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ABSTRACT Internet-of-Things (IoT) devices are massively interconnected, which generates a massive

amount of network traffic. The concept of edge computing brings a new paradigm to monitor and manage

network traffic at the network’s edge. Network traffic classification is a critical task to monitor and identify

Internet traffic. Recent traffic classification works suggested using statistical flow features to classify

network traffic accurately using machine learning techniques. The selected classification features must

be stable and can work across different spatial and temporal heterogeneity. This paper proposes a feature

selection mechanism called Ensemble Weight Approach (EWA) for selecting significant features for Internet

traffic classification based on multi-criterion ranking and selection mechanisms. Extensive simulations have

been conducted using publicly-available traces from the University of Cambridge. The simulation results

demonstrate that EWA is capable of identifying stable features subset for Internet traffic identification. EWA-

selected features improve the mean accuracy up to 1.3% and reduce RMSE using fewer features than other

feature selection methods. The smaller number of features directly contributes to shorter classification time.

Furthermore, the selected features can train stable traffic classification generative models irrespective of the

dataset’s spatial and temporal differences, with consistent accuracy up to 97%. The overall performance

indicates that EWA-selected statistical flow features can improve the overall traffic classification.

INDEX TERMS Edge computing, Internet-of-Things, Network traffic classification, Feature selection

I. INTRODUCTION

T
HE introduction of the Internet-of-Things (IoT) has

benefited numerous sectors like healthcare, manufactur-

ing, finance, and entertainment. The massive IoT devices’

interconnectivity raises serious concerns since it resulted

in high network traffic. Monitoring and managing network

traffic, especially at the network’s edge, requires accurate

and efficient network traffic classification. One of the factors

for efficient and accurate network traffic classification is the

selected classification features that are stable and can work

across different spatial and temporal heterogeneity.

Traffic application identification is a fundamental and crit-

ical task in network traffic management [1]. The limitation of

port-based e.g. [2]–[4] and payload-based strategies e.g. [3],

[5]–[8] prompts the use of statistical flow features e.g. [9],

[10] for traffic classification. The latter provides the pliabil-

ity to identify network traffic in contrast to port-based and

signature-based strategies since this type of traffic identifier
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is not affected by detection avoidance mechanisms such as

dynamic port numbers and payload encryption.

Identifying the classes of Internet traffic using statistical

flow features is non-trivial because of the high dimensionality

of traffic features used for traffic classification. Preferably,

the usage of many features would boost the ability to differ-

entiate Internet traffic [11], [12]. Nonetheless, it is not always

so in practice because not every feature is informative and

useful. Some statistical flow features may not be relevant and

uninformative, while others may have high inter-correlation

with each other features and thus redundant [13], [14]. The

use of less significant traffic features affects the efficiency

and accuracy of network traffic classification [13], [15]–[17].

Several feature selection (FS) techniques have been pro-

posed in literature [15], [17]–[20] to enhance classification

performance and accuracy by discarding irrelevant attributes.

Nevertheless, these studies did not consider the selected

features’ stability when applied in a situation with a dif-

ferent location and time heterogeneity. Moreover, for traffic

identification at the network edge in real-time, a minimal

number of features must be used to improve the classification

throughput on edge devices such as middleboxes.

Thus, this work proposes a feature selection method for

network traffic classification named Ensemble Weight Ap-

proach (EWA) for selecting robust statistical flow features

for Internet traffic classification that are robust. The proposed

feature selection method first generates candidate features

using conventional feature selection methods, ranking each

feature combination, and searching for the best features.

Extensive simulations have been conducted using publicly-

available traces from the University of Cambridge to evaluate

the proposed EWA feature selection. EWA selects fewer

features for machine learning classification of Internet traffic

that are stable irrespective of the dataset’s spatial and tempo-

ral differences, improving the overall traffic classification.

The remainder of this paper is organized as follows. Sec-

tion II discusses similar feature selection methods, particu-

larly for network traffic classification. Section III presents

the proposed feature selection method. Section IV describes

the experimental setup, while Section V discusses the re-

sults. Section VI concludes the paper and recommends future

works.

II. RELATED WORK

This section discusses similar feature selection methods,

particularly for network traffic classification. We also present

a comprehensive review of state-of-the-art feature selection

techniques for network traffic classification.

A. ML TRAFFIC CLASSIFICATION

One of the techniques that can be applied to IoT is ML. ML

is a group of robust strategies for data mining and knowledge

discovery [21], [22]. The first work using this technique was

[23]. The conventional structure for creating ML models

involves sampling the training dataset, extracting features,

selecting informative features, and creating the generative

model. Once the generative model has been generated, net-

work traffic can be classified based on the preset classes

defined during training.

Feature extraction is a method of extracting features that

can distinguish a data class over the others. In the case of

network traffic classification, distinct attributes such as port

[4] and packet inter-arrival time and flow statistics [24] can be

used as the classification features. However, the cardinality of

possible features can be huge. While classifier training can be

done offline, many features will result in a large generative

model and require a big memory footprint. Furthermore, ex-

tracting a large number of features in real-time classification

is not realistic. Hence, feature selection (FS) is required to

boost both effectiveness and efficiency since it discards less

informative or irrelevant features that benefit both the training

and classification phases.

B. THE USE OF FEATURE SELECTION

In machine learning, FS is a commonly used technique in

data preprocessing. FS methods aim to identify and choose

a subset of features to describe the data concept effectively.

Simultaneously, FS can reduce the effects of noise and unre-

lated attributes to yield a good prediction of data class [17],

[25], [26]. Traffic identification can greatly benefit in terms of

accuracy and other performance metrics by utilizing the most

significant features [27]. The selection of relevant features for

network traffic identification is non-trivial due to:

• It requires a good understanding of the traffic engineer-

ing domain to identify which features are relevant.

• Datasets may contain irrelevant and redundant features

that considerably reduce classification accuracy.

• Efficiency of the identifiers decreases when selecting a

huge number of attributes. The storage requirement is

increased, and time taken for training and testing of the

model is also increases [28].

Recently, FS strategies are extensively deployed in many

applications, such as identifying informative genes [29],

bioinformatics [30], and text categorization [31]. The objec-

tives of the algorithms used for extracting features may differ.

However, they all have many similarities [32]:

• To find the minimal size feature subgroup is fundamen-

tal and sufficient to the target concept [33].

• The ability to choose a subgroup of features from a large

collection, in which the criterion value can be optimized

over every subgroup [34].

• The right choice of subclass features to increase iden-

tification accuracy. Reducing the structure of chosen

features and not tampering with the built model’s pre-

diction accuracy [35].

• Selecting a small group can result in class distribution

given only values of the selected features, which can

closely represent the original distribution [35].

Furthermore, FS process evaluation can be achieved with

four basic stages: subset creation and assessment, termination

criterion, and result validation [36]. The process starts with
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subclass creation employing a particular search approach to

yield candidate feature subsets. Subsequently, every candi-

date subgroup is examined using specific examination con-

ditions and related to the previous best result. The obtained

result becomes the best result if it outperforms the previous

best. The procedure for subset creation and examination

continues until the termination condition is fulfilled. Lastly

chosen best feature subgroup is authenticated by previous

information or test data. The search approach and assessment

condition are two vital factors for the study of FS.

Subset creation starts with a search point, that could be

an empty set, whole set, or a randomly created subset. In

the beginning, it can lookup feature subgroups from random

directions. In the forward search, features are inserted indi-

vidually, whereas in the backward search, the least significant

feature is detached based on the valuation criterion. Random

search includes or removes features in random to evade being

trapped into a local maximum.

C. FEATURE SELECTION MODELS

FS processes can be categorized into two main methods -

filter and wrapper methods [37]–[39]. The filter approaches

or feature ranking methods can use the wrapper approach

to rank features too. A filter-based FS can return a subset

of features, e.g., Correlation-based FS method (CFS). These

techniques’ attractive nature is centered on their simplicity,

scalability, and good empirical success [14]. Feature ranking

is effective because it involves only computation and sorting

of scores. The subsets of the main features can be chosen

based on feature ranks to create a classifier. Some filter

techniques employ ranking conditions based on information-

theoretic criteria including information gain (IG) [40], Gain-

Ratio (GR) [27], mutual information [14], and entropy-based

measure [41], whereas some use statistics, such as Chi-

squared statistics [42], T-statistics [43], F-statistics [44], MIT

correlation [45], and Fisher criterion [46].

The wrapper approaches [47], [48] rely on identifying

informative features for obtaining a feature subset. Wrappers

exploit the performance learning machine to appraise the

value of feature subgroups. The wrapper FS techniques can

produce high identification accuracy for a specific identi-

fier at the expense of high computational complexity and

less generalization of the selected features on other identi-

fiers. The wrapper techniques commonly surpass filter tech-

nique with regards to the accuracy of the learning machine,

which could be categorized as sequential selection algorithms

((SFS), sequential backward (SBFS), and sequential forward

floating selection (SFFS)) and heuristic search algorithms

(genetic algorithm [49]).

The other group of FS is hybrid methods. Every feature

evaluation measure (EM) is equipped with distinct advan-

tages and disadvantages. Some hybrid procedure FS tech-

niques include filter and wrapper [39], [50]. Lately, the

hybrid approach has been widely explored for FS due to

its global optimization abilities [51]. The hybrid method

proposed in [29] applied rank, which grouping to associate

various FS approaches. These features were combined using

a weighted sum from every component rankings acquired

from a distinct FS mechanism. This shows that a combina-

tion scheme performs better than individual FS techniques.

Moreover, Rogati and Yang [52] prove that the increase

in performance was achieved by merging several feature

selectors.

Moreover, all these methods can be represented in the

space of features according to the evaluation measures (EM),

generation of successor (GoS), and search organization stan-

dards. Generation of successor and Search organization are

grouped as generation procedure. These three characteristics

are described as follows.

• EM is a function used to evaluate the generated succes-

sor.

• GoS is a mechanism that proposes a successor of the

current hypothesis. Different operators can be consid-

ered to generate a successor: Forward, Backward, Com-

pound, Weighting, and Random.

• Search algorithm is used to drive the FS process using

one of these strategies: sequential, exponential, or ran-

dom strategy.

Moore et al. in [53] used the Fast Correlation Based Filter

(FCBF) feature selection technique for feature reduction and

Naive Bayes algorithm to measure the significance of the

feature reduction. The overall classification accuracy result

based on features subsets is 84.06%, obtained by using all

features. Jun et.al., in [54] used two feature subsets to create a

classified traffic. The work employed flow features subsets on

Support Vector Machine (SVM). Training time was reported

at 40 seconds, while the classifier accuracy is 70%. In [55]

classified traffic using SVM and random search algorithm for

features reduction. The proposed method did not use UDP

traffic, even though network traffic is composed of TCP and

UDP packets.

Zhang et al. [16] proposed WSU AUC and SRSF FS algo-

rithms. WSU AUC was employed to select features from high

dimensional imbalanced data. This work used ten Cambridge

datasets, UNIBS, and CAIDA datasets and applied the C4.5

decision tree and NBK machine learning algorithm (batch

learning method) to evaluate proposed FS algorithms. This

method computes the value of WSU on each feature and

the classes and removes redundant features depending on the

specific three-shot. This method also used the SRSF method

to select the robust features that depend on frequency weight.

This work selected three server port features, the total number

of bytes sent in the initial window and minimum segment size

observed, hence achieved an accuracy of more than 94%.

D. CHALLENGES IN FEATURE SELECTION FOR

TRAFFIC CLASSIFICATION

The key challenge for selecting features is preserving the

appropriate features subset for accurate traffic identification.

Traffic classification accuracy is associated with a small

number of appropriate features [13], [15]–[17]. Various FS
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methods select various sets of significant features, but they

do not always select the same number of significant features.

These are challenging due to:

• Representative influence of a specific FS approach may

limit its search space, which hinders achieving an opti-

mal subset.

• Various FS approaches may produce feature subgroups

that can be termed as local optimal in the space of

feature subsets.

• A collective method can give an improved approxima-

tion to optimal subset or ranking of features, which is

not frequently applicable with a single feature selection

technique.

Moreover, a broad analysis is required to provide infor-

mation or knowledge for the main factors affecting the ro-

bustness of the FS procedures. Al Harthi et al. [56] proposed

an approach named global optimization algorithm (GOA) it

was focused on the stability issues. This approach depends

only on the frequency of the selected feature (ignore the

robustness of the selected feature) and consider Round-Trip

Time (RTT) features as part of selected subset features, which

depend on location [57].Nevertheless, it would be ideal to

ensure the robustness of feature subset (accurate regardless

of location and time heterogeneity and selection of a small

relevant number of features). This is important to build traffic

identification.

III. PROPOSED ENSEMBLES WEIGHT AVERAGE (EWA)

FEATURE SELECTION

The conceptual illustration of traffic classification is shown

in Figure 1. This framework comprises the learning model

that learns from the sampled datasets and the classifier model

that classifies incoming traffic based on the learned classifier

model. A traffic instance (packet or flow, depending on state-

less or stateful processing) is represented by several features

that can measure varying aspects of such an instance. A flow

refers to a group of packets sharing same 5-tuples (source

and destination IP, source and destination port, and transport

protocol). Flow can be represented by UDP or TCP packets.
Generally, datasets (can be in the pcap format) are used

as the classifier’s training sample. Then, the FS selects the

relevant feature subsets to the target protocol or application

(in this case, network traffic classification). The learning

model is then learned based on the selected feature subsets

of all training instances.
As previously mentioned, the hybrid method combines

features based on a weighted sum from every component

rankings acquired from a distinct FS mechanism. This ap-

proach is shown to perform better than individual FS tech-

niques. The EWA method consists of three main stages:

Evaluation of individual FS methods and feature pool gener-

ation, weighted ranking of features, and searching an optimal

features subset, as shown in Figure 2. The first stage involves

feature extraction and the formation of a feature pool from

outputs of individual FS methods (wrapper and filter FS

methods). The cutpoint of twenty features is used as the

Traffic instance

ML Classification ML Generative Model

Feature Extraction

Feature Subset Extraction
Feature Selection

Training

Training Datasetsampling

Traffic Class

FIGURE 1. Generic stages for ML traffic classification. The shaded tasks are

for training the ML generative model that can be done offline.

stopping criterion. The cutpoint value can be changed accord-

ingly. Since the EWA aims to select the fewest possible traffic

classification features, the cutpoint is set to twenty. In the

second stage, the selected features are ranked, and features

observed in different datasets will be given higher ranks.

In the third stage, EWA applies one widely used sequential

search strategy (SFS) (Sequential Forward Selection (SFS))

[58] to remove irrelevant and redundant features from the

initial selected features pool.

STAGE 1: FEATURE POOL GENERATION

This stage evaluates the stability of each feature subset gen-

erated by the respective FS technique. Each FS technique

generates non-unique feature subsets when applied to the

different training datasets. Note that a distinct FS technique

uses a distinct method to create feature subsets. The selected

features are then evaluated using an ML classifier, in this

work the naive Bayes classifier is appiled to evaluate the

accuracy of each dataset. Selecting optimal features across

the different locality and time heterogeneity is difficult.

Hence, to make the best of the various FS methods, EWA

uses multi-feature selection methods on multiple datasets to

create the initial pool of multiple feature subsets. Accuracy

and Stability are used as the criterion to select the candidate

FS methods. These selected feature subsets are used to create

the initial features pool. Unselected features by any of the FS

techniques are removed.

Assume a set of training datasets, D = {D1, D2, ..., D|D|},
k is the number of candidate FS methods FS =

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3037492, IEEE Access

Author et al.: Preparation of Papers for IEEE ACCESS

D FS

Stage 1: Feature Pool Generation

F

Feature Pool

Stage 2: Feature Ranking

Ranked Feature

Stage 3: Sequential Forward Selection

Selected Features

FIGURE 2. Generic stages for ML traffic classification. The shaded tasks are

for training the ML generative model that can be done offline.

{FS1, FS2, ..., FSk}, and F = {f1, f2, ..., f|F |} is the

potential features that can be used for traffic classification.

Moore et al. proposed 248 porential features that be used

for network traffic classification [19]. Let Ppool = ∅ be the

initial features pool and Pk is the the X best ranking features

for FSk, where X is features cutpoint. Each Pk is evaluated

using a ML classifier, in this work the naive Nayes classifier,

to evaluate its accuracy Ack and Stability Stk. Algorithm 1

shows the initial features pool.

Algorithm 1 Feature Pool Generation

1: Datasets D = {D1, D2, ..., D|D|}
2: FS methods FS = {FS1, FS2, ..., FSk}

3: Feature pool P[pool = ∅
4: for i = 1 to |D| do

5: for j = 1 to k do

6: Generate Pk

7: Evaluate Ack and Stk
8: Select first X features in ranking

9: Ppool ← Ppool ∪ Pk

10: end for

11: end for

12: return P as the candidate features

Using the cross-validation, the Accuracy Ack,i due to the

selected features by FSk on dataset Di is given as

Ack,i =
tp + tn

tp + tn + fp + fn
(1)

Ack = avg(Acck,i) ∀Di ∈ D (2)

where tp, tn, fp, and fn respectively represents true posi-

tive, true ngative, false positive, and false negative. Accu-

racy Ac = [0, 1], where Ack → 1 shows accurate traffic

classification whereas Ack → 0 indicates inaccurate traffic

classification.

Stability St is a measurement to indicate the robustness

of the selected features regardless of traffic data variations.

A certain FS method may generate different feature sets

on datasets collected in different periods or locality due

to concept drift. Therefore, it is critical to select features

that can yield high prediction Accuracy and better relative

Stability over different samples. This study employed the

stability measure suggested by [20] to evaluate the distinct

feature selection methods.

A FS may respectively generate Pa and Pb feature subsets

from datasets Da and Db, where both maybe unidentical. Let

Pk = Pa ∪ Pb. The stability Stk of the selected features by

FSk over the two datasets can be estimated according to [20]

as:

Stk = [1−RU(Pk)]× 100 (3)

RU(Pk) =
H(Pk)

log(|F |)
(4)

H(Pk) =
1

|F |

|F |
∑

i=1

−
ni
j

k|Dj |
log

(

ni
j

k|Dj |

)

(5)

where |F | is the total number of features, ni
j is the frequency

of specific feature fi observed across different datasets Dj .

STAGE 2: WEIGHTED RANKING OF FEATURES

EWA is based on a weighted ranking measure to select robust

features using multiple individual FS methods on different

traffic datasets. The idea behind this as a class is superiority

over that of individual FS methods, where the most signif-

icant features for network traffic classification are probably

be endorsed by most FS methods.

A weighted ranking measure for each feature fi is Rfi ,

which is the likelihood that fi is selected by multiple FS

methods in different traffic datasets (or none at all), as

shown in Equations (2). The mean value of Rfi in Equation

(5) shows high optimality when avg(Rfi) → 1, whereas

avg(Rfi)→ 0 indicates low optimality.

Let |D| denotes the cardinality of traffic datasets D, where

k represents the total number of FS methods used on a single

dataset. A weighted ranking for each feature fi is given as:

Rfi =
1

k|D|

|D|
∑

j=1

k
∑

z=1

Oi,j,z (6)

Oi,j,z =
X − Li,j,z

X
(7)

avg(Rfi) =

|F |
∑

i=1

Rfi

|F |
(8)
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where Oi,j,z denotes the weight of feature fi dependent on its

location Li,j,z w.r.t. cutpoint value X for each Dj and FSz .

The lower the value of Li,j,z indicates its high significance.

An optimal threshold value is needed for selecting features

that are stable and have high weighted ranks, which are

sufficiently unique and reliable. As an example, a feature

with a high average ranking weight is considered sufficiently

reliable. The threshold B = Rfi − avg(Rfi) is determined

through experimentation. The higher value of B may not

necessarily result in higher Accuracy as too few features may

be used to classify network traffic.

In the second algorithm, firstly, the average weight mea-

sures of the features fi are computed. Then each feature

which has average weight measures more than or equal

threshold is selected and kept into the set of the best stable

features subset Pranked subset. Finally, important features

containing indispensable information about the original fea-

tures are selected.

Algorithm 2 Weighted Ranking of Features

1: Features set F = {f1, f2, ..., f|F |}
2: Features pool Ppool (stage 1)

3: Ranked features set Pranked = ∅
4: Threshold B

5: for fi ∈ Ppool do

6: Compute Bi = Rfi − avg(Rfi)
7: if Bi ≥ B then

8: Pranked ← Pranked ∪ fi;

9: Update B = Bi

10: end if

11: end for

12: return Pranked

STAGE 3: SEARCH THE BEST FEATURES SUBSET

USING SEQUENTIAL FORWARD SELECTION

In this stage, we apply the wrapper approach to identify the

best candidate features as a good search technique. The tech-

niques, in general, are classified into three groups: random-

ized, exponential, and sequential. This research considers a

widely used Sequential Forward Selection (SFS), a sequen-

tial search strategy [58]. SFS selects the best combination of

subset features for extraction. The selection process begins

with an empty set and continuously adds a single feature from

the superset to the subset when the Accuracy increases.

Table 1 illustrate the modified SFS to create a se-

lected features from a ranked features subest. In this case,

{f1, f2, f3, f4} are selected as the features to be used in

network trafffic classification.

IV. EXPERIMENTAL SETUP

This section describes the validation of EWA compared to

other feature selection methods.

TABLE 1. Procedure of SFS

Steps Feature Set Ac Selected features

Step 0 ..., ..., ..., ... 0 ∅

Step 1

f1, ..., ..., ...
..., f2, ..., ...
..., ..., f3, ...
..., ..., ..., f4

30
25
35
28

f3

Step 2
f1, ..., f3, ...
..., f2, f3, ...
..., ..., f3, f4

30
45
40

f2

Step 3
f1, f2, f3, ...
..., f2, f3, f4

65
70

f4

Step 4 f1, f2, f3, f4 75 f1

A. VALIDATION PROCEDURE

The validation procedure involves evaluating the proposed

EWA feature selection compared to the IG [59], FCBF [53],

and GOA method [56] in term of Accuracy (Ac), Stability

(St), and Root Mean Squared Error (RSME).

The following software and tools were used to achieve the

set objectives of this work:

• Batch learning algorithms are frameworks that facilitate

the selection of the appropriate attributes for the identi-

fication of Internet traffic. Naive Bayes (NB) was used

as classifiers. These classifiers have been successfully

employed in various works tackling traffic classification

[60]. They were executed in Weka open-source platform

[?].

• Weka [61] a data mining software was used to imple-

ment the selection of select suitable and correct traffic

features.

• A laptop with Intel Core i7-5500U processor, 8 GB

RAM, and 1 TB HDD was used for validation purposes.

B. DATASET

EWA was evaluated using the widely acceptable traffic

datasets from the University of Cambridge [19] (dataset D1

to D10). This dataset is among the largest network traffic

traces, which is publicly-available and assembled by a high-

performance network monitor over different periods from

two different network sites. The sites are designated as Site

A and Site B, with each site hosts about 1,000 Internet-

connected users through a full-duplex Gigabyte Ethernet

link. A high-performance network monitors the full-duplex

traffic for each traffic set on this connection. Table 2 sum-

marizes the datasets. For the implementation, we used the

Weka data mining tool [61]. In the Cambridge dataset case,

the early stage-packet statistic is not available without access

to all raw packets. Hence, the complete flow statistics are

used. To give an impartial assessment of all datasets, the

Cambridge dataset’s mean attributes were recomputed to

obtain the total attributes.

C. EVALUATION METRICS

Primarily, the proposed EWA is evaluated in terms of Ac-

curacy and Stability as described in Section III. To measure

6 VOLUME 4, 2016
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TABLE 2. Cambridge Dataset [19]

Datasets #flows Size (MB)

D1 24,863 29.7
D2 23,801 28.3
D3 22,932 27.5
D4 22,285 26.6
D5 21,648 25.8
D6 19,384 23.1
D7 55,835 66.0
D8 55,494 65.6
D9 66,248 78.3
D10 65,036 77.1

EWA in relation to other similar works, Similarity Si and

Root Mean Square Error (RSME) are also used.

This research evaluates the similarity with respect of the

accuracy of FS techniques when classifying traffic datasets

collected from different time and location. The similarity (Si)

in term of accuracy between two candidate datasets, Da and

Db is defined as

Si(Da, Db) = 1−
1

2

|C|
∑

c=1

|Aca,c −Acb,c| (9)

where C is the set of ML classifiers used to evaluate the

datasets. The Similarity measure takes values Si = [0, 1],
where the value close to zero indicates low similarity in

accuracy across multiple datasets and ML classifiers, while

the value approaching 1 indicates high similarity in terms of

accuracy.

Root Mean Square Error (RMSE) is a quadratic scoring

to measure the average magnitude of error. RMSE gives a

relatively high weight to large errors. Hence, RMSE is most

useful when large errors are particularly undesirable.

V. RESULTS AND DISCUSSION

Based on EWA stages that have been described in Section III,

this section explains the results from EWA:

• We evaluated seven FS algorithms in order to choose the

best top methods.

• The selected FS methods are applied to generate the

features pool.

• The weight of the features in the features pool is used to

select the best features depending on the threshold.

• Sequential Forward Selection method and Naive-Bayes

classifier are applied to select the best combination

subset of features.

• Lastly, we compare EWA method with FS methods: IG

[59], FCBF [53] and GOA method proposed in [56].

A. STAGE 1 RESULT

We evaluated seven FS techniques i.e., GainRatio (GR), Chi-

square (Chi), information gain (IG), Correlation Attribute

Eval (CAE), CV Attribute Eval (CV AE), Principal com-

ponents (PC), and Consistency Subset Eval (CSE) on four

Cambridge dataset which are D1, D3, D6 and D10. The

cutpoint X = 20 is applied for the ranking method. After
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FIGURE 3. Accuracy and Stability of multiple existing FS methods.

that, FS methods that achieved higher mean accuracy were

selected.

Table 3 presents a comparison of classification accuracy

for seven (7) FS methods on four Cambridge datasets (D1,

D3, D6 and D10). Hence, an FS strategy with high mean

accuracy is preferred. It is worthy of note the FS methods

that give higher accuracy are ranked as follows: Chi-square,

PC, GR, IG, CSE, CAE, and CV AE; as presented in Table 3.

As a result, we select Chi-square, PC, GR, and IG methods

for Stage 1 of EWA.

TABLE 3. The average accuracy avg(Ac) for conventional FS methods.

Dataset IG GR Chi CAE CVAE PC CSE
D1 60.34 80.81 80.80 73.04 76.12 80.25 77.35
D3 93.96 84.11 82.39 84.81 29.46 85.08 86.00
D6 96.05 91.11 93.08 91.95 90.91 90.02 86.56
D10 85.44 89.7 91.80 84.90 80.12 89.25 77.35

avg(Ac) 84.24 87.52 88.61 84.08 72.79 86.15 81.81

The selected FS techniques (Chi-square, PC, GR, and IG

methods) are compared based on their accuracy and stability

(see Figure 3). None of the FS methods outperformed the

others in most cases as there is no available FS technique that

can satisfy both criteria (stability and accuracy). For instance,

the performance of Chi-square FS was good on the accuracy

metric but poor on the stability metric. Meanwhile, PC was

poor on both metrics, while IG performed well on stability

but poor on accuracy.

Therefore, it is concluded that each of the evaluated FS

methods has its advantages and disadvantages when mea-

sured in terms of accuracy and stability. Our motivation

for proposing a ranking method based on multi-criterion

methods is to identify a stable and optimal subset of features

that help traffic classifiers perform well across different times

and locations. In this stage also, we evaluated 248 features

(see [19]) using four FS techniques (GR, Chi-square, IG, and

PC). The experiment utilized ten Cambridge dataset D1 to

D10 with cutpoint equals twenty is applied, and the best 20

features in the ranking are selected.
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B. STAGE 2 RESULT

In this stage, we compute the mean ranking weight of all 248

features F = {f1, f2, ..., f248} by using four FS techniques

on the ten Cambridge datasets and filter out all features that

have average weight Rfi ≤ 0.005, which reduces the number

of features from 248 to 32 features as tabulated in Table 4.

Therefore, features with higher mean weight are desired. The

features f1, f95, f96, f180 and f187 achieve a higher mean

weights.

Table 4 shows the threshold value (B) for all selected

32 features. Here we set (B) to select the best features

depending on the best result during evaluation using the

Naive Bayes classifier and the Cambridge datasets. Table 5

tabulates threshold B values and the number of features and

their respective accuracy for each range of B. The results

explain the value of B ≥ 0.054 is the best accuracy than

other values of B.

TABLE 4. Weighting matrix result with avg(Rfi
) = 0.196

fi Rfi B fi Rfi B
f1 0.950 0.754 f95 0.486 0.290
f24 0.230 0.230 f96 0.415 0.219
f43 0.061 -0.134 f101 0.116 -0.080
f47 0.065 -0.131 f125 0.195 -0.001
f82 0.172 -0.023 f133 0.204 0.008
f83 0.250 0.054 f135 0.082 -0.114
f84 0.147 -0.049 f136 0.055 -0.141
f86 0.142 -0.054 f137 0.168 -0.028
f90 0.118 -0.078 f143 0.106 -0.090
f93 0.179 -0.017 f145 0.086 -0.110
f94 0.136 -0.060 f147 0.108 -0.088
f149 0.105 -0.091 f179 0.108 -0.088
f151 0.136 -0.060 f180 0.452 0.252
f159 0.062 -0.062 f184 0.279 0.083
f167 0.181 -0.015 f186 0.260 0.064
f177 0.207 0.012 f187 0.340 0.144

TABLE 5. The threshold values and their relationship with the number of

features and accuracy.

Threshold range # features avg(Ac)
B ≥ −0.141 32 78.540
B ≥ −0.091 26 82.800
B ≥ −0.028 17 86.080
B ≥ 0.008 10 89.790
B ≥ 0.054 8 90.830

C. STAGE 3 RESULT

In this stage, the Sequential Forward Selection (SFS) method

and the Naive Bayes classifier are applied to select the best

feature combinations as the classification features. The SFS

method begins with an empty set and continuously adding a

single feature at any time until all possible combinations are

tested. Table 6 explains the selection of these features.

D. PERFORMANCE COMPARISON WITH OTHER FS

METHODS

Not to be biased with the proposed metrics, EWA is com-

pared with full features, baseline FS methods: IG [59],

TABLE 6. Selected features based on features described in [19].

Feature Feature name Feature description
f1 server_port Port Number at server
f95 initial_window_bytes_ab The total number of bytes send in

the initial window (client to server)
f96 initial_window_bytes_ba The total number of bytes send in

the initial window (server to client)
f180 var_data_wire_ba Variance of bytes in (Ethernet)

packets
f187 var_data_ip_ba Variance of total bytes in IP packet
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FIGURE 4. Accuracy of EWA compared to GOA.

FCBF [53] and GOA method proposed in [56]. The proposed

method was tested and validated using the same metrics.

TABLE 7. Accuracy (%) for different FS methods for different dataset2s.

Datasets FCBF IG GOA EWA FF
D1 92.06 60.34 89.22 95.05 57.89
D2 50.44 87.30 94.62 96.95 53.90
D3 93.65 93.96 95.97 96.63 84.45
D4 95.40 81.92 96.89 94.31 74.51
D5 64.22 72.52 71.06 72.71 63.12
D6 87.29 96.05 96.90 95.27 90.07
D7 94.62 62.47 95.15 95.97 51.86
D8 92.06 71.15 97.15 97.16 58.35
D9 44.19 63.04 87.02 90.11 67.44
D10 93.83 85.44 92.86 94.18 55.44

avg(Ac) 80.77 77.41 91.46 92.83 65.70

Table 7 presents results of comparison between the pro-

posed method and full features (FF), baseline FS methods:

IG [59], Fast Correlation-Based Filter (FCBF) [53] and GOA

method proposed in [56]. EWA improves mean accuracy up

to 4.2% using Naive Bayes for the 10 Cambridge dataset, and

at the same time, it uses the smallest number of features (5

features) compared with others. Figure 4 shows EWA’s ac-

curacy achieves a slight improvement over the GOA method,

while full features perform poorly.

Table 8 shows the comparison in terms of RMSE between

EWA and GOA. The results indicate that the EWA approach

achieved slight improvement overall compared to other FS

methods for the ten Cambridge datasets, as shown in Ta-

ble 8, while full features perform poorly. For the RMSE

comparison between EWA and GOA, the EWA approach

has achieved slight improvement over the GOA method, as
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FIGURE 5. RMSE comparison between EWA, GOA, and full-features.

shown in Figure 5.

TABLE 8. Root mean squared error (RMSE) comparison between EWA,

full-feature, and other FS methods (in %).

Datasets FCBF IG GOA EWA FF
D1 0.097 0.222 0.116 0.078 0.253
D2 0.232 0.122 0.157 0.119 0.351
D3 0.090 0.093 0.075 0.068 0.150
D4 0.082 0.153 0.075 0.090 0.239
D5 0.214 0.204 0.201 0.198 0.256
D6 0.125 0.077 0.091 0.086 0.122
D7 0.087 0.200 0.074 0.073 0.271
D8 0.093 0.186 0.066 0.065 0.251
D9 0.221 0.217 0.121 0.116 0.122
D10 0.086 0.143 0.094 0.086 0.261

Avg(RSME) 0.182 0.161 0.106 0.090 0.228

Figure 6 shows the comparison between EWA, full fea-

tures (FF), and other FS techniques (IG, FCBF, and GOA)

in accuracy and stability. The full-feature performs very well

on the stability but fares poorly in accuracy. The full features

set contains many redundant and irrelevant features. Other

FS methods such as IG performed poorly on accuracy but

performed equally well on stability, while FCBF performs

poorly on both metrics. GOA and EWA outperform the other

FS techniques (i.e., IG and FCBF) on both stability and

accuracy metrics, as various FS techniques are incorporated

in GOA and EWA to select different groups of relevant

features.

Conventional FS methods may not agree on the same

relevant features for these reasons: Different FS methods may

select feature subsets that can be considered local optimal in

the feature subsets space.

• The search space of any FS technique may be restricted

by the technique’s representative power such that it may

be impossible to reach the optimal subset.

• The combination of more than one approach can pro-

duce a better ranking of features or a better approxima-

tion to the optimal subset.

• In most cases, EWA outperforms all methods in terms

of stability and accuracy. Although GOA and EWA have

similar stability, EWA outperforms GOA because EWA

is based on a weighted ranking measure that allows the

FIGURE 6. Accuracy and Stability of EWA compared to GOA and other

existing FS methods.

FIGURE 7. RMSE versus Runtime of EWA compared to GOA and other

existing FS methods.

selection of robust features from multiple FS techniques

on different traffic datasets.

Figure 7 shows the comparison of full features (FF), FS

techniques (IG [59], FCBF [53]) and GOA methods [56]

compared to the proposed EWA method in terms of RMSE

and time to build the model (runtime (in seconds)). As a

result, full features have very high RMSE and Runtime (i.e.,

using full features). FCBF generates high RMSE and low

Runtime, while IG performs equally poorly on both. GOA

and EWA methods outperform full features and selected

FS techniques (IG, FCBF) in RMSE and Runtime criteria.

In most cases, EWA performs better than GOA in terms

of RMSE as GOA depends only on the selected feature’s

frequency. Both EWA and GOA have similar Runtime (s) due

to both methods selected only five features for classification.

Tables 9 and 10 show the comparison of EWA with GOA

in terms of similarity and accuracy. Naive Bayes and decision

tree J48 ML classifiers are applied on Cambridge datasets D1

and D2, collected at different times (Table 9) and datasets D1

and D2 collected from different locations (Table 10). Results
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show that EWA performs better than GOA in similarity and

accuracy as EWA is based on a weighted ranking measure.

This allows a selection of features selected by multiple FS

techniques from different traffic datasets with different time

and location heterogeneity.

TABLE 9. Similarity in accuracy for dataset collected at different times.

GOA EWA
J48 NB J48 NB

D1 0.996 0.842 0.997 0.955
D2 0.998 0.946 0.998 0.970

avg(Ac) 0.997 0.894 0.998 0.962
Si 0.949 0.983

TABLE 10. Similarity in accuracy for dataset collected from different locations.

GOA EWA
J48 NB J48 NB

D7 0.998 0.952 0.998 0.960
D10 0.990 0.929 0.997 0.941

avg(Ac) 0.997 0.940 0.998 0.951
Si 0.971 0.983

The simulation results indicate that EWA can perform the

selection of stable features that can be applied at different

times and location heterogeneity. However, in some practical

traffic classification use-cases that require modularity and

scalability, such as in hierarchical classification [62], time

and location heterogeneity are undesirable. EWA can still be

used as the feature subsets are dependent on the used datasets.

By categorizing training datasets, different feature subsets for

hierarchical traffic classification can be obtained.

VI. CONCLUSION

This paper contributes to the selection of robust feature

subsets for the identification of Internet traffic. The Ensemble

Weighted Approach (EWA) feature selection method was

proposed to select robust subset features for Internet traffic

identification. The results of the experiments proved that no

singular feature selection technique could perform well on

all datasets. Based on this fact, we suggested a method that

relies on the positives of the individual FS methods to obtain

a robust method. The simulation results on real datasets

illustrate EWA’s capability to identify robust subset features

for Internet traffic identification. Our findings also show that

EWA improves mean accuracy up to 1.3% and, at the same

time, reduced RMSE up to 0.016 uses a smaller number

of features that directly contribute to improving Runtime

up to 0.003 seconds). Selected features can build stable

traffic identification models that remain accurate regardless

of location and time heterogeneity with high similarity above

97%.

For future works, we plan to further analyze EWA for the

early estimation of statistical flow features. This is important

for real-time traffic identification as only certain features can

be extracted on the wire with the limited flow or packet

observability. We also plan to enhance ML classification with

incremental learning, as there is a need to propose forgetting

to enhance traffic classification accuracy over time by remov-

ing uninformative features when concept drift happens. Also,

a real-time traffic detection system can be integrated with any

network traffic management.
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