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Abstract—Nearly all bitrate adaptive video content delivered today is streamed using protocols that run a purely client based adaptation

logic. The resulting lack of coordinationmay lead to suboptimal user experience and resource utilization. As a response, approaches that

include the network and servers in the adaptation process are emerging. In this article, we present an optimized solution for network

assisted adaptation specifically targeted to mobile streaming in multi-access edge computing (MEC) environments. Due to NP-Hardness

of the problem, we have designed a heuristic-based algorithmwith minimum need for parameter tuning and having relatively low

complexity. We then study the performance of this solution against two popular client-based solutions, namely Buffer-Based Adaptation

(BBA) and Rate-Based Adaptation (RBA), aswell as to another network assisted solution. Our objective is two fold: First, we want to

demonstrate the efficiency of our solution and second to quantify the benefits of network-assisted adaptation over the client-based

approaches in mobile edge computing scenarios. The results from our simulations reveal that the network assisted adaptation clearly

outperforms the purely client-basedDASH heuristics in some of themetrics, not all of them, particularly, in situationswhen the achievable

throughput is moderately high or the link quality of themobile clients does not differ from each other substantially.

Index Terms—Server and network assisted DASH, multi-access edge computing (MEC), quality of experience, fairness, load balancing,

integer nonlinear programming (INLP), greedy scheduling algorithm

Ç

1 INTRODUCTION

ACCORDING to statistics, the majority of Internet traffic is
video, such as Netflix, YouTube, or other streaming

applications [35], [36]. The network conditions, such as high
fluctuation in the available bandwidth whenmultiple clients
simultaneously compete for the shared bottleneck link, can
significantly affect the users’ quality of experience (QoE) in
mobile video streaming applications [10], [16]. Mobile and
wireless access further complicates the situation. In order to
avoid playback interruption and rebuffering events due to
changes in available bandwidth during a streaming session,
most media players nowadays use adaptive streaming, such
as the non-standard HTTP Live Streaming (HLS) or proto-
cols based on the DASH standard [41].

Many research efforts have been carried out in recent
years on designing efficient adaptation mechanisms for
mobile video streaming [7], [19], [20]. Vast majority have
focused on purely client-side adaptation strategies that do
not include explicit coordination between clients, servers,
and the network. Such approaches have been shown to lead
to unfair bitrate allocation and underutilization of network
resources in certain situations where multiple simultaneous
clients stream video over the same access network [4]. To
remedy this, both research (e.g., [14]) and standardization
(SAND-DASH [42]) have started to look for solutions that
allow including both the network and the servers in the
adaptation process.

Recently Multi-Access Edge Computing (MEC) [26] has
emerged as a solution to bring computing and content stor-
age to the edge of a mobile network, all the way to the radio
access part of it. We have designed an optimized network-
assisted video bitrate adaptation scheme for mobile stream-
ing specifically forMEC scenarios. In addition to bitrate selec-
tion, the scheme also includes a client to edge servermapping
logic. Since the underlying bitrate selection problem is NP-
hard, our solution is based on a greedy heuristic. The optimi-
zation problem itself is parameterized but our solution is able
to self-tune the parameter values, which alleviates the need
for parameter tuning by operators in deployment phase.

Besides presenting an optimized network assisted bitrate
adaptation solution, our goal in this work is to understand
how much, in which way, and at which cost (esp. computa-
tional complexity) the QoE and fairness between mobile
video streaming clients could be improved through network
assisted adaptation compared to client-based approaches.
The contributions of this work are the following:

� Wepropose an integer nonlinear programming (INLP)
optimization model for video bitrate selection that
jointly maximizes the quality of experience of clients
and proportional fairness of the bitrate allocation in
mobile video streamingwith edge computing facilities.

� We design a near-optimal greedy-based scheduling
algorithm to efficiently solve the clients to edge
server mapping and the bitrate selection problem.
The solution includes self-tuning of the values of the
optimization problem parameters.

� We evaluate the solution through simulations where
we also include traces of radio accessmetrics obtained
with a standard LTE simulator. The results show
that the proposed algorithm performs overall better
in terms of QoE, fairness and resource utilization
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compared to purely client-basedDASHheuristics and
one existing SAND-DASH solution. However, the
results also suggest that the network assisted adapta-
tion solution does not bring notable advantages over
client-based adaptation alternatives in situations
where the achievable throughput is relatively low or
the wireless link characteristics of the mobile clients
differ substantially from each other.

The rest of the paper is organized as follows: We discuss
related work in Section 2 and describe the proposed net-
work assisted DASH adaptation system and its components
in Section 3. The optimization problem is laid out in
Section 4 and the proposed scheduling algorithm is detailed
in Section 5. We present simulation-based evaluation
through Sections 6, 7, 8, and 9 and conclude the paper with
pointing out avenues for future work in Section 10.

2 RELATED WORK

Several quality adaptation approaches for improving the
quality of experience of mobile users in dynamic adaptive
video streaming over HTTP (DASH) have been proposed
during the past years. Seufert et al. [5] provide a compre-
hensive study on DASH quality adaptation and the major
factors that both client and network sides have to take into
account from the perspective of QoE. Huang et al. [7] pro-
pose a DASH adaptation approach and some of its variants
which decides on bitrate selection merely based on the
buffer occupancy level. Spetiri et al. [13] design BOLA, an
online bitrate adaptation heuristic for evolving DASH stan-
dard, which takes into account only the buffer occupancy
level without any need for bandwidth prediction. They
prove analytically the performance guarantee of the pro-
posed algorithm compared to the offline case in which
some knowledge of the future bandwidth variation between
the server and the video player is available in advance.
Since purely buffer-based adaptation mechanisms may fail
specially under high throughput fluctuation, some techni-
ques combine the buffer occupancy level with some extent
of throughput prediction to determine the quality for the
next video chunk to be downloaded [12], [19], [20]. Wang
et al. [20] have recently proposed SQUAD, a DASH rate
adaptation online algorithm with the objective of maximiz-
ing QoE while minimizing the quality switching by catego-
rizing the quality levels according to the buffer level and
estimated network throughput.

Recently, several pieces of work have investigated DASH
quality adaptation considering multiple clients associated
with either single or multiple video servers. Although
Petrangeli et al. [1] investigate the fair bandwidth utilization
when multiple clients compete on shared bottleneck link,
their proposed objective function and the adaptation heuris-
tic do not take into account the trade-off between the per-
ceived QoE of individual clients and fairness. The objective
of bitrate selection in [2] focuses on the maximization of
video quality subject to the stability of servers’ queues
without considering in-network elements in the bitrate adap-
tation process. Bouten et al. [3] propose quality optimization
considering in-network elements into their topology in order
to adjust the client’s bitrate according to the available band-
width on multiple bottleneck links. However, in this work,
only one bitrate is allocated to each client and also each client
is associated to a specified serverwhich is known in advance.

Concerning fairness in QoE optimization, the authors in
[22] and [25] propose a DASH scheduling framework for the

joint optimization of QoE and resource allocation in scalable
video coding (SVC) streaming. In [21], the authors consider
specifically energy efficient caching in addition toQoEoptimi-
zation. TheQoE part does not consider the constraint imposed
by limited amount of radio resources at all and instead
includes monetary cost by users associated to higher bitrates.
We do not consider cost because its effect on user behavior in
mobile streaming is not well understood and in some coun-
tries (Finland) the typicalmobile data plans are limitless.

Server and network assisted DASH known as SAND-
DASH [42] is a recent addition to the DASH [41] standard.
It specifies means for the video streaming clients, servers,
and the network (DASH-Aware network elements, a.k.a.
DANEs) to collaborate with each other. The idea is to enable
mechanisms to improve QoE and fair resource utilization
and this idea has already been studied by some research. Li
et al. [11] propose the maximization of a simple utility func-
tion for improving the QoE of mobile clients over a shared
bottleneck wireless link through the SAND-DASH collabo-
ration mechanism. Cofano et al. [14] consider bandwidth
reservation and bitrate guidance as two in-network compo-
nents which can help the client-side adaptation approach to
adjust the allocated bitrates toward the improvement of cli-
ents’ QoE. Bentaleb et al. [15] leverage software defined net-
working to optimize video streaming QoE. The main
difference of all the above mentioned works compared to
ours is that we specifically consider mobile streaming with
MEC and jointly optimize QoE and fairness.

3 MULTI-ACCESS EDGE COMPUTING ASSISTED

DASH

3.1 Overview

Fig. 1 illustrates the proposed multi-access edge computing
assisted DASH system for adaptive mobile video streaming.
The edge servers, which are located within the radio access
network (RAN) adjacent to base stations, host replicated
video content in multiple qualities (representations) served
with HTTP.

The core idea of our system is that the so called coordina-
tors, which are also located at the edge servers, periodically
do two things: 1) client-to-edge-server mapping and 2) per-
client video bitrate selection. These operations are done
with the help of radio access level information received
from the base stations (one of the key things enabled by
MEC) as well as application level information from the

Fig. 1. Multi-access edge computing (MEC) assisted DASH system for
the large scale of mobile clients.
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mobile streaming clients. The combination of edge servers
and the associated base stations work as independent oper-
ating units without need for sharing the data among each
other or having a global view about the other edge servers.

The goal of the client-to-server mapping is to balance
load, as we describe in detail in Section 3.5 The per-client
video bitrate selection is done periodically and as optimally
as possible. Optimal bitrate selection here means maximiz-
ing QoE but including a fairness factor too. We describe the
QoE factors and rationale for fairness in Sections 3.3 and 3.4
and the QoE-fairness problem formulation is presented in
Section 4.

Our design does not impose any modifications to the
radio resource scheduling mechanisms of the base stations,
which means that the base stations allocate available radio
resource blocks (RBs) in a proportionally fair manner to the
clients [4]. However, we require explicit support from the
client applications so that they explicitly communicate with
the coordinators and exchange required information (buffer
status, selected bitrates, etc.). The communication could be
implemented according to the SAND-DASH standard. We
made this design decision in order to obtain network
assisted adaptation with the best possible performance and
evaluate it against client-based adaptation heuristics. It may
be possible to support legacy clients that use client-based
adaptation heuristics, i.e., off-the-shelf video players used
today, by using deep packet inspection (identify video traf-
fic flows and their properties) and per flow traffic shaping
(guide rate-based heuristics to select the desired bitrate as
in [14]) at the edge servers. Video traffic encryption compli-
cates that approach but could possibly be tackled using
machine learning [9]. However, such support for legacy cli-
ents is out of scope of this paper.

In our edge computing assisted system, the coordinators
handle the clients to server mapping and the bitrate adapta-
tion process using the data from the associated base stations
and the connecting mobile clients. Clients to server map-
ping can be performed in two ways: The local coordinators
nearby the edge servers can send their data to the central
coordinator for making the server selection decisions while,
the bitrate adaptation processes are still performed by the
individual coordinators. Since the bitrate scheduling pro-
cess is performed at the edge server level, it is highly
unlikely that the centralized coordination of the connecting
clients at the base station creates the scalability problem.
Alternatively, the local coordinators can perform both the
clients to server mapping and the bitrate adaptation pro-
cesses which in turn facilitates the decentralized implemen-
tation of the network-assisted optimization solution in our
system design. The key differences between these two dif-
ferent ways of client to server mapping lie in the computa-
tional complexity which is substantially reduced in the
second way, and the optimality of the bitrate allocation
which at least in theory should be better with the first one.

3.2 Notation and System Description

We follow the discrete time slotted DASH scheduling [3]
with total number of jT j time slots and the duration of each
slot Dt seconds. At each time slot 1 � t � jT j, the data trans-
mission between the base station associated with video
server k and different clients goes through a shared bottle-

neck link with capacity of W
ðtÞ
k . Please note that W

ðtÞ
k refers

to the available resource blocks i.e., the number of subcar-
riers in the frequency domain, at time slot t on base station

k. It is also noted that in contrast to [30], we study the sys-
tem performance for both stationary and mobile clients.

Let Ai and Di denote the arrival and the departure times,
respectively, of client i which correspond to the time that
client sends its request for first chunk and the time that it
either abandons the streaming session or finishes down-
loading the last chunk. In the ideal case when no stalling
happens during the session and with negligible network
delay, the quantity jDi �Aij is obviously equal to the
watching duration of the video requested by client i and
consequently jDi �Aij=C is the number of streaming
chunks of the video. The media player of each client i main-
tains a playback buffer for which the client determines a
fixed target filling level denoted by Bmax

i (in kb). B
ðtÞ
i � Bmax

i
represents the level of data in the client’s buffer at time slot
t. At each time slot, the coordinators handle the client to
server mapping (load balancing) based on the link quality
of the clients and the utilization load of the servers. After
the server allocation, the coordinators perform the joint
optimization of QoE and fairness using the radio access
level information from the base stations and the application
level data from mobile clients. For the client to server map-
ping, we define a binary variable x

ðtÞ
ik such that x

ðtÞ
ik ¼ 1 if cli-

ent i is allocated to server k for downloading the current
chunk at time slot t and x

ðtÞ
ik ¼ 0, otherwise. Furthermore,

the integer decision variable r
ðpÞ
ik 2 R denotes the allocated

bitrate for chunk index p which is downloaded by client i
from server k. The list of parameters involved in the system
and their descriptions have been summarized in Table 1.
Before the formulation of optimization problem in Section 4,
we discuss next the different optimization criteria related to
QoE, fairness, and load balancing.

3.3 Quality of Experience

A recent comprehensive study on QoE in dynamic adaptive
video streaming [5] shows that four major factors can signif-
icantly affect the quality of experience perceived by DASH
clients: video bitrate, startup delay, stalling ratio and bitrate
switching. Our system design assumes that providing
optimal QoE requires accounting for all the four above-
mentioned criteria.

Video bitrate has the highest direct impact on the quality
of experience of mobile clients. There is a trade-off between
video bitrate and stalling: The higher the video bitrate, the
higher the visual video quality but also the probability of
experiencing a stall event because the download through-
put has a higher chance to drop below the bitrate due to
low bandwidth available on the bottleneck link. The average
video bitrate over jDi �Aij=C downloaded chunks by client
i is therefore obtained using the following relation:

AQi ¼
C

jDi �Aij

X

jDi�Aij=C

p¼1

X

K

k¼1

x
ðAiþðp�1Þ�CÞ
ik � r

ðpÞ
ik : (1)

Startup delay refers to the time needed to reach the target
buffer filling level of the client upon its arrival. It corre-
sponds to the waiting time of client from click to start of the
playback. According to [6], the startup delay has a clearly
smaller impact on the dissatisfaction of a viewer than stall
events. In order for the mobile client to experience a
smoother streaming during the steady state, the video data
is first stored in the client’s buffer for a time duration equal
to the initial delay without streaming the content. Denoted
by Li as the initial buffer delay, this means
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X

AiþLi

t¼Ai

X

K

k¼1

x
ðtÞ
ik � ^Thr

ðtÞ
ik � Dt ¼ Bmax

i ; (2)

where Bmax
i (in kb) is the target buffer filling level for client i

and ^Thr
ðtÞ
ik is the effective data throughput (in kbps) received

by client i from server k at time slot t. Let Thr
ðtÞ
ik denote

the theoretical throughput over the wireless link which
depends on the modulation and coding schema (MCS)
and here, we simply consider the path attenuation model
Thr

ðtÞ
ik / Pmax=d

ðtÞa
ik [30] for its computation. Pmax is the maxi-

mum transmission power of the base station, d
ðtÞ
ik denotes the

physical distance between the client i and base station k at
time slot t and a is the path loss exponent parameter which is
normally between 2 and 5. The effective throughput of the
client which is the actual receivable one is then obtained
based on both the theoretical throughput and the available
downlink RBs at the base station. More precisely, the effec-
tive throughput of client i is computed using the relation
^Thr

ðtÞ
ik ¼ ðThr

ðtÞ2
ik =

P

8p x
ðtÞ
pk � Thr

ðtÞ
pk Þ �W

ðtÞ
k where the summa-

tion in denominator is taken over all clients p which have
been assigned to base station k at time slot t. It is noteworthy
to mention that since in our network model, the base station
at each time slot allocates the whole RBs to the set of active
clients according to their link quality (theoretical through-
put), therefore, the effective throughput of the clients is
affectedwith the presence of other simultaneous clients. Fur-
thermore, the coordinators collect the instantaneous effective

throughput of the clients meaning that our system model
easily accommodates the clientsmobility.

Stalling ratio is the the amount of time spent so that video
playback is stalled divided by the total duration of the ses-
sion. Stall events occur when playback buffer empties
caused by too low download throughput compared to the
video bitrate. Avoiding stall events is critically important
because of their prominent role in determining QoE. Hence,
our system is designed to sacrifice video quality (bitrate) in order
to avoid stall events whenever possible, i.e., whenever the sum of
lowest possible quality bitrates over all active streaming clients
does not exceed the network capacity. To this end, we assume
that the player starts to play the video after the startup
phase. Given ^Thr

ðtÞ
ik , the buffer level (in kb) of client i at time

slot t is given by

B
ðtÞ
i ¼

B
ðt�1Þ
i þ ^Thr

ðtÞ
ik � Dt; Ai � t � Ai þ Li

B
ðt�1Þ
i þ ð ^Thr

ðtÞ
ik � r

ðpÞ
ik Þ � Dt;

Ai þ Li < t � Di;

8

>

<

>

:

(3)

where r
ðpÞ
ik is the allocated bitrate for the currently played

out chunk with index p. Accounting for the arrival time of
client and initial playback delay, the index p of the chunk
played out at time slot t > Ai þ Li is equal to p ¼ dðt�
Ai � LiÞ=Ce. Later, we design the optimization problem
with such constraints that stall events are avoided whenever
possible, i.e., whenever the total amount of resources suffi-
ces to support lowest available video bitrates for all clients.

Frequent bitrate switching is also considered harmful for
QoE [5]. We consider the difference between the bitrate lev-
els of consecutive chunks of the video downloaded by the
client as the QoE metric for switching. Hence, the accumu-
lated bitrate switching of client i during the streaming ses-
sion is given by

Ei ¼
X

jDi�Aij=C

p¼2

X

K

k¼1

fx
ðAiþðp�1Þ�CÞ
ik � r

ðpÞ
ik

� x
ðAiþðp�2Þ�CÞ
ik � r

ðp�1Þ
ik g:

(4)

We should note that our proposed network assisted solu-
tion in this work is easily adoptable to different switching
definitions without any change in the theoretical model.

3.4 Fair Bitrate Allocation

LTE base stations usually schedule radio resources to multi-
ple competing client devices at each time slot according to a
proportional fairness (PF) policy [4]. More precisely, the
radio resource blocks are allocated to the clients according to
their link quality. In deployment scenarios with the legacy
mobile DASH clients, the coordinator will not be able to allo-
cate the bitrates to the clients in a proper waywhen the video
traffic is encrypted. In contrast, our proposed network-
assisted solution is designed for the deployment scenarios
with non-legacy clients in which the mobile clients explicitly
communicate with the coordinators for the proper bitrate
allocation in situations when the video traffic is encrypted.

Each mobile DASH client chooses the most sustainable
bitrate according to its share of resources allocated by the
PF scheduler at the base station. Due to the lack of coordina-
tion among multiple DASH clients sharing the radio access
link, the client-based adaptation heuristics may allocate the
bitrates in an unfair manner in some situations [4]. In order

TABLE 1
Description of Parameters Involved in MEC

Assisted DASH System

Notation Description

C Constant size of each video chunk (in seconds)
K, S, R Number of edge servers, number of DASH clients

and the discrete set of available bitrates at each
server

Rmax; Rmin 2 R Maximum and minimum available bitrates in set R
jT j, Dt Total number of scheduling time slots and the

duration of each slot in seconds
W

ðtÞ
k Available resource blocks at base station k in slot t

Ai,Di Arrival and departure times of client i
Bmax

i Maximum buffer filling level of client i
B

ðtÞ
i Buffer level of client i at time slot t

AQi Average video bitrate for client i
Li Initial playback delay on the buffer of client i
Ei Accumulated bitrate switching for client i
d
ðtÞ
ik Physical distance of client i from base station k at

time slot t
Thr

ðtÞ
ik ;

^Thr
ðtÞ
ik Theoretical and effective received data throughput

by client i from base station k at time slot t
Fi Fairness contribution by allocating bitrates to client i

during its streaming session
Pmax Maximum transmission power of each base station
a Path loss exponent parameter (normally between 2

and 5)
r, v, u Adjustable weighting parameters for average bitrate,

bitrate switching and fairness, respectively
dS ; dF Switching and fairness thresholds
ThrT ; ThrB Switching thresholds based on respectively the

estimated throughput and the buffer level
x
ðtÞ
ik Binary variable for the allocation of client i to server

k at slot t
r
ðpÞ
ik 2 R Discrete video bitrate for chunk index p of client i

allocated to server k
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to fairly allocate the bitrates among the competing clients, as
a part of our network-assisted optimized solution, we strive
to select for each client the best sustainable bitrate which
has the least difference from the average of bitrates allo-
cated to the other simultaneous clients at the same time slot.
More precisely, the objective of fair bitrate allocation is to
minimize the overall bitrate deviations of each client i dur-
ing its whole video streaming session which is obtained
using the following relation:

Fi ¼
X

Di

t¼Ai

X

K

k¼1

x
ðtÞ
ik � ðr

ðtÞ
ik � �rðtÞÞ: (5)

Where �rðtÞ ¼ ð1=N ðtÞÞ
P

8j6¼i

P

1�p�K x
ðtÞ
jp � r

ðtÞ
jp is the average

bitrates of other N ðtÞ ¼
P

8j6¼i

P

1�p�K x
ðtÞ
jp active simulta-

neous clients at time slot t. It should be noted that for each
individual client, the minimization of Fi should satisfy the
available resource blocks at the base station in each time slot.

3.5 Load Balancing

Balancing the utilized resource blocks among the cellular
base stations is an important criteria that should be taken
into account by in-network resource allocation strategies in
order to avoid radio access congestion. At the application
level, load balancing can be achieved, for example, through
a combination of DNS and HTTP redirect mechanisms, as is
commonly done with video distribution using CDN [28].
These mechanisms are applicable in our system as well
because the clients need to use DNS to resolve the URIs of
video chunks and request the chunks using HTTP as in any
HTTP-based streaming.

The coordinators in our system balance the load between
edge servers (hence, also the base stations) by mapping
each client to the most appropriate (least overloaded) server
so that the clients effective throughput (the actual through-
put received on the client side) is maximized. More pre-
cisely, at each time slot t, we map the clients that are about
to request for a new video chunk fijðt�AiÞ mod C ¼ 1g to
servers by solving the following optimization problem:

Maximize
X

S

i¼1

X

K

k¼1

x
ðtÞ
ik � ^Thr

ðtÞ
ik : (6)

Subject to
PK

k¼1 x
ðtÞ
ik ¼ 1; 81 � i � S:

Each chunk is always downloaded entirely from the same
server meaning that client to server mapping is not changed
while a client is in the process of downloading a chunk.

4 JOINT OPTIMIZATION OF QOE AND FAIRNESS

The work done by the coordinators in our system is divided
into two steps: First, client to edge server mapping is done by
solving the optimization problem described in Section 3.5. In
the second step, the coordinator computes bitrates for each
client in order to maximize QoE but in a way that preserves a
certain level of fairness. We call the problem solved by the
coordinators in this second step joint optimization of QoE and
fairness and formulate it in detail in this section. It should be
noted that the optimization problem is constructed on the
time-slotted scheduling basis with the instantaneous knowl-
edge about the clients throughput. Although we first assume
that the clients remain stationary during the whole schedul-
ing process, we also verify the optimization performance
under the clients mobility later in the simulations.

In the QoE-fairness problem formulation, we follow the
discrete time slotted DASH scheduling operation [3] with
fixed time duration for each time slot. As mentioned in
Section 3.3, a justifiable relation for QoE must fairly accom-
modate the aforementioned criteria for each individual cli-
ent. To achieve this goal, we define three adjustable
weighting parameters 0 � r;v; u � 1 ðrþ vþ u ¼ 1Þ to con-
trol respectively the video bitrate, the accumulated switch-
ing and the fairness. A constraint is also included in the
optimization problem to avoid the happening of stalling
events on each client’s buffer during the whole video
streaming. It is noted that the objective function does not
include the initial buffer delay due to the small (negligible)
impact of delay on the satisfaction of the clients.

4.1 Problem Formulation

With the model parameters defined in Section 3 and rela-
tions (1), (2), (3), (4) and (5), the joint optimization for each
client i is defined as a utility maximization problem with
the following integer non-linear programming formulation

Maximize Ui ¼ r �AQi � v � Ei � u � Fi: (7)

Subject to

X

K

k¼1

x
ðtÞ
ik ¼ 1; 8Ai � t � Di (8)

X

d t
C
e�C

t0¼b t
C
c�Cþ1

x
ðt0Þ
ik ¼ f0; Cg; 81 � k � K;Ai � t � Di (9)

X

S

j¼1

x
ðtÞ
jk �

r
ðtÞ
jk

Thr
ðtÞ
jk

& ’

� W
ðtÞ
k ; 81 � k � K; Aj � t � Dj (10)

0 < B
ðtÞ
i � Bmax

i ; 8Ai � t � Di (11)

r
ðtÞ
ik 2 R; x

ðtÞ
ik 2 f0; 1g; 81 � k � K;Ai � t � Di: (12)

Note that in the above optimization model, the equality

(2) is also added to the set of constraints. The variables x
ðtÞ
ik

and r
ðtÞ
ik are respectively the binary and integer decision var-

iables, while, the values of other parameters are known in
advance. The objective function (7) aims to maximize jointly
the QoE of DASH client i and the fairness in bitrate alloca-
tion to the client. Constraint (8) states that at any time
instant t, the DASH client is allocated to only one server for
downloading its current video chunk and (9) enforces that
the client receives one complete chunk of video upon its
access to the allocated server. Constraint (10) ensures that at
each time instant t, the total volume of allocated resources
to the requested clients by each base station does not exceed
the instantaneous available resources at the base station.
Constraint (11) guarantees that no stalling happens during
the whole streaming duration from the arrival to departure
times. And finally, constraint (12) specifies that the discrete
allocated bitrate for a requested chunk of video from each
edge server belongs to the set of available bitrates and also
the client to server mapping is a binary decision variable.

4.2 NP-Hardness

The joint optimization of load balancing, QoE and fairness
formulated in problem (7)-(12) belongs to the class of NP-
hard problems due to the existence of integer decision varia-
bles and hence the exhaustive possible enumerations for the
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solution space. Before detailing the proposed scheduling
algorithm, we prove first the NP-hardness of the problem in
the following section.

The NP-hardness of the problem formulation (7)-(12) can
be proved through first showing the hardness of the special
case of the problem when each client is assigned with the
maximum bitrate which is not more than its effective
throughput. In other words, we fix the decision variable for
bitrate selection in problem (7)-(12) and hence, the only
decision variable is the allocation of the clients to the appro-
priate servers. The NP-hardness of the special case immedi-
ately implies the hardness of the general problem in which
the clients can be assigned with a rate which belongs to a
discrete set of available bitrates.

We prove the NP-hardness of the special case at a given
time slot t via the reduction from the multidimensional
knapsack problem (MDKP) as follows: Given m items
fc1; c2; . . . ; cmg and K knapsacks, we consider an instance of
MDKP in which m copies are available for each item. The
copies are generated by combining the item with the others
and considering it as a single item and each copy has differ-
ent value. For example for the first item, m copies fc1g;
fc1; c2g; . . . ; fc1; c2; . . . ; cmg are available. The problem is the
allocation of items to knapsacks to maximize the total profit
subject to the constraints that each item should appear in
exactly one of the allocated copies and each knapsack has
the capacity of maximum one item.

Now, given any instance of MDKP can be mapped to an
instance of our problem as follows: The set ofm items andK
knapsacks are mapped to the set of clients and servers and
the profitmaximization inMDKP is equivalent to utilitymax-
imization (objective value (7)) in our problem. Each copy of
the item matches with the joint allocation of the correspond-
ing client with other clients to a given server. It is obvious
that joint allocation of client with different set of other clients
results in different utility values since the share of through-
put dynamically changes based on the number of other cli-
ents allocated to the same server. Furthermore, the mapping
satisfies the constraint that each client should be allocated to
exactly one server. Now, since the multidimensional knap-
sack problem is NP-complete [34], therefore, the special case
of our problem is also NP-complete unless P ¼ NP . This in
turn implies the NP-hardness when all time slots are con-
cerned as well as the hardness of the general problem formu-
lation (7)-(12) in which the allocated bitrate to each client is
chosen from a discrete set.

5 ONLINE OPTIMIZATION ALGORITHMS

In this section, we present efficient algorithms for solving the
optimization problems described in the previous sections.
These algorithms are designed for online execution by the
coordinators in our system. In offline situations, where all the
information of clients (their arrival and departure times,
the link quality) are known in advance, a straightforward
brute-force search strategy can be used to investigate all possi-
bilities of allocating clients to video servers and select the one
with maximum achievable utility. However, the complexity of
exhaustive approach grows dramatically with the increase in
the number of servers or clients making it impractical for
DASH scheduling at large scale. To reduce the complexity, we
devise an efficient online and greedy-based algorithm which
runs by the coordinators with the clients data obtained using
theMEC facilities. The body of the proposed algorithm named
asGreedyMSMC has been illustrated inAlgorithm 1.

Algorithm 1. GreedyMSMC

1: Input: jT j; S;K;R :Number of scheduling time slots,
number of DASH clients and edge servers and the set of
available discrete bitrates.

2: Output: Binary allocations x
ðtÞ
ik and integer bitrate allocation

r
ðtÞ
ik and Ui for each client 1 � i � S, server 1 � k � K and
time slot 1 � t � jT j

3: for each time slot 1 � t � jT j do
4: for each client 1 � i � S such that Ai � t � Di do
5: Allocate client i to server k according to (13)
6: for each client 1 � i � S such that Ai � t � Di do
7: if t ¼¼ Ai then
8: Initialize BufferStatus and Li

9: if ðt�AijÞmod C 6¼ 1 then
10: Allocate the same bitrate to client i as with the bitrate

at time slot t� 1;
11: Update B

ðtÞ
i ; BufferStatus; Li;

12: if ðt�AiÞmod C ¼¼ 1 then
13: if BufferStatus ¼¼ False then
14: Run Subroutine Startup Phase;
15: if BufferStatus ¼¼ True then
16: Run Subroutine Steady State;
17: if t ¼¼ Di then
18: totalUtility ¼ totalUtilityþ Ui

19: Return totalUtility;

5.1 Client-to-Server Mapping

Based on the discrete time slot scheduling, the proposed
algorithm takes the dynamic arrival of clients into account.
Since the clients to servers mapping problem is NP-Hard,
we rely on a heuristic which by taking into account the
topology of the network decides on either allocating the
mobile client to its nearest base station or allocating it in a
greedy manner to the base station with highest achievable
throughput. At each time slot, the heuristic uses the average
distance of all the clients to their nearest BS as the threshold
to decide on the server allocation. More precisely, assume

d
iðtÞ
min ¼ minfd

ðtÞ
is ; 1 � s � Kg and

�
d
ðtÞ
min represent the distance

of client i to the nearest BS and the average distance of all
clients to their nearest BS at time slot t. The coordinator at
each time slot resolves the load balancing based on whether
the minimum distance of the client is above the average or
it is below the average. In other words, each active client i is
assigned to server k at time slot twhere

k ¼

fk0jx
ðt�1Þ
ik0 ¼ 1g; ifðt mod CÞ 6¼ 1

arg1�s�Kminfd
ðtÞ
is g ifðt mod CÞ ¼ 1

AND d
iðtÞ
min �

�
d
ðtÞ
min

arg1�s�Kmaxf ^Thr
ðtÞ
is g ifðt mod CÞ ¼ 1

AND d
iðtÞ
min <

�
d
ðtÞ
min:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(13)

Client to server mapping is in accordance with constraint
(9) which states that the server allocation is decided at the
beginning of each video chunk and it remains unchanged
during the process of downloading the chunk.

5.2 Bitrate Selection with Parameter Auto-Tuning

One of the critical challenges in designing an efficient algo-
rithm for the optimization problem is finding appropriate

792 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 4, APRIL 2019



values for the weighting parameters in the objective func-
tion. Since considering the fixed values for the weighting
parameters may not be optimal when different scenarios or
network topologies are concerned, we rely on the strategy
of dynamically adjusting the weighting parameters at each
time slot. This design strategy alleviates the need for man-
ual parameter tuning and, consequently, makes the system
deployment easier.

Subroutine 1. Startup Phase

1: if ðt�AiÞ � C then
2: Allocate the highest available bitrate;

3: Update B
ðtÞ
i , BufferStatus;

4: Compute the estThrGreedy from the BS allocation
according to (13)

5: Compute switching thresholds ThrT ; ThrB and dS ;
6: for each bitrate r 2 R in decreasing order do
7: if allocation of r satisfy (10) AND

r � maxðestThrGreedy; ^Thr
ðtÞ
ik ; B

ðtÞ
i Þ

8: if jr� r
ðt�1Þ
ik j � dS AND

1� jr� �rj=ðRmax �RminÞ >¼ dF

9: r
ðtÞ
ik ¼ r; Break;

10: if r
ðtÞ
ik ¼¼ 0 then

11: for each bitrate r 2 R in decreasing order do
12: if allocation of r satisfy (10) AND

r � maxðestThrGreedy; ^Thr
ðtÞ
ik ; B

ðtÞ
i Þ

13: If jr� r
ðt�1Þ
ik j � dS

14: r
ðtÞ
ik ¼ r; Break;

15: if r
ðtÞ
ik ¼¼ 0 then

16: for each bitrate r 2 R in decreasing order do
17: if allocation of r satisfy (10) AND

r � maxðestThrGreedy; ^Thr
ðtÞ
ik ; B

ðtÞ
i Þ

18: r
ðtÞ
ik ¼ r; Break;

19: Updateweighting parameters r, v u;
20: Compute AQi, Ei, Fi and Ui according to respectively (1),

(4), (5) and (7);
21: Update B

ðtÞ
i ;

22: if B
ðtÞ
i ¼ Bmax

i then
23: BufferStatus ¼ True; Li ¼ t�Ai;
24: Return Ui;

For each active client, GreedyMSMC algorithm selects
the highest available bitrate for the first chunk of the video.
For the subsequent video chunks in either startup or steady
phase, the algorithm then chooses the most sustainable
bitrate which results in less switching level and high fair-
ness value. In other words, the proposed algorithm consid-
ers two known threshold values dS and dF for respectively
the switching level and fairness index. The switching
threshold dS is determined based on the switching level
when relying only on the estimated throughput or the
switching level when relying only on the buffer level. In
other words, the switching levels based on the estimated
throughput and buffer level are represented by thresholds
ThrT and ThrB, respectively, and the switching threshold dS
is stated in terms of ThrT and ThrB. As pointed out in the
Startup phase of the algorithm, the quantity 1� jr

ðtÞ
ik � �rj=

ðRmax �RminÞ which takes a value between 0 and 1 is also
computed as the fairness index associated with the selected
bitrate r

ðtÞ
ik . Here, the variable �r denotes the average bitrate

of other simultaneous clients and Rmax, Rmin are respec-
tively the maximum and minimum bitrates in set R. It is

noteworthy to mention that although the selection of the
aforementioned thresholds still depends on the network
topology, the proposed algorithm however has the mini-
mum need for parameter tuning since the major weighting
parameters are automatically adjusted by the algorithm.

Subroutine 2. Steady State

1: Run the same code lines (4)-(18) as in the subroutine Startup
Phase;

2: Updateweighting parameters r, v, u;
3: Compute AQi, Ei, Fi and Ui according to respectively (1),

(4), (5) and (7);
4: Update B

ðtÞ
i ;

5: if B
ðtÞ
i ¼¼ B

ðmaxÞ
i then

6: BufferStatus ¼ True; Li ¼ t�Ai;
7: Return Ui;

In the decreasing order of the bitrates, GreedyMSMCalgo-
rithm first seeks for a bitrate which results in a switching
which is not more than the switching threshold dS and yields
a fairness value which is greater than the fairness threshold
dF . If there is no such bitrate available, it then looks for the
bitrate which yields a switching level less than the switching
threshold dS . If still there is no such bitrate available, the algo-
rithm then chooses the maximum sustainable bitrate. After
the bitrate selection, the weighting parameters of the objec-
tive function at the current time slot are computed based on
how far the selected bitrate is from the best possible bitrate.
More precisely, for the weighting of the average bitrate, how
far is the selected bitrate from the maximum possible bitrate
and for the case of switching how far it is from the bitrate
which gives no switching. Furthermore, the fairness weight-
ing is determined based on how far is the selected bitrate
from the average bitrates of other simultaneous clients at the
same time slot. After updating the weighting parameters, the
algorithm returns the local utility of the client which is
obtained using the objective function (7).

5.3 Computational Complexity

Most of the computations of GreedyMSMC algorithm hap-

pen in overall jT j
C times during the whole video streaming

session of all clients where, jT j and C are respectively
the number of time slots and the chunk size. According to
the relation (13), the server allocation for each client has the
time complexity of order OðmaxðK þ S;K� S þKÞÞ ¼ OðK �
S þKÞ in the worst case, where K is the number of edge
servers. Furthermore, in the execution of Startup phase, the
computation of estimated throughputs takes OðCÞ and the
evaluation of both switching and fairness thresholds takes
OðjRjÞ time, where jRj is the number of available bitrates at
each edge server. Similarly, the execution of Steady State
phase results in the complexity of OðC þ jRjÞ. Putting all
the above together yields with S clients an overall worst

case complexity OðjT jC � S � ðK � S þK þ C þ jRjÞÞ, which is
significantly less than the upper bound OðjT jC �KS �RÞ of the
exhaustive brute-force search strategy.

6 METHODOLOGY FOR SIMULATION-BASED

COMPARATIVE EVALUATION

In this section, we describe our approach to evaluate
the system performance. In particular, we describe the
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simulation setup as well as the client-based adaptation
approaches and another existing SAND-DASH solution
that we compare our edge computing assisted bitrate adap-
tation solution against.

In our simulations, we implement a typical behavior of
DASH video streaming clients in a mobile edge computing
scenario and do not focus on any specific type of devices. At
first, most of the simulations are performed under the sce-
nario that the clients remain stationary during the whole
scheduling process while, the in last part of the simulations,
the performance of the algorithm is evaluated under the cli-
ents mobility using the LTE radio access link level traces. In
the mobility case, we do not implement any wireless chan-
nel model or LTE protocol and only implement the optimi-
zation solution (which is acting on top of the LTE network)
using the signal-to-noise ratio (SNR) traces obtained from
the third-party simulator SimuLTE [38].

6.1 Simulation Setup

We consider the scheduling of DASH clients during one
hour i.e. with jT j ¼ 3600 number of time slots and the dura-
tion of Dt ¼ 1 second for each slot.

For the network setup, we consider a rectangular area
with size 400 m� 1 km in which the base stations and the
mobile clients are uniformly located depending on the con-
sidered topology. The clients arrival time is uniformly dis-
tributed within the first 20 min and they depart after an
active streaming session which its length duration is chosen
from the uniform interval ½20 min; 40 min�. The video is
divided into C ¼ 5s chunks and each chunk is available in
ten different bitrates ½40 kbps; 60 kbps; 90 kbps; 110 kbps;
120 kbps; 150 kbps; 160 kbps; 190 kbps; 200 kbps; 220 kbps�
with the same replication at each edge server. In the simula-
tions, we consider 12 number of servers unless otherwise
stated, and the number of clients vary from 100 to 500. As
for the radio access, the maximum transmission power of
each base station is fixed at 3:6� 105 mW and the loss expo-
nent value of a ¼ 2 is considered in the path attenuation
model. With one second time slot duration and total avail-
able per slot bandwidth U ½45 KHz; 90 KHz�, the total LTE
downlink resource blocks per slot at each base station fol-
lows the uniform distribution U ½50; 100� [33].

We also note that at each part of simulation, the average
of the results taken over 20 number of iterations with the
confidence interval of 95 percent has been shown for each
simulation instance. The list of parameters used in the simu-
lations and their corresponding values have been summa-
rized in Table 2.

6.2 Client-Based Adaptation Approaches

In this section, we compare our network-assisted method
(the proposed algorithm) with two client-based adaptation
strategies which are buffer based adaptation (BBA) and
rate based adaptation (RBA) with the following descrip-
tions. We choose the switching and fairness thresholds
dS ¼ ðThrT þ ThrBÞ=2 and dF ¼ 0:5 used by our algorithm
in the following sections, unless, we explicitly mention
about the new thresholds. It is also noted that the client-
based adaptation approaches assign each client to the clos-
est base station during the whole video streaming.

Buffer Based Adaptation [7] means that each client inde-
pendently selects the bitrate for the next chunk to download
based on instantaneous buffer occupancy level, i.e. the
amount of video data in the playback buffer of the client at

each time slot. The heuristic allocates the highest bitrate for
the first chunk and then looks at the current client’s buffer
level to decide on the bitrate for the next video chunk to be
downloaded. According to the set of available bitrates, the
heuristic considers nine different thresholds ð

Pp
q¼1 Rq=

PjRj
q¼1 RqÞ � ðB

ðmaxÞ
i Þ; 81 � p � 9 for client i, where Rq and jRj

are respectively the qth bitrate in the sorted version of set R
(increasing order) and the size of set R. Depending on the
buffer level, the heuristic then chooses the most closest
bitrate from the allocated server.

Rate Based Adaptation [8] works so that each client chooses
the highest sustainable bitrate among the available ones based
on the throughput obtained when downloading the previous
m chunks. In particular, RBA computes a moving average of
the download rate of the last consecutive m chunks (esti-
mated throughput) to determine the bitrate for the next video
chunk to be downloaded. The bitrate for chunk i > m is
obtained using the moving average ð1=mÞ

Pi�1
j¼i�m rj. Note

that in the implementation of RBA, we setm ¼ 3 as the num-
ber of previously observed chunks when estimating the
achievable throughput for current chunk.

6.3 Another SAND-DASH Solution

We also compared the performance of our solution to an
existing SAND-DASH solution presented in [11]. The pro-
posed network assisted solution in this work considers the
scheduling of multiple competing DASH clients for access-
ing the video contents from a single server and over a bottle-
neck radio access link. An optimization problem with
simple utility function is solved to determine the allocation
of the limited resources to the clients. To have a fair compar-
ison under the same system setup, we adopt the SAND-
DASH solution in [11] to the case of multiple edge servers
such that as the default server assignment, the coordinator
first allocates each client to the nearest base station. Then,
the coordinator employs the greedy algorithm for solving
the optimization problem (7)-(12) with equal weightings
r ¼ v ¼ u ¼ 1=3.

It is noteworthy to mention that applying the algorithmic
approach used in [11] directly to our optimization problem
leads to the solutions which are worse than the solutions
when applying the greedy algorithm. This is due to the
imperfectness of the objective function presented in [11].
Furthermore, increasing each of three weighting parameters
in the objective function (7) may improve the corresponding
metric compared to our algorithm, however, it causes the
significant performance drop in two other metrics. There-
fore, with the above-mentioned setup, we aim to have the

TABLE 2
Simulation Parameters and Their Values

Simulation Parameter Corresponding Value

Number of clients 100-500
Number of servers 12
Number of time slots 3600
Time slot duration 1 second
Bandwidth U[45 KHz, 90 KHz]
Clients arrival U[0s, 1200s]
Streaming duration U[1200s, 2400s]
Chunk size 5s
Path loss exponent (a) 2
Max. Tx power of BS 3.6 �105 mW
Number of downlink RBs U[50,100]
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best possible configuration for the SAND-DASH strategy of
[11] and then compare its performance with our algorithm.

7 EVALUATION OF QOE AND FAIRNESS

7.1 Effect of Load Balancing

Fig. 2a shows the comparison between GreedyMSMC algo-
rithm and two client-based adaptation heuristics in term of
the average achievable throughput per client for 20 runs of the
simulation. Aswe can see, both client-based heuristics achieve
the same throughput (due to the same server allocation)which
is less than the throughput obtained using GreedyMSMC
algorithm. The reason for the difference is that allocating each
client merely to the closest base station during the whole ses-
sion of video streaming will result in lowering the average
throughput especially under the high dynamic arrival and
departure of the clients. In contrast, GreedyMSMC’s client-to-
servermapping is able to improve the situation.

Fig. 2b shows the comparison between the algorithms in
term of resource utilization. For each algorithm, with the
average taken over 20 runs, the percentage of utilized RBs
(ratio between the utilized and the total available resources)
has been first computed for each base station and then, the
root mean square deviation (RMSD) value among the BSs
have been shown in Fig. 2b. As we see, the proposed algo-
rithm results in significantly reducing the utilization devia-
tion (in average around 60 percent reduction) among the
BSs, which demonstrates the utility of the explicit load bal-
ancing step of our solution.

7.2 QoE Comparison to Client-Based Approaches

We next compare the approaches using the QoE metrics.
Fig. 3a shows that the network assisted adaptation yields 10
and 20 percent higher average video bitrate compared to BBA
and RBA, respectively. Themain reason is the higher effective
throughput values (cf. Fig. 2a). However, the difference to
BBA becomes marginal with large number of clients indicat-
ing that BBAworks equally well under low effective through-
put. On the other hand, GreedyMSMC chooses the bitrates in
decreasing order of size so that the time duration to reach a
full buffer reduces compared to the client-based heuristics,
which leads to roughly 25 percent reduction in initial startup
delay compared to client-based heuristics (Fig. 3b).

Figs. 3c and 3d show the frequency and the magnitude
(kbps) of bitrate switching per client and chunk duration
during the whole video streaming session of all clients. To
understand how to read the y-axis values, consider RBA
with 100 clients: On average, a quality switch happens
between roughly 6 percent of its chunks for a given client
and the average magnitude of the switch is around 1.5 kbps.
BBA leads to most frequent and largest quality switches.

The reason is that the buffer occupancy level can fluctuate a
lot under churn which results in larger number of bitrate
switching per client. RBA turns out to be more effective in
reducing the switching than GreedyMSMC, but it comes
with the cost of significantly lower video bitrates (Fig. 3a)
and higher buffer delay (Fig. 3b).

7.3 Effect of Network Topology

We also studied the different solutions using a different net-
work topology. For this simulation, the x�axis of the loca-
tion for both BSs and clients remain same while the y�axis
of the location for BSs and clients are chosen from the uni-
form distributions U½100; 150� and U ½0; 200�, respectively. In
other words, the locations of the base stations are shifted to
the middle of clients so that the distances of the clients to
BSs are more unevenly distributed compared to the previ-
ous topology.

The results of this comparison in terms of QoE metrics
are shown in Figs. 4a, 4b, 4c, and 4d. Network assisted
adaptation performs better than the client-based heuristics
in terms of average bitrate and startup delay. Since clients
are located less evenly compared to the previous topology,
the switching threshold dS ¼ ThrB has been chosen this
time in order to achieve higher average bitrate. This in turn
increases the switching frequency and magnitude for our
algorithm (Figs. 4c and 4d).

Fig. 5 shows the fairness of the different adaptation
approaches under two different network topologies. We
use the Jain’s fairness index [3] which is defined as JF ¼
ð
P

i �riÞ
2=ðS �

P

i �r
2
i Þ; where S is the total number of clients

and �ri denotes the average bitrate of client i during its
streaming session. As expected, GreedyMSMC clearly
improves fairness compared to client-based adaptation. We
also note that in average the fairness drops as the number of
clients increases, which is due to the fact that with more
number of clients, the variations in the bitrates of simulta-
neous clients at each time slot increases. This in turn means
that for each client, the likelihood of choosing a bitrate
which is very close to the average will be reduced. How-
ever, this behavior is slightly different for the first topology
as the fairness shows again small increase and then con-
verges to a stable point. The reason is that the locations of
the clients are evenly distributed under the first topology
and therefore, with the small achievable throughput when

Fig. 2. Comparison between GreedyMSMC and the client-based DASH
heuristics in terms of the achievable throughput and resource utilization.

Fig. 3. The comparison between GreedyMSMC and the client-based
heuristics in terms of QoE metrics.
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the number of clients get congested, it is highly expected
that some of them get very similar bitrates. This situation
however does not hold under the second topology in which
the clients’ locations are unevenly distributed.

It is also noteworthy to mention that although the fair-
ness values of GreedyMSMC and BBA converge for large
number of clients, using our algorithm results in higher
average bitrate (Figs. 3a and 4a).

7.4 Effect of Inter-Arrival Time

In this section, we study the impact of client inter-arrival time
on QoE. We consider 200 clients and six different uniform
arrival patterns by varying the arrival time. The arrival of cli-
ents to the system happens during the period that has mean
of 600 seconds and variance of ð4i2 � 104Þ=12; 1 � i � 6.

Figs. 6a and 6b show the resulting bitrates and quality
switching for different arrival patterns. The average bitrate
increases when the variance in the arrival pattern increases.
The reason is that increasing the variance increases the dura-
tion of the period during which the clients arrive to the sys-
tem, which in turn somewhat decreases the competition for
the shared radio resources. On the other side, the switching
magnitude keeps slightly increasing as the duration of arrival
interval increases (Fig. 6b) which is due to the fact that with
larger duration of arrival, the chunks of different clients will
havemore interleaving such that the number of times that cli-
ents have to switch to different bitrateswill increase.

7.5 Effect of Chunk and Buffer Sizes

We next investigate the impact of the chunk and buffer size
on the average video bitrate and bitrate switching. We

consider 200 clients and average the results over 20 simula-
tion runs. Fig. 7a shows that increasing the chunk size ini-
tially causes the increase in video bitrate. The reason is that
until some time durations, the bitrate selection logic of the
algorithm is not sensible to the variations in the throughput
and hence, the estimated throughput slightly increases.
That means by increasing the chunk size up to some point,
the average bitrate slightly improves. However, the bitrate
starts decreasing as the chunk size gets larger. This is
because the larger the chunk size, the less frequently the
bitrate selection algorithm has the ability to react to fluctua-
tion in available network resources. A similar pattern is also
observed for the switching magnitude as the chunk size
increases. This result reveals that by varying the chunk size,
the improvement in video bitrate comes however with the
cost of higher bitrate switching.

In Fig. 7b, the results for the impact of increasing the buffer
size on the average bitrate and switching are shown. As we
noticed from the results, the increases in average bitrate or
decrease in bitrate switching is small when the buffer size
increases. As the matter of fact, the reason for such phenom-
ena is that our scheduling algorithmaims to avoid the stalling
event under any circumstances which leads to negligible
improvement when the variations in the set of available
bitrates and the initial buffering delay are small.

7.6 Comparison to Another SAND-DASH Solution

We next compare the performance of the proposed network
assisted adaptation with an existing SAND-DASH solution,
which we described in Section 6.3. The results are shown in
Figs. 8a, 8b, 8c, and 8d. GreedyMSMC algorithm improves
the average bitrate, fairness and resource utilization com-
pared to the alternative network assisted solution by in
average (over different number of clients) about respec-
tively 20, 3, and 60 percent. It is noteworthy to mention that
these improvements are obtained by the help of clients to
server mapping strategy employed by GreedyMSMC. From
the switching point of view, it is observed that for larger
number of clients, the alternative SAND-DASH solution
shows however slightly better performance compared to
our solution which is due to optimizing the switching under
the allocation of clients to the nearest BS. Despite of this

Fig. 4. The comparison between GreedyMSMC and client-based heuris-
tics for different network topology.

Fig. 5. Comparison between GreedyMSMC and client-based DASH heu-
ristics in term of Jain’s fairness index.

Fig. 6. Comparison between GreedyMSMC and client-based DASH heu-
ristics for different arrival intervals.

Fig. 7. Impact of chunk and buffer size on the average video bitrate and
switching magnitude per client.
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improvement, the switching level of both solutions becomes
stable when the number of clients gets larger.

It is noted that our network-assisted adaptation solution
assumes the availability of the same replication of all video
chunks at every edge server without the storage constraint.
As an implication, our algorithm obviously reveals better
performance in terms of QoE metrics compared to those
network-assisted strategies which impose the limitation on
the cache storage at the edge server. The reason is due to the
fact that retrieving some of the locally missed chunks from
the origin server increases the delay and hence degrading
the QoE of the clients.

8 SYSTEM OPTIMALITY AND SCALABILITY

In this section,we first examine the optimality of the heuristic-
based algorithms of our system by comparing their perfor-
mance to the optimal solutions in limited complexity scenar-
ios. We then pay our attention to the scalability of the system
by studying the performance of the decentralized implemen-
tation of the algorithm in terms of both utility gain and the
computation time compared to the centralized one.

8.1 Comparison with Optimal Scheduling

As mentioned in Section 4.2, the optimization problem
(7)-(12) belongs to the class of NP-hard problems and hence,
finding the optimal solution for large instances is computa-
tionally intractable. However, we are interested in this part
of simulation to evaluate the performance of the proposed
heuristic compared to the optimal scheduling for small
instances of the problem. Here, we assume that the number
of clients ranges from 5 to 30 and three edge servers are
deployed. In order to further reduce the computation time,
we relax the assumption of integer bitrate allocation for
both strategies, such that the allocated bitrates to each client
can take any continues value between 40 kbps and 220 kbps.
Furthermore, we also neglect here the constraint on avoid-
ing the stalling on the buffer for the sake of simplicity in the
implementation. For finding the optimal clients to servers
mapping according to relation (13) as well as the optimal
bitrate allocation, we use the Gurobi optimization solver
[39] and implement the bitrate adaptation algorithm in
Java with subroutins for calling Gurobi solver. To have the
fair comparison, for the optimal scheduling, the weighting

parameters in the objective function (7) are equally set to
r ¼ v ¼ u ¼ 1=3.

As the comparison result in Fig. 9a shows, for each client
instance the average of optimal bitarte over 20 runs of simu-
lation is no more than 1.2 times of the bitrate returned by the
proposed algorithm GreedyMSMC. This in turn implies that
considering bitrate as the comparison metric, GreedyMSMC
is an 1:2�approximation algorithm for the utility maximi-
zation problem (7)-(12). Considering the buffer delay met-
ric, GreedyMSMC algorithm yields an initial buffer delay
which is very close to the optimal one as the number of
clients increases. This is due to the fact that buffer delay
was considered as less important QoE factor and hence
neglected in the optimization problem. From the bitrate
switching point of view, the results in Fig. 9c suggest that
using GreedyMSMC both switching frequency and mag-
nitude get closer to the optimal and tend to exceed it as
the number of clients becomes larger. Fig. 9d also con-
firms that GreedyMSMC is again 1:2�approximation fac-
tor for the optimization problem considering the fairness
index as the comparison metric.

It is also noteworthy to mention that each of the QoE
metrics can be further optimized by increasing the corre-
sponding weighting parameter in the optimization problem.

8.2 Decentralized Implementation

In this section, we want to investigate the impact of the
decentralized implementation of GreedyMSMC algorithm
on the performance gain from the average bitrate and com-
putation time points of view. In the decentralized imple-
mentation, we restrict the search space for the clients to
server mapping by considering multiple accessibility levels
(denoted by N). For instance, N ¼ 2 means that for each cli-
ent, the search space for server selection is limited to the
first K=2 closest edge servers where K is the total number
of servers. In this way, the clients to server mapping and
the scheduling process are both performed by the local coor-
dinators at the edges. With the same number of clients and
servers as the previous sections, four different accessibility

Fig. 8. The comparison between GreedyMSMC and the SAND-DASH
approach in terms of QoE metrics.

Fig. 9. The comparison between GreedyMSMC and the optimal schedul-
ing for small number of clients.
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levels N ¼ f2; 4; 6; 12g are considered. The average video
bitrate generated by decentralized algorithm for different
number of clients and N values have been shown in
Table 3.

As it is seen, for different number of clients, the average
bitrate decreases as the accessibility level increases. The rea-
son is that for each client, the algorithm will have the local
information (less choices for server selection) with larger
accessibility levels which consequently leads to loosing
some gain that could be obtained considering all edge serv-
ers. It is also noted that with the case of N ¼ 12, the Greed-
yMSMC algorithm behaves in the similar way as the client-
based adaptation heuristics in which each client is allocated
to the nearest BS during the whole video streaming session.
We have also shown in Fig. 10 the impact of accessibility
level on the computation time taken by decentralized sched-
uling algorithm. As it is seen from the result, the running
time slightly decreases as the accessibility level increases
which is because of the computation tasks at the coordina-
tors for server mapping decision reduces when the search
space for server selection decreases.

It is noted that we do not solve the optimization problem
in a distributed way but in fact, the similar optimization
problems but with significantly reduced search space are
handled with distributed implementation and are executed
by the local coordinators.

9 EXPERIMENT WITH LTE SIMULATOR

To obtain the simulation results presented in the previous
sections, we used a relatively simple model to characterize
the radio link data rate as a function of distance of the client
from the base station. In order to make sure that the results
are not biased because of using such a simple model, we
next study the system behavior with radio access level
traces from a full-fledged LTE simulator.

9.1 Setup Description

For the network setup, we use SimuLTE [38] program
which is integrated into OMMNET++ simulator and enables
the communication between mobile users known as UEs
and the LTE cellular base stations known as eNodeBs.
Under the urban macrocell channel model specification
[3GPP TR 36.814 V.9.0.0 2010], we have obtained the down-
link SNR values (in dB) of 50 mobile users connecting to 5
eNodeBs each associated with one video server. We follow
the client mobility with constant speed of 8.33 mps as con-
sidered in [29] during 300 seconds (time slots) of video
streaming session. Given the downlink SNR values, the the-
oretical throughput of mobile users are then obtained using
the relation (14) which is an approximation of Shannon
upper bound. Note that the values of parameters a,
SNRmin, SNRmax and Thrmax are set to respectively 0.6,
�10 dB, 23 dB and 4.4 bps/Hz according to the downlink
specifications reported in [40].

ThrðSNRÞ ¼

0; SNR < SNRmin

a � log2ð1þ 10
SNR
10 Þ; SNRmin � SNR < SNRmax

Thrmax; SNR � SNRmax:

8

>

<

>

:

(14)

The set of video bitrates are available at ten different quali-
ties 15 Mbps, 17 Mbps, 22 Mbps, 26 Mbps, 30 Mbps, 35 Mbps,
38 Mbps, 43 Mbps, 45 Mbps and 50 Mbps. The arrival time of
each client is randomly chosen form the uniform interval
U½0 s; 10 s� and with a streaming session of 300s, its departure
time follows the uniform distributionU ½300 s; 310 s�. Incorpo-
rating the emulated throughput values into the Matlab simu-
lator, the proposed algorithm is compared against the client-
based DASH heuristics in terms of QoE metrics, fairness and
resource utilization. The parameters used in SimuLTE and
their corresponding values have been summarized in Table 4.

9.2 QoE and Fairness Comparison

We have compared GreedyMSMC with two client-based
DASH heuristics BBA and RBA in terms of QoE metrics
using the throughput values which were obtained from the
LTE simulator.

As the first result, Fig. 11a reveals that the clients receive
on average higher effective throughput using the proposed
algorithm compared to both BBA and RBA heuristics. This is
because of the clients to server mapping strategy used by
GreedyMSMC algorithm which aims to balance the utilized
resource blocks among the base stations. Similarly, the

TABLE 3
Achievable Bitrate (kbps) for Different Accessibility Levels

Using the Decentralized Scheduling

Number of Clients N ¼ 2 N ¼ 4 N ¼ 6 N ¼ 12

100 137.5508 136.3277 131.4192 121.1129
150 121.4348 120.0969 115.3875 105.3555
200 109.1368 107.7879 103.6461 94.6087
250 100.3953 99.1173 95.7507 87.6662
300 93.6886 92.6487 89.5783 82.3203
350 88.2712 87.5216 84.6605 78.0915
400 84.0251 83.2511 80.5823 74.7188
450 80.4175 79.7770 77.3864 72.0802
500 77.6153 77.0341 74.7754 69.9263

Fig. 10. Comparison between different accessibility levels in term of
computation time.

TABLE 4
SimuLTE Parameters and Their Values

SimuLTE Parameter Corresponding Value

Number of UEs 50
Number of eNodeBs 5
UE antenna gain 0 dBi
eNodeB antenna gain 18 dBi
UE speed 8.3 mps
Maximum Tx power per UE 26 dBm
Channel bandwidth 5 MHz
Number of downlink RBs 28
Scheduler Proportional Fairness
Channel model Urban Macrocell
Shadowing Disabled
Simulation time 300s
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higher effective throughput obtained using GreedyMSMC
algorithm helps the mobile clients to receive on average
higher bitrate at each time slot as shown in Fig. 11b. We note
that when representing the throughput/bitrate per client
index, for few of the clients the achievable throughput using
GreedyMSMC is lesser than both BBA and RBA, however,
those clients obtain higher bitrates when using our algo-
rithm. The reason is that in the bitrate selection phase, our
algorithm also takes into account the instantaneous through-
put while, the client-based heuristics rely on only either the
estimated throughput or the buffer level. That means in
some cases the allocated bitrates by the client-based heuris-
ticsmay not reflect the instantaneous throughput. For the ini-
tial buffer delay, the result in Fig. 11c confirms that the
mobile clients tolerate an initial delay on their playback
buffer which is in average less than half of the delay caused
by BBA and RBA. Again, the higher achievable effective
throughput using GreedyMSMC algorithm helps the clients
to reach faster the buffer filling level in the startup phase
compared to client-based DASH heuristics. Controlling the
bitrate switching using the defined threshold, the results in
Fig. 11d show that GreedyMSMC algorithm is effective in
reducing both switching frequency and magnitude com-
pared to BBA. However, the switching of our algorithm is
higher than RBA which however it gets benefit of higher
average bitrate and less buffer delay compared to RBA.

The results of comparison in term of resource utilization
deviation among the base stations show the RMSD values
of 0.2353, 0.2213 and 0.0485 for respectively BBA, RBA and
GreedyMSMC which again verifies the effectiveness of cli-
ents to server mapping strategy. Finally, the fairness index
values of 0.9791, 0.9748 and 0.9877 are obtained when using
BBA, RBA and GreedyMSMC algorithm, respectively, con-
firming the superiority of the proposed algorithm in term of
fairness among the clients as well.

10 CONCLUSION

This article presents a multi-access edge computing assisted
DASH system which facilitates the access of large scale of
mobile clients to the set of replicated video contents over
multiple edge servers. Our objective was to quantify the
advantages of using the network-assisted adaptation strat-
egy compared to the purely client-based DASH heuristics.

Toward this objective, we designed an optimized solution
for network-assisted adaptation which includes a clients to
server mapping strategy and considers the joint weighted
maximization of QoE and fairness. Due to the NP-hardness
of the problem formulation, we then crafted a self-tuning
greedy algorithm with low complexity which utilizes the
MEC facilities.

Simulation results reveal that the proposed network-
assisted scheduling algorithm outperforms the purely client-
based DASH heuristics and one existing SAND-DASH solu-
tion in some metrics. Particularly, the noticeable improve-
ments using the network-assisted strategy are obtained in
situations when the achievable throughput is moderately
high or the link quality of the mobile clients does not differ
from each other substantially.

The proposed system assumes that the video chunks are
replicated on all of the edge servers. However, these servers
have a limited storage capacity and, therefore, some video
chunks may need to be requested from a further away
server, which may increase inter-ISP network traffic and
increase the operational costs of the ISP. In our future work,
we plan to investigate jointly maximizing QoE and mini-
mizing the amount of inbound traffic using an optimized
edge caching and bitrate adaptation solution for mobile
video streaming.
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