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ABSTRACT

Motivation: Current high-throughput protein–protein interaction

(PPI) data do not provide information about the condition(s) under

which the interactions occur. Thus, the identification of condition-

responsive PPI sub-networks is of great importance for investigating

how a living cell adapts to changing environments.

Results: In this article, we propose a novel edge-based scoring and

searching approach to extract a PPI sub-network responsive to

conditions related to some investigated gene expression profiles.

Using this approach, what we constructed is a sub-network

connected by the selected edges (interactions), instead of only a

set of vertices (proteins) as in previous works. Furthermore, we

suggest a systematic approach to evaluate the biological relevance

of the identified responsive sub-network by its ability of capturing

condition-relevant functional modules. We apply the proposed

method to analyze a human prostate cancer dataset and a yeast

cell cycle dataset. The results demonstrate that the edge-based

method is able to efficiently capture relevant protein interaction

behaviors under the investigated conditions.

Contact: guoz@ems.hrbmu.edu.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

No protein performs its function in isolation. Instead, its

‘functional expression’, involved in regulating a cellular

activity, is realized through interacting with other proteins

(Barabasi and Oltvai, 2004). In recent years, high-throughput
experiments have populated the public databases with thou-

sands of protein–protein interaction (PPI) data (Uetz et al.,

2000), and PPI networks have been widely used for construct-

ing biological pathways (Segal et al., 2003) or identifying

protein complexes (Spirin and Mirny, 2003). However, one
weakness of the high-throughput PPI data is that it contains no

information about the conditions under which the interactions

may take place. In other words, the PPI network is not a real

snapshot of the interactions in vivo, but a union of the

interactions activated under various conditions. Therefore, for

a given set of proteins, the interactions among them may

possibly be involved in several different pathways responding to

different environments or conditions (e.g. a disease state).
It is a popular way to use the gene expression information to

measure the ‘activity’ of a molecular network or pathway in

response to the investigated condition. From the entire

interaction networks, some groups identified responsive PPI

sub-networks based on the significant changes of gene

expressions over a particular condition(s) (Ideker et al., 2002;

Scott et al., 2005; Sohler et al., 2004). Other groups ranked the

activity of protein interactions, protein complexes or molecular

pathways based on co-expression of the involved genes (Han

et al., 2004; Jansen et al., 2002; Rahnenfuhrer et al., 2004),

under the hypothesis that higher expression correlation of the

genes implies genuine interactions of the proteins under the

investigated conditions. For example, Jansen et al. (Jansen

et al., 2002) distinguished condition-relevant protein complexes

by the co-expression of the genes encoding the subunits of the

complexes. Han et al. (Han et al., 2004) calculated the average

Pearson correlation coefficients of hubs (i.e. proteins having

many interaction partners) with their partners in the PPI

network, and then by the bimodal distribution of correlation

coefficient, they found one type of hubs as ‘date hubs’ which

interact with their different partners under different conditions.
Aiming at finding the sub-network of interactions responding

to a particular condition, researchers have proposed some

methods to extract the condition-relevant PPI sub-network by

resorting to the gene expression profiles corresponding to the

investigated condition. Here, we refer to such a condition-

relevant PPI sub-network as a responsive sub-network, which

reflects the intricate interplay between the genes (thereafter

proteins) responding to the specific condition. Ideker et al.

(Ideker et al., 2002) were one of the first groups who attempted

to identify such a sub-network (that they call an active

sub-network), based on the speculation that the majority of

genes encoding the proteins in the responsive sub-network are

likely to be differentially expressed. Sohler et al. (Sohler et al.,

2004) and Scott et al. (Scott et al., 2005) searched for significant

area of a PPI network by spanning the network starting with a
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given set of seed vertices (proteins). These proposed methods
scored and searched sub-networks by the differential expression

of genes, and took all known interactions among the identified

proteins as the edges of the responsive sub-network. We refer to

such approaches as the vertex-based methods, which usually do

not further select the active interaction relationships among the

identified proteins. However, simply taking all the interactions

among the ‘active’ proteins as the edges of the sub-network is

inadequate, because under a particular condition, only a part of

the interactions among a set of proteins may be active.
In this article, to identify the responsive sub-network under a

particular condition, we proposed a novel edge-based scoring

and searching method, using interactions (edges) between

protein pairs as basic units to measure the overall activity of
a sub-network. By virtue of the scoring way, we quantify the

response of a sub-network from more comprehensive aspects:

variation of gene expression level, gene co-expression between

directly connected proteins and the topology of the sub-

network, whereas many other existing methods only take a part

of these factors into account. By the edge-based searching

procedure utilizing connected edges, instead of vertices, what

we construct is a sub-network with the topology structure of

condition-relevant interactions, making an improvement over

the previous vertex-based methods.
We applied the proposed method to the human PPI network

from HPRD (Peri et al., 2004) using a gene expression dataset

of prostate cancer (Lapointe et al., 2004) and the yeast PPI

network from DIP (Salwinski et al., 2004) using a gene
expression dataset of cell cycle (Spellman et al., 1998). Results

demonstrated that our method was of improved efficiency in

capturing relevant interaction behaviors under the investigated

conditions. For the prostate cancer dataset, by taking prostate

cancer related genes (Li et al., 2003) as seeds, we combined the

edge-based seed expansion approach (Chen et al., 2006) to

explore the network in more detail. The advantage for the seed

expansion approach is that it can directly use prior knowledge

of known disease proteins.

2 METHODS

2.1 Protein interaction and gene expression data

The PPI data was derived from the physical PPI dataset of DIP (2006

release) (Salwinski et al., 2004) and HPRD (Peri et al., 2004) (Release

6). We processed the data as follows: (i) removing self-interactions; (ii)

removing reduplicate interactions.

The prostate dataset (Lapointe et al., 2004) consists of about 26 000

genes measured in 71 prostate tumors as well as 41 normal prostate

specimens. The expression dataset for cell cycle (Spellman et al., 1998)

contains the relative expression changes of yeast genes during the cell

cycle measured in 77 different time points. For each of the above

cDNA microarray datasets, we screened out genes with missing

data in more than 10% of arrays and applied a base-2 logarithmic

transformation(Wang et al., 2006). Then, we carried out data normal-

ization so that the observations had the mean 0 SD 1 in every array.

By integrating the processed PPI and expression data, we constructed

the entire network to be searched for the condition-responsive sub-

network. Briefly, from a PPI network with proteins as vertices and

interactions as edges, we deleted the vertices without gene expression

data. Finally, the entire network to be searched contained 6509 vertices

with 23 157 edges for the prostate cancer dataset, while the entire

network contained 3619 vertices with 11 083 edges for the cell cycle

dataset.

2.2 Responsive score for a given sub-network

In this work, the responsive score of an interaction (edge) is defined by

the covariation of the expression levels of interaction partners, which

accounts for not only the co-expression between the directly connected

proteins but also differential expressions of the genes.

Let e(x,y) denotes the edge between two directly connected proteins, x

and y, in the entire network. Then, the edge score is defined as

Scoreðe x,yð ÞÞ ¼ CovðX,YÞ ¼ CorrðX,YÞstd ðXÞstd ðYÞ

Here, Corr(X,Y) is the Pearson correlation coefficient of the expressions

of the genes x and y. The differential expressions of the genes are

measured as the overall expression variation (std(X) and std(Y)), which

has been adopted by several researchers for selecting differentially

expressed genes (Ding, 2003; Dudoit and Fridlyand, 2003; Xu et al.,

2006; Zien et al., 2000).

Based on the edge scores, the score for a connected sub-network

G¼ (V, E) is defined as

TðGÞ ¼
X
e2E

ScoreðeÞ:

Obviously, T is affected by the number of the edges in the network.

To eliminate this effect, for a sub-network with k edges, we randomly

sampled 10 000 edge sets of size k from the entire PPI network, and

calculate T(Grand) for each edge set. Under the null hypothesis that a

sub-network is not responsive to the investigated condition, the

expressions of its edges (interaction pairs) are randomly related, and

therefore, the standardized score of the sub-network will not be affected

by its connection structure.

Then, we estimate the mean avgk and SD stdk of T(Grand). The

standardized overall score of the sub-network with k edges is defined as

follows. The standardized Score(G) of random sub-networks are

guaranteed to have mean �¼ 0 and SD �¼ 1.

ScoreðGÞ ¼
TðGÞ � avgk

stdk

To be comparable, Score(G) of sub-networks with different k edges

should have the same distribution. We empirically compared their

scores distribution. Taking k from 50 to 5000 by the step of 50, for each

k, we randomly sample 10 000 sub-networks from the entire network

and generated a score population with 10 000 scores. Then, we

compared every two populations, from the generated 100 score

populations, by the two-sample Kolmogorov–Smirnov test for dis-

tribution goodness-of-fit at the significant level 0.1. The null hypothesis

is that the two populations of samples come from the same population.

The larger the P-value at which the null hypothesis cannot be rejected,

the more likely that they come from the same population. For both

datasets, more than 99% of all 4950 C2
n

� �
pair-wise comparisons

indicated that two populations follow the same distribution. Thus, the

scores of networks with different number of edges roughly follow the

same distribution and are generally comparable. Therefore, a higher-

scoring sub-network, as a whole, indicates its statistical significance and

biological activity in response to a specific condition.

2.3 Searching for responsive sub-network

Because finding the highest-scoring sub-network in the entire network is

a NP-hard problem (Ideker et al., 2002), we implemented the searching

procedure based on simulated annealing, which has the advantage of

being capable of jumping out from local optimization (Kirkpatrick

et al., 1983). In each iteration step, it tests whether the addition or

removal of an edge will increase the score. If the score increases, the try
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will be accepted, otherwise, it will be accepted with a certain

probability. The pseudocode of the edge-based simulated annealing

algorithm is described as below.

Input: entire PPI network G0¼ (V, E); edge-score array; a set of

parameters for running simulated annealing: start temperature Tstart,

end temperature Tend, number of iterations N.

Output: the connected sub-network with the highest score.

(1) Initialize GRS by setting each edge e 2 E to active/inactive with

probability 0.5; Calculate scores for all connected components

(sub-networks) of GRS and get its score vector VRS ;

(2) For i¼ 1 to N, Do

(3) Calculate the current temperature Ti ¼ Tstart �
Tend

Tstart

� � i
N

;

(4) Gtry  GRS;

(5) Randomly pick an edge e 2 E

IF (e 2 Gtry), remove e from Gtry;

ELSE add e to Gtry;

(6) Calculate scores for all connected components of Gtry and get

their score vector Vtrv;

(7) Calculate �¼Vtry � VRS (see the rule in the Supplementary

Material)

IF �4 0, then GRS  Gtry;

ELSE, accept GRS  Gtry with the probability p ¼ e�=Ti ;

(8) END (end for)

(9) Output the connected sub-network with the highest score in GRS.

In order to avoid the possible influence on results by insufficiency of

iteration, after annealing, we traversed every edge of the entire network

at temperature ¼ 0, so that every edge had been tried at least one time.

As described in the pseudocode, the algorithm only outputs the

connected sub-network with the highest score. The program was

implemented in Matlab and Java. The program and data are available

on request.

2.4 Evaluating the responsive sub-network by functional

enrichment analysis

The identification of the responsive sub-network is essentially

unsupervised, so it is a difficult problem to find an objective criterion

(i.e. ‘gold standard’) to evaluate the biological relevance of the results to

the investigated condition. Here, we empirically investigated the

modular behavior of the proteins in the responsive sub-networks.

Based on the hypergeometric distribution statistics (Draghici et al.,

2003), we calculated the probability value of a Gene Ontology (GO)

(Harris et al., 2004) biological process category having at least the

number of the annotated proteins in the responsive sub-network by

random chance. Owing to the hierarchical nature of the GO categories,

there are some redundancies in the selected categories, e.g. parent–child

relationship between the categories. In such a case, only the child

category was analyzed, because its functional description is more

specifically defined. To concentrate on specific functions, we removed

the GO categories at level 5 and above.

In addition, for the prostate cancer data, we used the hypergeometric

distribution statistics to calculate the enrichment of prostate cancer

genes in the responsive sub-network with respect to the entire network.

The prostate cancer related genes were obtained from Prostate Gene

Database (PGDB) (Li et al., 2003), which covers genes, as published

in the literature, involved in many molecular and genetic events of

the prostate cancer, including gene amplification, mutation, gross

deletion, methylation, polymorphism, linkage and over-expression.

Currently, there are 175 prostate cancer genes in PGDB, 118 of which

are included in the entire network.

2.5 Comparison with the vertex-based algorithm

For comparison, we used jActiveModules to identify the responsive

sub-network based on the vertex-based algorithm proposed by Ideker et

al. (Ideker et al., 2002). The score of a sub-network was calculated

based on the P-values (significance levels) of the differential expression

of the genes corresponding to the proteins included in the sub-network.

For the prostate cancer data, the P-values were obtained by the two-

tailed t-test. While in the case of cell cycle data, for each time point, we

assigned a P-value as the two-sided cumulative probability of the

standardized expression levels, pi¼ 2*(1� normcdf(x)), where x is the

standardized expression level of gene i. The assumption to do this is

that the standardized gene expression values in one array follow the

standard normal distribution.

For each dataset, we compared the P-values of the functional

categories in the two sub-networks identified by the edge-based and

vertex-based methods respectively. A smaller P-value of a category in a

sub-network indicates that the corresponding method is more efficient

in capturing proteins relevant to the function described by the category.

3 RESULTS

To find whether the algorithm reaches convergence, we

investigated how the score variation (described as � in the

pseudocode) changed with the iterations. For each dataset,
as shown in Figure 1, after iterating 30 000 times, � nearly

came to zero, suggesting that the score in general had reached

convergence. Then, we changed the starting temperature

and initial active/inactive probability, and found that the

obtained top scores only had little difference (Table 1 and
Supplementary Table S1). Therefore, we ran simulated anneal-

ing with parameters N¼ 30 000, Tstart¼ 1, Tend¼ 0.01, for

further analysis. We note that this algorithm, as others,

cannot insure that the score is globally optimal. However,

even a sub-network with high-score nearly optimal is still of
biological interest (Ideker et al., 2002).

In the prostate cancer data, the responsive sub-network
identified by the edge-based method contained 2181 vertices

and 3200 edges. Among the 2181 proteins in the sub-network,

there were 10 157 interactions in the original entire network and

6957 interactions were filtered out of the sub-network. The

responsive sub-network identified by the vertex-based method
contained 1493 vertices, and all the 2430 edges among these

proteins were included in the sub-network. In the yeast cell

cycle data, the responsive sub-network identified by the

edge-based method contained 1511 vertices and 2616 edges.

Among the 1511 proteins in the sub-network, there were 5797
interactions in the original network and 3181 interactions

were filtered out of the sub-network. The responsive sub-

network identified by the vertex-based method contained

2726 vertices, and all the 7563 edges among these proteins

were included in the sub-network. The resulting large sub-
networks indicate that a large portion of proteins may be

interaction-connected for coordinately carrying out the affected

functions.
One of the advantages of the edge-based method is that,

among the proteins in a sub-network, many less relevant

interactions are thinned out. Unfortunately, because biological
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studies are biased towards reporting positive results, it is
difficult to find negative examples in literatures to justify the

filtered interactions to be inactive under the investigated

condition. To help interpret the results according to the
common hypothesis that higher degree of gene co-expression

implies genuine interactions of the proteins (Han et al., 2004;

Jansen et al., 2002; Rahnenfuhrer et al., 2004), we calculated
Pearson correlation coefficients of the expression values of

protein pairs for the interactions included in the responsive sub-

network and the filtered ones, respectively. As shown in
Figure 2, for each dataset, the filtered edges had much lower

expression correlation than the edges included in the responsive

sub-network.

3.1 Analysis of the responsive sub-network of the

human prostate cancer

The responsive sub-network identified by the edge-based

method covered 74 prostate cancer genes obtained from
PGDB (Li et al., 2003). Based on the hypergeometric

distribution statistics, the random probability that the

sub-network includes 74 of the 118 prostate cancer genes
included in the original network was P¼ 1.04 E�11. In

contrast, there were only 38 prostate cancer proteins captured

in the responsive sub-network based on the vertex-based
method, and the random enrichment probability was

p¼ 7.3E�03.

Then, we investigated the functional modules enriched with

the proteins in the responsive sub-networks identified by either

the edge-based or the vertex-based algorithm. All the identified

modules were listed in Supplementary Table S2. After removing

redundancy (see details in Methods section), the significant

modules identified by at least one method were listed in Table 2.

Generally, as described in Table 2, according to the p-values of

the functional categories identified by both methods, the

responsive sub-network extracted by the edge-based method

was lightly more efficient in capturing proteins in the functional

categories (with smaller P-values), which are relevant to

prostate cancer, as described below. Additionally, when

simply using differentially expressed genes selected by t-test at

a given P-value cutoff, we found fewer significant categories, as

described in supplementary Table S4.
Oncogenesis and tumor progression are relevant to altera-

tions in cell signaling, and blocking the activation of upstream

signal transduction proteins is a promising approach to

cancer therapy (Hudes, 2002). Some prostate cancer relevant

pathways, such as ‘I-kappaB kinase/NF-kappaB cascade’

(GO:0007249), ‘integrin-mediated signaling pathway’

(GO:0007229), ‘activation of MAPK activity’ (GO:0000187),

Fig. 1. The variation of the score during annealing process in searching the responsive sub-networks to human prostate cancer and yeast cell cycle.

Table 1. Effect of starting temperature on responsive scores

Tstart Cell cycle Prostate cancer

Mean SD Mean SD

1 45.9 0.64 69.7 2.08

2 47.5 0.83 71.8 2.17

5 46.9 0.34 69.3 1.60

10 47.5 0.24 69.8 1.80

Note: Each row summarizes results from five annealing runs starting from

different random states of the entire network. Tstart is the starting annealing

temperature. For all runs, Tend¼ 0.01, N ¼ 30 000. Fig. 2. The distribution of the co-expression data. For the active

(black area) and inactive (gray area) edges, respectively, we divided

the correlation coefficient values into 100 intervals and counted the

frequency of the values in each interval. The Y axis represents

the frequency of the Pearson correlation coefficients in each

interval (X axis).
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were enriched with proteins in our responsive sub-network.
For example, I-kappaB kinase can regulate transcription factor
nuclear factor-kappaB (NF-kappaB), which is a key anti-
apoptotic factor in mammalian cell. It was found that

inhibition of NF-kappaB anti-apoptotic and proliferative
activation pathways could inhibit prostate cancer cell growth
(Gasparian et al., 2002). Some integrin-activated signaling

pathways such as FAK (focal adhesion kinase) and PI3-kinase
(phosphatidylinositol 3-kinase) are involved in controlling
proliferation, survival and migration of prostate cancer cells

(Fornaro et al., 2001). Activation of MAPK activity is an
important portion in prostate cancer progression. Prostate
cancer cells achieve the transition from androgen-sensitivity to

androgen-independence by different multistep routes, including
adapting the AR (androgen receptor) pathway via MAPK
(Edwards and Bartlett, 2005). In addition to signal transduction
pathways, many other enriched categories were also relevant to

prostate cancer, such as angiogenesis (GO:0001525) which is
highly relevant to metastatic potential of prostate cancer cells
(Aalinkeel et al., 2004).

It is often believed that hub proteins play central roles in
both cellular processes and PPI network topology (Han et al.,
2004; Jeong et al., 2001). The top 20 hub proteins with the

highest degrees in the responsive sub-network were listed in
supplementary Table S5. The hub protein with the highest
degree in the responsive sub-network was TP53, which is a
tumor suppressor protein inactivated in many cancers, includ-

ing prostate cancer. The second highest degree hub was SRC
which is a coactivator of androgen receptor, playing a role in
androgen-independent prostate cancer (Agoulnik et al., 2005).

The third hub FYN was a member of Src family kinases
essential for many cell functions (Cohen, 2005). It has been
reported that FYN was down-regulated in prostate cancer cell

lines, which might be a new tumor suppressor of prostate
cancer (Sorensen et al., 2006).
By combining some other biology knowledge and methods,

we can explore the responsive sub-network for some more
detailed biological results. For example, because disease
proteins tend to interact with each other (Gandhi et al., 2006;
Xu and Li, 2006), proteins directly interact with many disease

proteins may suggest valuable information to biologists,
especially when the proteins are in response to the disease
condition.

Here, restricted to the responsive sub-network identified by
the edge-based method for prostate cancer, we applied the
method suggested by Chen et al. (Chen et al., 2006) to find a

sub-region closely related to disease proteins, by connecting the
proteins directly interacting with at least one of the 118 disease
proteins included in both the PGDB and the responsive sub-
network. As shown in Figure 3, the largest connected

sub-region contained 123 interactions and 109 proteins,
including 40 disease-related proteins. In the sub-region, there
were 17 proteins interacting with at least two prostate cancer

proteins. Eight of them (SRC, STAT3, CREBBP,FOS, JUN,
PRKCA, IRS1 and FYN) were reported to be related to
prostate cancer in recent published literatures (Agoulnik et al.,

2005; Azare et al., 2007; Comuzzi et al., 2004; Chen et al., 2006;
Neuhausen et al., 2005; Sorensen et al., 2006; Stewart and
O’Brian, 2005).

Table 2. Enriched GO categories for human prostate cancer

GO ID GO categories Edge-based Vertex-based

0006796 Phosphate metabolism 6.96E�10 4.72E�04

0006917 Induction of apoptosis 1.55E�06 2.86E�01

0007229 Integrin-mediated

signaling pathway

3.64E�06 9.42E�01

0008286 Insulin receptor

signaling pathway

6.86E�06 4.36E�01

0006916 Anti-apoptosis 9.88E�06 6.83E�01

0019221 Cytokine and chemokine

mediated signaling pathway

2.78E�05 9.57E�01

0045944 Positive regulation of

transcription from RNA

polymerase II promoter

2.88E�05 1.32E�01

0001525 Angiogenesis 3.83E�05 6.48E�01

0007409 Axonogenesis 4.04E�05 1.29E�01

0050870 Positive regulation of

T cell activation

8.03E�05 6.81E�01

0006261 DNA-dependent

DNA replication

1.01E�04 7.90E�02

0000079 regulation of cyclin-dependent

protein kinase activity

1.05E�04 2.09E�01

0006469 Negative regulation of protein

kinase activity

1.05E�04 2.87E�02

0008285 Negative regulation

of cell proliferation

1.12E�04 1.24E�01

0007010 Cytoskeleton organization

and biogenesis

1.60E�04 6.64E�01

0007178 Transmembrane receptor

protein serine/threonine

kinase signaling pathway

1.84E�04 4.86E�03

0007188 G-protein signaling, coupled

to cAMP nucleotide

second messenger

1.99E�04 2.99E�01

0008544 Epidermis development 2.01E�04 7.78E�01

0042475 Odontogenesis

(sensu Vertebrata)

2.08E�04 4.04E�01

0030097 Hemopoiesis 2.71E�04 2.31E�02

0000187 Activation of MAPK activity 3.46E�04 6.81E�01

0046777 Protein amino acid

autophosphorylation

3.69E�04 1.13E�01

0050671 Positive regulation of

lymphocyte proliferation

4.00E�04 8.16E�01

0050730 Regulation of peptidyl-

tyrosine phosphorylation

5.50E�04 1.00Eþ00

0048002 Antigen processing

and presentation of

peptide antigen

6.95E�04 1.00Eþ00

0042994 Cytoplasmic sequestering of

transcription factor

8.27E�04 2.01E�01

0007249 I-kappaB kinase/

NF-kappaB cascade

8.48E�04 6.67E�01

0050803 Regulation of synapse

structure and function

8.69E�04 3.46E�01

0007507 Heart development 9.13E�04 5.73E�01

0002443 Leukocyte mediated

immunity

9.41E�04 5.23E�01

0007265 Ras protein signal

transduction

1.66E�02 7.00E�04

0051052 Regulation of DNA

metabolism

1.45E�01 7.00E�04
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3.2 Analysis of the responsive sub-network of the yeast

cell cycle

After removing redundancy, the significant modules identified

by at least one method were listed in Table 3. All the identified

modules were listed in Supplementary Table S3. Similar to the

results of the prostate cancer, generally, when a category was

identified by both methods, the P-value for the edge-based

method was smaller.

Yeast cell cycle is a tightly regulated process during which the

replication of DNA, transcription of RNA and translation of

protein are indispensable (Sobel, 1997). The enrichment

analysis suggest that the edge-based method was more efficient

in identifying relevant categories such as ‘G1/S transition of

mitotic cell cycle’ and ‘G2/M transition of mitotic cell cycle’,

which are key regulatory points of the cell cycle. Protein

synthesis has the capacity of restricting a cell to progress past

the cell cycle (Yu et al., 2006).
Ribosomes are ‘factories’ of protein synthesis and synthesis

of ribosomes, which is a key control point for the regulation of

cell growth and division (Dez and Tollervey, 2004). As shown

in Table 3, we were able to identify ribosomal biogenesis related

categories. Some genes in these categories are related to cell
cycle. For instance, over-expression of YLR197W (SIK1),

shortens the G1 phase of the yeast cell cycle and causes spindle
orientation defects (Bogomolnaya et al., 2004). Depletion of
YNL110C (NOP15) leads to a cell cycle defect (Oeffinger and

Tollervey, 2003). And YGR103W (YPH1) is pivotal for yeast
cells to exit G0 and initiate a cell cycle, whose depletion will

lead to cells arrest in G1 or G2 (Du and Stillman, 2002).
The top 20 hubs in the responsive sub-network for the yeast

cell cycle data were listed in Supplementary Table S6. Also, we

found that, some key hub proteins in the responsive sub-
network were involved in the functions related to the cell cycle
process. The hub protein with the highest–degree was

YBR160W (CDC28), which is the catalytic subunit of the
main cell cycle cyclin-dependent kinase (CDK) (Mendenhall

and Hodge, 1998). CDK activity drives events of the cell cycle
through phosphorylation of key substrates (Loog and Morgan,
2005; Ubersax et al., 2003; Wittenberg, 2005). The hub protein

with the second highest-degree in the responsive sub-network

Fig. 3. Ellipses denote disease proteins, and diamonds indicate proteins interacting with more than two disease proteins.
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was YCR057C (PWP2), which is a conserved 90S pre-

ribosomal component essential for proper endonucleolytic

cleavage of the 35S rRNA precursor, whose deletion

leads to defects in cell cycle (Dosil and Bustelo, 2004;

Shafaatian et al., 1996).

4 DISCUSSION

In this article, we proposed a novel edge-based scoring and

searching approach to identify responsive sub-networks under

particular conditions. First, every edge (interaction) was given

an active score according to the gene expression information

under the investigated conditions. Then, the overall sub-

network score was calculated by all the interactions in the

sub-network. The edge-based searching was implemented by

the edge-based simulated annealing algorithm, which optimizes

the connected edges, instead of the vertices as in the

conventional vertex-based algorithm. Therefore, what we

constructed was a genuine sub-network with specific active

interactions, rather than merely a set of proteins connected by

all the interactions in the original PPI network as what the

vertex-based methods obtained. Furthermore, we demonstrated

that the proposed method was able to discover the condition-

relevant functional modules efficiently. It is worth noting that

what we found were ‘condition-responsive’ or ‘condition-

relevant’ sub-networks, including interactions likely to happen

under current conditions. Because we only identified the

interactions under particular conditions, it is impossible to

identify the ‘condition-specific’ interactions, i.e. the interactions

merely happen in the studied conditions but not under any

other conditions.
It has been suggested that genes with similar expression

profiles are more likely to encode interacting proteins (Ge et al.,

2001), and as discussed in the Introduction section, it is a

popular way to use the gene expression information to measure

the ‘activity’ of interactions or a molecular network in response

to a particular condition. However, it should be noted that the

relationship between PPI and gene expression is complicated.

Although several studies have found that mRNA and protein

expression levels in yeast cells to be correlated to various

degrees (Mijalski et al., 2005), the gene expression level does not

necessarily represent the true protein abundance. Furthermore,

expression data are of limited ability for identifying the most

interesting ‘switches’ in PPI behavior, which are generally

determined by other factors such as ligand binding and

posttranslational modification. Therefore, integrating other

data such as DNA–protein interaction, transcription factor-

binding information (Lee et al., 2002; Matys et al., 2003) will be

imperative to understanding how cellular networks coordi-

nately adapt to changing environments (Barabasi and Oltvai,

2004; Tanay et al., 2004). Furthermore, other functional

relationships such as metabolic and signaling pathways can

be represented in the form of interaction networks, and our

method can be applied to such networks to extract condition-

responsive sub-networks.
Another problem that may degrade the proposed algorithm

is the lack or incomplete coverage of interaction data. However,

given the ever-increasing amount of interaction data, we expect

that the approach described here will enhance the under-

standing how the responsive sub-networks, enriched with

multiple functional modules, is assembled into an entire living

system. Obviously, it is an important future task to find higher-

level interactions among the multiple modules coordinately

carrying out cellular functions responding to the same

experimental condition.
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