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Abstract An earlier analysis of chipping fracture in
brittle solids is here extended to include the case of
blocks with inclined side faces and non-normal contact
loading. The simple relation PF = βKch3/2 for the
critical chipping load PF in terms of indent location h
and material toughness Kc is preserved, with angular
coordinates simply incorporated into the β coefficient.
Chipping fracture tests using a Vickers indenter near
the edges of glass blocks with non-orthogonal faces is
used to validate the analysis. Implications of the results
in relation to practical engineering, biomechanical and
anthropological structures are indicated.

Keywords Vickers indentation · Inclined loading ·
Angular coordinates · Brittle ceramics · Edge chipping ·
Toughness

1 Introduction

Chipping from concentrated overloads is important in
many areas: edge integrity in structural materials
(masonry corners, ceramic tiles, kitchen crockery and
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countertops), edge-mounted optical lenses, small-scale
devices (semiconductor chips, MEMS), material remo-
val in ceramic machining, archaeological stone-tool
knapping, survival of dental crowns in occlusal func-
tion. A considerable body of work on chipping fracture
has been reported (McCormick 1982; Cotterell et al.
1985; Almond and McCormick 1986; Thouless et al.
1987; Lardner et al. 1990; Chui et al. 1998; Quinn
et al. 2000; Morrell and Gant 2001; Morrell 2005;
Scieszka 2005), but with little attempt to formulate cri-
tical loads PF explicitly in terms of basic geometric and
material properties. In a recent paper (Chai and Lawn
2007), using a simple geometrical similarity argument,
we were able to derive such a relation for block speci-
mens with orthogonal edge faces in normal loading at
the top surface with a sharp-point contact:

PF/h3/2 = βKc (1)

where h is the distance of the contact from the speci-
men edge, Kc is the toughness and β is a coefficient.
Validation of this relation was carried out using Vickers
indenters to induce edge chipping in glass and several
ceramics. Apart from providing a basic underpinning
of the mechanics of chipping fracture, Eq. 1 affords
a simple route to toughness evaluation in fine-grain
materials (Chai and Lawn 2007).

However, in reality many chipping configurations
are more complex than the ideal geometry conside-
red in the preceding studies. In particular, there may
be angular components in the specimen and loading
configurations. It is our goal in the present paper to
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Fig. 1 Schematic showing (a) normal loading on blocks with
inclined faces (θ �= 0), and (b) off-axis loading (φ �= 0) on
rectangular blocks. Angles positive as drawn

generalize Eq. 1 to include such components. A special
case is a non-orthogonal angle θ between faces adjoi-
ning the specimen edge (Fig. 1a). Another special case
is a non-normal angle φ between load axis and speci-
men surface normal (Fig. 1b). Little has been done to
establish the rolesof theseangles in thechippingmecha-
nics. Here we shall generalize the earlier analysis of Eq.
1 by subsuming both θ and φ variations within a modi-
fied coefficient β, using an extension of the geometrical
similarity principle. Of the two configurations in Fig. 1,
the second is somewhat more restricted practically, at
least in the case of sharp indenters with half-angle ψ ,
because of the geometrical constraint that point contacts
can be made only within the range φ < π/2 − ψ . In
the case of a Vickers indenter, this means confinement to
within−16◦ < φ < 16◦. Accordingly, we shall confine
experimentalvalidationofourextendedanalysis tonon-
orthogonal specimens in Fig. 1a, using the same nor-
mal Vickers indentations on transparent glass blocks as
before but now with inclined edge faces.

2 Modified fracture mechanics

Consider a sharp, fixed-profile indenter making a
contact at angle φ with the surface normal at a
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Fig. 2 Coordinate system for specimen with inclined side face
in off-axis loading. Crack initially propagates downward along
loading axis. At increasing depth c, crack begins to senses adja-
cent wall distant d away, and becomes unstable

distance h from the edge of a block with side face at
angle θ to vertical. Define these angles as positive as
shown in Fig. 2. The load axis is contained within a
plane perpendicular to the specimen edge. The “point”
contact generates a plastic zone which in turn generates
a median crack. Allow the median crack to propagate
with increasing load P through a distance c. Initially,
the propagation is assumed to remain coplanar with the
P vector, regardless of φ, consistent with a simple rea-
lignment of the Bousinesq-like point-load stress field
along the load axis (Swain 1979). Once formed, the
crack is driven downward by a crack-mouth wedging
force. Subsequently, as it begins to sense the side wall,
the crack curves outward into a classical spalling chip
configuration. In conformity with geometrical simila-
rity, we suppose that the point of instability occurs when
the crack length c exceeds some fixed multiple of the
perpendicular distance d of the crack tip from the side
wall. Writing this critical distance as cF = γ d, with
coefficient γ independent of φ and θ , we have from
straightforward geometry

cF = γ h cos θ/[1 + γ sin(φ + θ)]
= c0 cos θ/[1 + γ sin(φ + θ)] (2)

with γ h = c0.
Now consider the corresponding critical loads. In

our previous analysis we argued that the size of the pro-
pagating crack is related to the contact load by
P/c3/2 = (Kc/χe) f (c/h), with f (c/h) a dimension-
less shape function representing the influence of the
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side walls and χe a contact coefficient (Chai and Lawn
2007). At instability, P = PF at c = cF, this reduces
to

PF/h3/2 = (Kc/χe)(cF/h)3/2 f (cF/h) (3)

If we now assert that the quantity f (cF/h) be insensi-
tive to angular variation, we may combine Eqs. 2 and
3 to obtain a relation of analogous form to Eq. 1

PF = βKch3/2

= β0 Kch3/2{cos θ/[1 + γ sin(φ + θ)]}3/2

= P0{cos θ/[1 + γ sin(φ + θ)]}3/2 (4)

with β0 = (1/χe)γ
3/2 f (c0/h) and P0 = β0 Kch3/2

(Chai and Lawn 2007).
Beyond the instability point, the crack propagates to

the side face to form the chip. Let the dimensions of
the chip measured on that face be C and D, as defined
in Fig. 1. We suppose that the projection C/ cos(φ+θ)
of the chip depth onto the line of action of the applied
load will scale directly with cF, and that D will scale
with C . Then in conjunction with Eq. 2 we obtain

C = γ ′h cos θ/{cos(φ + θ)[1 + γ sin(φ + θ)]} (5a)

D = γ ′′h cos θ/{cos(φ + θ)[1 + γ sin(φ + θ)]} (5b)

where γ ′h = C0 and γ ′′h = D0, with γ ′ and γ ′′ coef-
ficients. The chip volume has the form

V = αC Dd (6)

with α another coefficient. Note that V scales with h3.

3 Experimental validation

3.1 Materials and methods

Model soda-lime glass specimens were fabricated from
polished blocks of minimum dimension 12 mm. Glass
was chosen so that the entire crack evolution could be
followed with a video camera. One side face of each
block was ground and polished to 1µm finish with dia-
mond paste at a prescribed angle of inclination θ , as in
Fig. 1a.

Indentations were made on the glass top surfaces
with a Vickers diamond pyramid at prescribed distances
h between 1 and 3 mm from the edge, in normal loading
(φ = 0). Face angles in the range −30◦ < θ < 60◦,
within which well-defined chips are obtainable, were
examined. No non-normal loading was pursued, for the
reasons of geometrical constraint outlined in Sect. 1,

plus the fact that a tangential load component tended
to cause slippage at the contact. The load rate was fixed
at about 1 N s−1, so that chipping occurred within 1–
2 min. A video camera was used to view crack develop-
ment from the side, and crack depth c along the load
axis monitored as a function of increasing load P up to
the critical value PF for chipping (Fig. 2).

Chip dimensions C and D on the side faces were
measured post mortem (Fig. 1). Chip volumes were
determined by weighing the specimen before and after
indentation, using a value 2470 kg/m3 for the density
of soda-lime glass.

3.2 Crack morphology

The basic geometrical elements of chip formation were
more or less as before (Chai and Lawn 2007), but with
elongation or foreshortening at different angles. Figure
3 shows three side views for each of three face inclina-
tions, (a) θ = −20◦, (b) +20◦, and (c) +50◦, indicating
the crack evolution to unstable chip formation. In each
case the crack starts downward closely parallel to the
loading axis. Then, at a critical depth, it begins to sense
the adjacent face, and curves around into an unstable
configuration to form a chip on the side wall. At the
largest angle θ , Fig. 3c, the crack actually deviates a
little away from the side wall before jumping into the
chip formation. Post-mortem examination of the chip-
ped faces showed the same scallop-shaped geometry as
reported previously (Chai and Lawn 2007).

3.3 Crack evolution and critical loads

Data for the reduced critical chipping load quantity
PF/h3/2 are plotted in Fig. 4 as a function of side-
wall inclination θ for indentation distances h between
1 and 3 mm in normal loading. The unfilled symbol at
θ = 0 is the mean and standard deviation (20 tests) from
the preceding study on rectangular specimens (Chai
and Lawn 2007). The solid line is a prediction from
Eq. 4 using best-fit parameters β0 = 9.3 along with
Kc = 0.6 MPa m1/2 for soda-lime glass from the same
preceding study, along with γ = 1.5. (This last para-
meter differs slightly from γ = 2.0 estimated in the
preceding paper, but fits the broader range of angular
data better.) The value of PF diminishes with increa-
sing θ , as may be expected. Of special note is the rapid
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Fig. 3 Side views of
Vickers cracks for normal
loading (φ = 0) on glass
blocks with inclined side
faces: (a) θ = −20◦,
h = 0.8 mm; (b) θ = +20◦,
h = 1.0 mm; (c) θ = +50◦,
h = 2.2 mm

(a) θ = –20° (b) θ = +20° (c) θ = +50°
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Fig. 4 Critical load PF/h3/2 versus side-face inclination angle θ
for normal loading of Vickers indenter on glass blocks with incli-
ned faces. Data for various indent location h. Solid curve is theo-
retical fit of Eq. 4

rise at the other end of the angle scale, at θ < −30◦,
indicating that heavily beveled edges may be immune
to spalling.

Figure 5 shows more detailed information on crack
evolution from in situ observations in the same
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Fig. 5 Normalized load P/PF on Vickers indenter as function
of normalized crack size c/cF. Each symbol represents data for
a specific combination of θ and h, normal loading. Solid curve
is empirical fit to data

specimens. Each symbol represents a different com-
bination of h and θ , covering the same range of incli-
nation angle (−20◦ ≤ θ ≤ +55◦) and indentation
location (1 mm≤ h ≤3 mm) as in Fig. 4. The data
are normalized as P/PF versus c/cF, with PF and cF
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computed from Eqs. 4 and 2, respectively, using
γ = 1.5. Such a plot reduces all data to a single uni-
versal function, within the data scatter, drawn empi-
rically as the solid curve. This curve passes through
a maximum at c = cF, corresponding to critical load
instability at P = PF. Note that some data in this plot
extend beyond the instability point at c = cF, attri-
butable to slow crack growth effects from intrusion of
water (Marshall et al. 1979). The curve is asymptotic to
the inclined dashed line representing the limiting case
P ∼ c3/2 for small cracks (c << h), corresponding to
f (c/h) = 1 in Eq. 4 (Chai and Lawn 2007).

The fact that the data in Figs. 4 and 5 can be fitted,
within scatter, to universal functions may be considered
validation of the geometrical similarity principle.
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Fig. 6 Plots of relative chip dimensions C/h and D/h versus
side-face inclination angle θ , normal loading. Data for various h.
Unfilled symbols from previous study on rectangular specimens.
Solid curves are theoretical fits of Eq. 5
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Fig. 7 Volume of chip as function of side-face angle θ , showing
experimental data and prediction from Eq. 6

3.4 Chip dimensions

Plots of relative chip dimensions C/h and D/h are
shown as a function of side-face inclination θ , again
for normal loading, in Fig. 6. Filled symbols are data
for indentation locations within the range 1 mm≤ h ≤
3 mm. Unfilled symbols at C0/h = 5.1 and D0/h =
8.0 at θ = 0 are means and standard deviations (20
tests) from the preceding study (Chai and Lawn 2007).
Again, the data can be plotted on universal curves,
within the scatter. Solid lines are theoretical fits from
Eq. 5, using γ ′ = C0/h = 5.1 and γ ′′ = D0/h = 8.0.
A rapidly diminishing chip size for increasing θ is appa-
rent.

Figure 7 is a plot of reduced chip volume V/h3 as
a function of face angle θ . Data are from experimen-
tal measurements. The solid curve is a prediction using
Eqs. 5 and 6, with the adjustment α = 0.32. Noting the
logarithmic ordinate, a strong falloff in V with increa-
sing θ is apparent.

4 Discussion

In this study we have demonstrated the role of angu-
lar components in the chipping mechanics of brittle
structures. An analytical description, based on geome-
trical similarity principles, has been developed for the
general case of a point load delivered at angle φ with
the surface normal at a distance h from the edge of
a block with side face at angle θ to orthogonal. The
analysis retains the explicit relation PF = βKch3/2 in
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Eq. 1 for the critical chipping load PF in terms of indent
location h and toughness Kc, with the angular depen-
dence conveniently incorporated into the coefficient
β. Experimental validation has been given for Vickers
indentations loaded normally (φ = 0) onto glass blocks
with inclined side faces (θ �= 0). The critical loads PF

diminish strongly with increasing angle θ , as seen in
Fig. 4. Of special interest in Fig. 4 are the responses at
each end of the angle range: at large θ (flakes), PF is
relatively small, accounting in part for the ease of chip
formation in stone tools (Dibble and Pelcin 1995); at
small negative θ (chamfers), PF is prohibitively high,
explaining the immunity of properly beveled edges to
visible damage. The chip dimensions (Figs. 6 and 7)
also diminish strongly with increasing θ (positive angle
defined as in Figs. 1 and 2), i.e., consistent with an ever-
increasing free-surface influence. Equation 4 predicts
a similar trend with increasing load angle φ, but this
dependence was not investigated here.

There are acknowledged limitations in the present
study. In the analysis of Sect. 2 it was assumed that
the notion of geometrical similarity universally extends
to all angles θ and φ, including the function f (cF/h)
in Eq. 3. Such “universality” is not based on rigorous
fracture mechanics. However, the “goodness” of the
data fits in Figs. 4–7 suggests that our assumption is
a reasonable approximation, at least for the θ depen-
dence, within the scatter. Experimentally, we have res-
tricted our consideration to just one indenter type, a
Vickers pyramid, with its attendant constraints on load-
axis angle (−16◦ < φ < 16◦). Recall that it is this
constraint which has precluded a study of off-axis loa-
ding here, which leaves validation (or otherwise) of the
φ dependence as an outstanding issue. In reality, since
the well-developed median crack is driven by a mouth-
wedging force exerted by the walls of the indenter, the
quantity β0 must also be a function of indenter angle
ψ (Fig. 1) (Lawn and Fuller 1975), which means that
Eq. 4 should strictly be recalibrated for each indenter
type. Intuitively, use of a sharper indenter (smaller ψ)
must be expected to diminish the critical load for chip-
ping; and, at the same time, to lessen the constraint on
the load axis (larger allowable range in φ). Proceeding
in the opposite direction to blunter indenters, typified
by spheres, may add extra complications, for instance
by generating altogether different fracture geometries
(cone cracks). The role of indenter geometry is a factor
that warrants further investigation.

Notwithstanding these limitations, Eq. 4 has a cer-
tain power. It conveniently expresses the spatial and
angular coordinates in separable terms. Thus, for any
given indenter, one need only measure the critical quan-
tity P0 from control tests at θ = 0 = φ in order to pre-
dict PF for any specimen and loading configuration.
Thus tests for any specific indenter could be conducted
on rectangular specimens in normal loading to evaluate
P0/h3/2 in Eq. 4, from which values of PF for any com-
bination of θ and φ could be predetermined, even if Kc

were not known a priori.
A condition for applicability of Eq. 4 is that a chip

always forms on the side face. There are some cases
where this condition may not be met. Where the charac-
teristic depth C becomes sufficiently large, especially
in the region θ << 0 or φ << 0, the chip may extend
through the specimen to the bottom rather than side
face. In such cases, specimen size becomes an issue.
Conversely, where C becomes vanishingly small, at
θ >> 0 or φ >> 0, or at h >> 0, the chip may
emerge on the top surface. Such limiting cases, while
perhaps of interest in some applications (e.g., stone tool
flaking (Dibble and Pelcin 1995)), lie beyond the scope
of the present work.

As in the preceding study (Chai and Lawn 2007),
there are additional factors that could be issues in chip
formation. These include: rate effects from the intru-
sion of ambient moisture into the cracks, accelerating
crack growth in prolonged loading states; R-curves in
brittle materials with heterogeneous microstructures,
in which case the assumption of a single-valued tough-
ness Kc in Eq. 4 breaks down; more complex edge geo-
metry, e.g., rounded corners; indenter geometry effects
and additional fracture modes, especially in transitions
to very sharp or very blunt indenters; in off-axis loa-
ding, potential slippage and friction at the contact point,
leading to multiple cracking. Application of the frac-
ture mechanics relations in Sect. 2 needs to be made
with due recognition of these and any other influencing
factors.

Acknowledgements This work was supported by a grant from
the U.S. National Institute of Dental and Craniofacial Research
(PO1 DE10976).

Certain equipment, instruments or materials are identified in
this paper to specify experimental details. Such identification
does not imply recommendation by the National Institute of Stan-
dards and Technology, nor does it imply that the materials are
necessarily the best available for the purpose.

123



Edge chipping of brittle materials 165

References

Almond EA, McCormick NJ (1986) Constant-geometry edge
flaking of brittle materials. Nature 321:53–55

Chai H, Lawn BR (2007) A universal relation for edge chipping
from sharp contacts in brittle materials: a simple means of
toughness evaluation. Acta Mater 55:2555–2561

Chui WC, Thouless MD, Endres WJ (1998) An analysis of chip-
ping in brittle materials. Int J Fract 90:287–298

Cotterell B, Kaminga J, Dickson FP (1985) The essential
mechanics of conchoidal flaking. Int J Fract 29:205–221

Dibble HL, Pelcin A (1995) The effect of hammer mass and
velocity on flake mass. J Archaeol Sci 22:429–439

Lardner TJ, Ritter JE, Shiao ML, Lin MR (1990) Behavior of
indentation cracks near free surfaces and interfaces. Int J
Fract 44:133–143

Lawn BR, Fuller ER (1975) Equilibrium penny-like cracks in
indentation fracture. J Mater Sci 10:2016–2024

Marshall DB, Lawn BR, Chantikul P (1979) Residual stress
effects in sharp-contact cracking: II. Strength degradation.
J Mater Sci 14:2225–2235

McCormick NJ (1982) Edge flaking as a measure of material
performance. Met Mater 8:154

Morrell R (2005) Edge flaking—similarity between quasistatic
indentation and impact mechanisms for brittle materials.
Key Eng Mater 290:14–22

Morrell R, Gant AJ (2001) Edge chipping of hard materials. Int
J Refract Met Hard Mater 19:293–301

Quinn JB, Su L, Flanders L, Lloyd IK (2000) ‘Edge toughness’
and material properties related to the machining of dental
ceramics. Mach Sci Technol 4:291–304

Scieszka SC (2005) Edge failure as a means of concurrently esti-
mating the abrasion and edge fracture resistance of hard
metals. Tribol Int 38:834–842

Swain MV (1979) Microfracture about scratches in brittle solids.
Proc Roy Soc Lond A A366:575–597

Thouless MD, Evans AG, Ashby MF, Hutchinson
JW (1987) The edge cracking and spallation of brittle
plates. Acta Metall 35:1333–1341

123


	Abstract
	Introduction
	Modified fracture mechanics
	Experimental validation
	Materials and methods
	Crack morphology
	Crack evolution and critical loads
	Chip dimensions
	Discussion
	Acknowledgements
	References

