of empirical cover images. Distortion

function, called as UNIWARD [31], is used to compute

delectability map. Syndrome trellis code (STC) [33] and

detectability map are used to embed payload while min-

imizing the embedding distortion. The same distortion

design technique can be used for spatial and transform

domains.

3 Some observations
This section discusses some observations that are used to

design an edge-based steganography technique. The edges

are difficult to model, and the pixels belonging to each

selected edge are considered as noisy pixels for embed-

ding. In Figure 2, it is seen that embedding in edge pixels

leads to changes in edges of the stego image. Consider

the cover image shown in Figure 2a. The edges in the

cover image for maximum possible embedding capacity

are shown in Figure 2b, and corresponding edges in the

stego image are depicted in Figure 2c. Finally, Figure 2d

shows the locations where edges in stego and cover image
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(a) (b)

(c) (d)

Figure 2 Change in the number of edge pixels due to embedding. (a) Cover image. (b) Edge pixels in a cover image. (c) Edge pixels in a stego

image. (d) Edge pixel mismatch.

do notmatch. As a result, it makes it impossible to retrieve

the embedded message from the stego image. But, the

secret message must be extracted from the stego image.

Therefore, just by using any edge detection algorithm to

detect edges and embedding in those locations may not

be sufficient for designing an edge-based steganography

technique.

3.1 Masking cover image

In order to keep no changes in edges before and after

embedding, the LSBs of the cover image are masked, and

edge detectors are applied on the masked cover images.

Since LSB replacement does not modify any bit other than

LSB, a pixel of a cover image, the edges in cover and stego

images remain identical as shown in Figure 3. It has been

observed that the number of pixels belonging to edges

does not change much by masking LSB or the least two

significant bits (2LSB).

Table 1 lists the difference in the number of pixels

belonging to edges between cover image and its modi-

fied images by masking 2LSB for BOSSbase database ver.

1.01 of 10,000 natural images. It can be seen that the

average difference for different edge detectors and mask-

ing 2LSB is limited to less than 2%. However, there is a

outlier case, shown in Figure 4, where the difference is

61%. It can be noted that for both databases, the number

of pixels belonging to edges are increased after masking

2LSB. Hence, masking at least two significant bits does

not effect the edges in the cover image for most of the

cases.

3.2 Embedding in LSB or 2LSB

Most of the steganographic techniques embed data in LSB

of pixels in the cover image pixel. Embedding is done by

either LSB replacement or LSB matching. LSB replace-

ment is detected by most of the structural detectors, but
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(c) (d)

Figure 3 Change in the number of edge pixels due to embedding. (a) Cover image. (b) Edge pixels in a cover (masked). (c) Edge pixels in a

stego (masked). (d) No edge pixels mismatch.

LSB matching is reliably detected through non-structural

detector SPAM and SRM. Hence, if one embeds in the

LSB plane, then there is a high probability of detection

of presence of the message. To overcome these structural

and non-structural detectors, embedding is done in 2LSB

plane of the cover image. Embedding in 2LSB plane vio-

lates the basic assumption of structural detectors, and it

has been observed that even SPAM and SRM are less

accurate in detecting the presence of the message for less

amount of data embedding in comparison to LSB replace-

ment. It is shown in [6,34] that embedding in 2LSB plane

is preferable to embed in LSB plane.

4 Proposed technique
This section proposes a new steganography technique

which hides secret messages in the edges of the carrier

Table 1 Average difference in number of edge pixels between image and its (2LSB) masked image

Algorithm
Total Edge pixels Edge pixels Edge pixels Difference Difference

pixels (average) (%) (masked) (average) (%)

Canny 262,144 23,818 9.1 24,201 383 1.61

Sobel 262,144 8,451 3.2 8,458 7 0.09

Prewitt 262,144 8,407 3.2 8,415 8 0.10

LOG 262,144 18,220 6.9 18,357 137 0.80
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Figure 4 A cover image of an outlier case of edge difference.

image. It is an extension of edge embedding in color image

[35]. To get true edges, Canny edge detection technique

[36] has been used. The selection of edges for embedding

is dependent on the length of payload and the image. As

the payload size increases, a weak threshold for the selec-

tion of edges is used so that more edges can be selected to

accommodate the increased amount of data. For a given

payload, the sharpest possible edges are selected to embed

the message. The flow graph shown in Figure 5 shows

the proposed steganography technique which consists of

two primary tasks: threshold selection and embedding.

Threshold selection is to find Canny high threshold th so

that sufficient number of edges are selected to embed the

given payload in a cover image, while embedding is done

by computing edge-map based on threshold. Payload is

embedded in a cover image in a random order based on
the stego key and the edge map.

4.1 Threshold selection

Canny edge detection algorithm returns [36] edges in

a image on the basis of three parameters, namely, high

threshold (th), lower threshold (tl), and width of Gaus-

sian kernel. Threshold th is used to identify strong edges,

where tl helps to identify weaker edges. The th value is

dynamically adjusted on the basis of message size in such

a way that enough number of edges in the cover image

are selected to embed the secret message. Experimentally,

the tl value is set to 0.4 × th. The effect of change in the

threshold value for edge detection is shown in Figure 6.

The sharper edge means sharp change in visual and statis-

tical properties in the image which make the detection of

hidden data tougher. Canny edge detector’s sensitivity to

noise is controlled by width of the kernel. Increase of the

kernel width decreases detector’s noise sensitivity and vice

versa. Initially, the width of the kernel is taken as constant

to obtain the threshold value. Initial guess of the thresh-

old is obtained through Algorithm 1. Later, fine tuning of

the threshold and width of the Gaussian kernel are done

to improve the embedding algorithm. Figure 7 shows the

effect of width of kernel w on thresholds th and tl and

number of pixels selected for embedding.
It is to be noted from Table 2 that for each image, differ-

ent sets of thresholds are obtained to fix the width of the

kernel. There is no way to obtain the best value of width of

the kernel, but it has been observed that high value of th
and low value of w are better options for embedding. For

experimental purpose, fine tuning is done by increasing

the threshold value and decreasing width of the Gaussian

kernel. The results are evaluated for fixed values of w and

embedding rates. Sets of stego images are evaluated for

security, and the best result among all cases is reported.

Threshold selection tries to avoid clean edges by fixing

tl = 0.4×th and by reducing the width of Gaussian kernel.

Figure 5 The proposed steganography technique.
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Figure 6 Effect of threshold on edge detection. (a) Threshold 0.00. (b) Threshold 0.25. (c) Threshold 0.50. (d) Threshold 0.75.

To facilitate the extraction of message at the receiver

end, the length of the secret message is pre-fixed to the

message to form an augmented message. The structure of

the augmented message is shown in Figure 8. The mes-

sage size field of the augmented message is of fixed length

(C bits). The augmented message is a binary string with

the assumption that C bits are sufficient to store the

message size information.

The threshold value is computed at the time of embed-

ding, and it has to be sent to the receiver separately. The

threshold value and width of the kernel are stored in IEEE

754 floating point half precision format. They require only

16 bits and are embedded in non-edge pixels of the cover

image.

Algorithm 1 finds the suitable high threshold value for

the Canny edge detector. Initially tmin is set to 0 and tmax

equal to 1. The high threshold value th lies between these

two values. Let the number of pixels in edges returned

by Canny edge detector for the given threshold which is

median between tmin and tmax be ne. Binary search is used

to find the threshold value. It is quite possible that num-

ber of pixels ne belonging to edges may not be exactly

same as length of the secret message N . If this condition

occurs, binary search cannot return the threshold value.

To alleviate this problem, the terminating condition of the

search is modified so that it returns the number of pixels

greater than or equal to N , and limit is used to set upper

bound on ne. It has been found that limit of 1% is suffi-

cient for BOSSbase ver. 1.01 and BOW2 database. If ne is

less than the required number of edge pixelsN , then th has

to be greater than the median threshold, tmin is set to the

median threshold, and the process is repeated. Similarly,

if ne is greater than (N + 0.01N), the median threshold is

set to tmax, and the process is repeated until the difference

between the number of edge pixels, ne and N , is less than

the limit.
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(a) (b)

(c) (d)

(e) (f)

Figure 7 Effect of width of the kernel on edge pixels for an embedding rate of 0.10 bits per pixel (bpp). (a) Cover image. (b) Relative width =

1.0. (c) Relative width = 0.8. (d) Relative width = 0.6. (e) Relative width = 0.4. (f) Relative width = 0.2.

4.2 The embedding

Embedding in the cover image is done by least two-

significant-bit substitutions (2LSB). It means that each of

the least two significant bits in the pixel intensity holds

one bit of message. Bits of a pixel are flipped whenever

they are not equal to the message bits. Only six most
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Table 2 Effect of width of kernel on edge pixels

High threshold Low threshold Width Pixels required Embedding capacity

(th) (tl) (w) (range in bits) (bits)

0.070 0.0280 1.0 26,234 to 28,835 28,801

0.105 0.0420 0.8 26,234 to 28,835 28,598

0.105 0.0420 0.6 26,234 to 28,835 28,506

0.095 0.0380 0.4 26,234 to 28,835 28,798

0.095 0.0380 0.2 26,234 to 28,835 28,422

Algorithm 1: getThreshold(I, N , w)

Data: I: Image, N : Length of augmented message to be

embedded, w: width of the Gaussian Kernel

Result: threshold: th for Canny to get N pixels

// limit is set to 1% of the message

length

// no. of edge pixels,ne ≤ N + 0.01 × N

and ne ≥ N

// ne = number of edge pixels in I, when

Canny edge detector is used on I with

high threshold th and low threshold

tl = 0.4 ∗ th and width w

limit ←− 0.01 × N ;

tmax ←− 1;

tmin ←− 0;

set ←− false;

repeat

th ←− ⌊(tmax + tmin)/2⌋;

ne ←− getEdgePixelCount(Canny( I, th, tl, w));

// it returns the number of pixels in

the edges obtained through Canny

edge detector

diff ←− ne−N ;

if diff > limit then

tmin ←− th;

end

else if diff < 0 then
tmax ←− th;

end

else

set ←− false;

end

until set = true;

return th

significant bits participate in edge detection to form an

edge map of the gray scale cover image.

In Algorithm 2, two least significant bits of the cover

image are masked to form an edge map (e). Threshold

is computed using the masked cover image and length

of the augmented message. The number of edge pixels

used to embed the augmented message is half of the aug-

mented message bits because each edge pixel carries two

bits of the augmented message. The edge map e obtained

through the Canny edge detector is randomly arranged

using stego key P by calling randomPermute(e,P). It

ensures that only the intended users can extract data from

the stego image. The secret message M is embedded in

the randomly permuted S using edge map e by modify-

ing the least two bits of pixel Sx,y to the corresponding

two consecutive message bits Mindex+1 and Mindex . The

threshold and width are embedded in non-edge pixels of

the stego image. Non-edge pixel map e’ is obtained by tak-

ing complement of e for minimum values of th and w. The

threshold and width are embedded in the first 32 bits of S

corresponding to e’. Image S is reshuffled to get the stego

image.

4.3 Extraction

It is the process to retrieve the augmented message from

the given stego image. The threshold value and width are

extracted from the non-edge pixels of the stego image.

Stego key has been used as the seed to permute the set of

edge pixels. Extraction is similar to the embedding pro-

cess. The least two significants bits of the stego image S is

masked, and edge map e is computed. It is permuted using

stego key P to retrieve the message in the same order as it

has been embedded. The value corresponding to the least

Figure 8 Augmentedmessage to be embedded.
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Algorithm 2: embed(I,M, P, w)

Data: I: Image,M: Augmented message in binary, P: Stego

key, w: width of the Gaussian kernel

Result: S: Stego image

S ←− I;

// Mask 2LSB and find edges

I ←− bitand(I,252);

L ←− |M|;

// Length of the augmented message

// Compute Threshold

th ←− getThreshold(I, L, w);

// Obtain e: e is edge map obtained by

calling Canny edge detector algorithm

with high threshold th and low

threshold tl = 0.4 ∗ th and width w

e ←− Canny(I, th, tl, w);

// Shuffle eand S using Stego key P

e ←− randomPermute(e,P);

S ←− randomPermute(S,P);

// e is the set of edge pixels

index ←− 0;

for each edge pixel i in e do

Sx,y = bitand(Sx,y,252); // x,y are

co-ordinates of pixel i

Sx,y = Sx,y + 2*Mindex+1 +Mindex;

index ←− index + 2;

end

// Embed threshold and width in non-edge

pixels of S

e ←− Canny(I, 0, 0, 0.1); // Pixels in e are

maximum number of edge pixels for a

given image

e’ ←− complement(e); // Pixels in e’ are

non-edge pixels

for i = 1: 16 in e’ do

Sx,y = bitand(Sx,y,254); // x, y are co-ordinates

of pixeli

Sx,y = Sx,y + th(i);

// th is represented in 16 bits IEEE

754 floating point half precision

end

for i = 17: 32 in e’ do

Sx,y = bitand(Sx,y,254); // x, y are co-ordinates

of pixel i

Sx,y = Sx,y +w(i−16);

// w is represented in 16 bits IEEE

754 floating point half precision

end

S ←− randomPermute(S,P); // Reshuffle S to

get Stego Image: S

return S;

two significant bits of each edge pixel is extracted to val.

Two consecutive bits Mindex+1 and Mindex of payload are

retrieved from val for each edge pixel belonging to e.

This retrieved payload consists of message size, actual

Algorithm 3: decode: retrieve secret message

Data: I: stego image, T : Threshold, P: stego key, w: Kernel

width

Result:M: Secret message

S ←− I;

// Mask least 2 bits and find edges

S′ ←− bitand(S,252);

// Obtain e: e is edge map obtained by

calling Canny edge detector algorithm

with high threshold th and low

threshold tl = 0.4 ∗ th and width w

th ←− T ;

tl ←− 0.4 ∗ th;

e ←− Canny(S’,th, tl, w);

e ←− randomPermute(e,P);

// Shuffle S to get order of embedding

S ←− randomPermute(S,P);

index ←− 0;

for each edge pixel i in e do

val ←− bitand(Sx,y,3); // x, y are co-ordinates

of pixel i

Mindex+1 ←− valmod 2;

val ←− val/2;

Mindex = val;

index ←− index + 2;

end

// extract first C bits to get message

size

msg_size ←− M[1:C];

M ←− M[C + 1 : msg_size];

return (M);

message, and few extra bits. Message size msg_size is

extracted from the first C bits of the payload which is used

to retrieve the actual message M[C+1:msg_size]. Extra

bits beyond msg_size are discarded, and the secret mes-

sage M is returned. Algorithm 3 delineates the extraction

module.

5 Experimental results
The proposed technique has been tested on BOSSbase

database ver. 1.01 and BOWS2 database. Each database

contains 10,000 8-bit gray scale images with size of

512 × 512. Images of BOSSbase taken from eight dif-

ferent cameras, resized and uncompressed. Secret mes-

sage is randomly generated by a pseudo random number

generator (PRNG) to simulate encryption of the secret

message. For experimental purpose, payload is taken to

be 10% bits per pixel (bpp) of the cover image to show

the effectiveness of the proposed technique. In both

databases, the total number of pixels belonging to edges

is found to be less than 10%. Further, the technique

is also analyzed for variable payload and for the best
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threshold and width of the Gaussian filter. It is com-

pared with LSBM, existing edge adaptive techniques HBC

and EALMR, andminimizing distortion-based techniques

HUGO and S-UNIWARD. The steganographic security is

evaluated against visual, structural, and blind steganalysis

attacks.

5.1 Visual attacks

All well-known techniques do not create any visible mark

on the stego image. However, when the LSB plane is fil-

tered to remove the significant part of the cover image,

the difference becomes obvious. The technique like LSBM

embeds data, irrespective to the nature and structure of

image damaged texture in the LSB plane. One of the rea-

sons to use edge-based steganography is to preserve the

texture in the LSB plane. Texture in LSB plane can be

seen in Figure 9b which has some white and black patches;

these are the clusters of pixels having same LSB value.

This property is more prominent in smoother areas of the

image like bright sky or dark shadow. So, any change in

the smoother part of the image may change LSB value of

the pixels in these clusters. This is visible in Figure 9c,

which is a stego image generated by LSBM, corresponding

to the area marked in Figure 9b. Here, LSBM writes some

message bits, causing some black pixels to appear. On

inspection, these black pixels on the white patch may raise

suspicion. On the other hand, all other edge-based tech-

niques in Figure 9 have not caused any noticeable change.

It can be concluded that the edge-based steganography

resists visual attacks.

(a) (b)

(c) (d)

(e) (f)

Figure 9 LSB plane of cover image with 10% embedding and smooth area (marked) is cropped from stego images. (a) Cover image.

(b) Cover image LSB plane. (c) LSBM. (d) EALMR. (e) HBC. (f) Proposed technique.
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5.2 Structural attacks

Embedding data in an image leads to statistical modifi-

cation in the structure of cover image. Any such modi-

fication in a cover image can be observed by first- and

second-order statistics. SP [26] analysis and WS [27] are

two popular structural attacks. Both SP and WS esti-

mate the length of the embedded message by giving the

percentage of pixels which may hold data.

Table 3 lists the result of SP and WS for various

steganography techniques. It can be noted that the rela-

tive message length for HBC lies close to 10%, but that

for LSBM, EALMR, and the proposed technique is 0.2%,

0.06%, and 2.6%, respectively. For better understanding,

SP and WS are executed on the original databases to

get the mean value of relative message length. LSBM,

EALMR, and the proposed technique are found to be close

to the mean value of the natural images. One possible rea-

son for these results could be the use of LSB matching

and 2LSB-based embedding which do not lead to asym-

metry in pixels intensity. Therefore, the relative message

length for any edged-based technique does not raise any

suspicion.

5.3 Blind steganalysis using feature extraction

Edge-based steganographic techniques, minimizing em-

bedding distortion-based techniques, and the proposed

technique are analyzed using SPAM and SRM.

5.3.1 Steganalysis by Subtractive Pixel AdjacencyMatrix

(SPAM)

Analysis of these techniques is performed by taking fea-

ture sets from their respective stego images and natural

images. These features are used to train SVM to learn

the difference in features caused by steganography [37].

Testing is done in fivefold cross-validation. For each tech-

nique, cover and corresponding stego sets of images are

divided into five parts. SVM is trained for four sets of ran-

domly selected sample images, and the results have been

validated for the remaining set. This process is repeated

five times, and the average of all the tests is reported as

the final result. The results from SVM may vary greatly

with the values of two parameters: penalization cost (C)

and gamma (γ ). However, there are few rules to determine

optimal values of these parameters. High or low values of

Table 3 SP andWS relative message length for various

steganography techniques (estimation results)

Database Attacks LSBM HBC EALMR Cover Proposed
image

BOWS2 SP 0.20 15.6 0.06 2.40 2.60

WS 0.12 8.34 0.01 0.84 1.30

BOSSbase ver. 1.01 SP 0.32 9.60 0.09 0.01 0.07

WS 0.10 7.20 0.06 0.00 0.05

both false positive (Fp) and false negative (Fn) indicate that

the classifier is biased towards one class. For a good clas-

sifier, average value of Fp and Fn should be low. So, the

values of C and γ are adjusted to achieve minimum aver-

age value of Fp and Fn. In [38], fivefold cross-validation is

used with the multiplicative grid

C ∈ {0.001, 0.01, . . . 10000}

γ ∈
{

2i | i ∈ {−d − 3, . . . ,−d + 3}
}

,

where d = log2(x), x is the number of features in the sub-

set. But, the range of γ has been extended as it has been

observed that the accuracy of SPAM increases for the

larger value of γ . Hence, for experimental purpose, the

following multiplicative grid is used:

C ∈ {0.001, 0.01, . . . 10000}

γ ∈ {0, 0.01, 0.1, 1, 2, 4, 8, 16} .

Table 4 shows that LSBM is detected with an accu-

racy of 93.0%. HBC and EALMR both do not use any

well-known edge detection algorithm; therefore, they are

easily detected by SPAM and have accuracy rate of 89.6%

and 70.8%, respectively. The maximum detection accu-

racy achieved by the proposed technique is 51.1%, and it

can be attributed to the selection of noisy pixels through

true edge detection [36]. It can be noted that accuracy of

50% is like a random guess about cover and stego images.

This means that features extracted by SPAM have failed

to produce any considerable difference between stego and

natural images for the proposed technique.

5.3.2 Steganalysis by spatial-richmodel

SRM consists of 39 symmetrized sub-models quantized

with three different quantization factors with a total

dimension of 34671. Due to its large dimensionality, it is

implemented using machine learning tool, ensemble clas-

sifier [16] which consists of many base learners such as

FLD [29]. Each of them is trained on a set of a cover

and stego images. The accuracy of the model is evaluated

using the ensemble’s unbiased estimate of the testing error

known as the ‘out-of-bag’ error, EOOB. It is an accurate

estimate of the testing error.

This subsection presents the results of the tests con-

ducted for relative payloads 0.05, 0.10, and 0.20 bpp. It

has been observed in Table 1 that for BOSSbase database,

Table 4 SPAM accuracy against edge embedding

algorithms

Algorithm Accuracy

LSBM 93.0%

HBA 89.6%

EALMR 70.8%

Proposed 51.1%



Islam et al. EURASIP Journal on Information Security 2014, 2014:8 Page 13 of 14

http://jis.eurasipjournals.com/content/2014/1/8

the number of pixels belonging to edges is less than 10%.

The number of pixels belonging to edge can be increased

by decreasing threshold and kernel width. This increase

in the number of pixels is, on average, limited to 34.6%

of cover images of the database. Relative payloads of 0.30,

0.40, and 0.50 bpp are not considered in the database

because it is not possible to embed payload of 0.30 bpp in

large number of images by the proposed technique. The

number of cases for which the payload is more than the

number of pixels belonging to edges increases consider-

ably for embedding rate greater than 0.30 bpp. The simu-

lation results of the proposed technique is compared with

those of HUGO and S-UNIWARD [18]. The results are

obtained through fine tuning of threshold and width of the

Gaussian kernel and embedding using LSBMR. LSBMR is

used, instead of 2LSB, because HUGO and S-UNIWARD

embed at most 1 bit per pixel. The HUGO simulator

with default settings is used to create the stego images.

Similarly, the sets of stego images are obtained from the

S-UNIWARD simulator. Figure 10 presents EOOB errors

of the proposed technique, HUGO and S-UNIWARD. It

is seen that the proposed technique outperforms HUGO

and performs equivalent to the S-UNIWARD for embed-

ding rate up to 20%. Embedding rate beyond 20% cannot

correctly be evaluated because there are large number of

outlier cases as shown in Table 5. For relative payload of

30%, there are 1,331 cover images having less than 30%

of total pixels belonging to edge. Therefore, embedding is

not possible for the given payload in these images.

6 Conclusions
In this paper, a new technique for steganography in gray

scale images has been proposed. Data is hidden at the

edges of the cover image, and the edges are dynamically

selected based on the length of themessage. The proposed

technique can resist visual, structural, and non-structural

Figure 10 SRM results for BOSSbase ver. 1.01.

Table 5 Number of outlier cases for the proposed

technique

Bits per pixel Outliers

0.05 2

0.10 2

0.20 25

0.30 1,331

attacks better than the existing edge-based techniques.

HBC is detected by structural detectors due to anoma-

lies created by LSB substitution. These anomalies are well

resisted by LSBM, but it does not discriminate between

smooth areas and the edges in an image causing some dis-

tortion in LSB plane of stego image. EALMR is resistant

to structural attacks because it uses LSBMR for embed-

ding. It fails to discriminate between prominent edges

and smothered area for a given threshold. Hence, there

is a possibility of embedding in smoother parts of image.

The proposed technique uses two-bit LSB substitution for

embedding, and as a result, it decreases the number of pix-

els to be distorted. Modification of two bits of the selected

pixels leads to significant change in pixel intensity, but

this change does not lead to detectability due to sharp dif-

ference in intensity of edge and non-edge pixels. Hence,

embedding in edges does not produce any visual distor-

tion in stego images. The performance of the proposed

technique is also found to be better than that of HUGO

for embedding rate less than 10% bpp and slightly better

than that of S-UNIWARD for embedding rate of 5%. An

embedding rate greater than 10% bpp leads to embedding

payload in weak edges. It tries to avoid clean edges by fix-

ing tl = 0.4 × th and reducing width of Gaussian kernel,

but there is no rule of thumb to accurately discriminate

between clean and non-clean edges in an image. Further,

reduction of width of the Gaussian kernel improves the

performance of the proposed technique as some finer

details are also selected as edges. The performance of the

proposed technique is expected to be improved if one uses

syndrome coding to reduce the amount of distortion that

occurred due to embedding.

Endnotes
aBOWS-2 in http://bows2.ec-lille.fr/ (2013)
bDigital invisible ink toolkit in http://diit.sourceforge.

net/files/HidingBehindCorners.pdf (2014)
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