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Abstract: Indices quantifying spatial forest structure are frequently used to monitor spatial aspects of tree attributes in-

cluding biodiversity in research plots of limited size. The treatment of edge trees, which are close to the plot bound-

aries, can affect the estimation of such indices that include neighbour effects, since some of their neighbours are likely

to fall outside the plot. This paper investigates whether and under what circumstances edge-correction methods are nec-

essary and evaluates the performance of six different approaches: no edge correction, translation, reflection, buffer

zone, and two new nearest-neighbour methods. The performance of edge-correction methods depends strongly on the

algorithmic structure of the indices and the spatial pattern of tree positions involved. Some edge-correction methods in-

troduce more error than ignoring edge bias altogether. For indices accounting for the diversity of tree positions and es-

pecially for those computing angles, translation or buffer zone methods reduce the estimation error regardless of the

sample size. The use of the reflection method is associated with large bias values. One of the new nearest-neighbour

edge-correction methods proves to be capable of reducing the bias considerably. The results confirm the need for suffi-

ciently large monitoring plots to avoid bias from edge effects. Where this is impossible, neighbours beyond the plot

boundary need to be included in the survey, thus providing unbiased estimates but at the cost of extra measurements.

Sensitivity analysis is required for newly introduced indices prior to their first application.

Résumé : Des indices qui permettent de quantifier la structure spatiale de la forêt sont fréquemment utilisés pour faire

le suivi de l’aspect spatial des attributs des arbres, incluant la biodiversité dans les placettes expérimentales à superficie

restreinte. Le traitement des arbres situés en bordure de la placette peut affecter l’estimation de ces indices puisque

certains de leurs voisins peuvent vraisemblablement se retrouver à l’extérieur de la placette. Cet article examine si des

méthodes de correction des effets de bordure sont nécessaires et dans quelles circonstances. Les auteurs analysent éga-

lement la performance de six approches différentes : aucune correction de l’effet de bordure, translation, réflexion,

zone tampon et deux nouvelles méthodes du plus proche voisin. La performance des méthodes de correction est forte-

ment dépendante de la structure de l’algorithme des indices et de la configuration spatiale de la position des arbres

concernés. Certaines méthodes de correction introduisent une erreur plus importante que le fait de simplement ignorer

les biais dus à l’effet de bordure. Pour le groupe d’indices qui tiennent compte de la diversité dans la position des ar-

bres et spécialement pour ceux qui servent au calcul des angles, les méthodes de translation et de la zone tampon ré-

duisent l’erreur d’estimation sans égard à la taille de l’échantillon. La méthode par réflexion génère des biais élevés.

L’une des deux nouvelles méthodes du plus proche voisin a pu considérablement réduire le biais. Les résultats confir-

ment la nécessité que les placettes aient une superficie suffisamment grande pour éviter les biais dus aux effets de bor-

dure. Lorsque cela est possible, les voisins situés à l’extérieur des limites de la placette devraient être inclus dans

l’inventaire pour obtenir des estimations non biaisées au prix, cependant, de mesures supplémentaires. Il est nécessaire

de procéder à l’analyse de sensibilité des nouveaux indices avant de les utiliser pour la première fois.

[Traduit par la Rédaction] Pommerening and Stoyan 1739

Introduction

The quantitative characterization of spatial structure is an
important part of the study of ecological processes in forests
(Upton and Fingleton 1985, 1989; Pretzsch 1998; Barot and
Gignoux 2003; Bauer et al. 2004). For this purpose many
statistical summary characteristics have been developed that
characterize forest structure and aspects of biodiversity using
numerical values or functions. Examples of such functions
are Ripley’s K function, K(r), or the nearest-neighbour dis-

tance distribution function, G(r) (Stoyan and Stoyan 1994),
while typical examples of numerical characteristics are
structural indices such as the aggregation index (Clark and
Evans 1954) and the species segregation index (Pielou 1977).

Usually it is assumed that the two-dimensional arrange-
ment of tree positions in a forest can be described by a point
process (Penttinen et al. 1992). In a point process each indi-
vidual tree, i, can be understood as a point or event defined
by its position in the monitoring plot or observation window
W using two-dimensional Cartesian coordinates {xi, yi}. The
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observation window is usually a rectangular or circular area
in the forest that is assumed to yield representative informa-
tion on the forest as a whole. Marks {mil, …, min} are often
attached to the points, which are sets of qualitative (e.g.,
species) and (or) quantitative (e.g., diameter at breast height,
DBH) values. Frequently, these marks are constructed or
computed, for example, competition indices describing the
influence of neighbour trees on the reference tree. These in-
dices are usually calculated by means of mathematical for-
mulae using intertree distances and original tree marks such
as DBH or species.

In statistical analysis it is assumed that the point process
studied is spatially homogeneous (or, in terms of point pro-
cess theory, stationary). Under the spatial homogeneity as-
sumption it is meaningful to characterize the tree point
pattern of the underlying process, in the research plot, using
global characteristics. The simplest of these are perhaps mean
number of stems per hectare (SPH), mean basal area, or
mean volume per hectare. In ecological research other char-
acteristics are used, such as the mean values of computed in-
dividual tree characteristics, for example, mean competition
indices (Barot and Gignoux 2003; Bauer et al. 2004). Also,
K(r) and G(r) are characteristics that have meaning only in
the homogeneous case.

When calculating spatial characteristics, edge effects are
likely to play an important role. Ignoring these effects is
usually believed to result in biased statistical estimations.
This is because some of the immediate neighbours of trees
near the boundary of W are outside W and therefore not re-
corded; however, these trees are needed to calculate the cor-
rect values of statistical quantities such as competition or
nearest neighbour indices. While edge-bias issues of correla-
tion functions and competition indices have been frequently
discussed in the statistical literature (e.g., Monserud and Ek
1974; Martin et al. 1977; Stoyan and Stoyan 1994; Stoyan et
al. 1995; Radtke and Burkhart 1998; Gignoux et al. 1999),
comparatively little attention has been paid to structural indi-
ces (Donnelly 1978). As the algorithms of nearest-neighbour
structural indices are very similar to those of competition in-
dices, it is likely that careless treatment of edge trees may
also lead to a bias in the estimation of such indices espe-
cially when the window of observation is small and (or) tree
numbers are low. Such biased estimation of structural indi-
ces can lead to incorrect conclusions and interpretations of
the spatial biodiversity of a woodland. It should be noted
that the situation is different with statistical tests, for exam-
ple, concerning the hypothesis of complete spatial random-
ness, as in Gignoux et al. (1999). These authors compared
summary characteristics of the Poisson process with those
from its samples and found that tests without edge correc-
tion have a higher power for small sample sizes than those
with correction.

The attention paid to edge effects has varied, and the early
publications of Clark and Evans (1954) and Pielou (1977)
simply ignored the problem. Later, Donnelly (1978) investi-
gated the effect of edge bias on the aggregation index of
Clark and Evans (1954) and developed an empirical edge
correction specifically for this index. Since then various
forms of edge correction have been developed. A very sim-
ple one, used by many researchers (e.g., Neumann and
Starlinger 2001; Aguirre et al. 2003), is the use of a bound-

ary strip or “buffer” zone, of width d, inside the monitoring
plot W. This method is also referred to as the border or
guard method (Ripley 1981). In the statistical analysis only
the trees in a reduced window of observation are used as ref-
erence trees, namely those that have a distance larger than d
from the window boundary. The width of the buffer zone
(e.g., d = 5 m) should be large enough that all relevant inter-
action between trees in the reduced window is accounted for
within W. Determining the optimal width of the buffer zone
is difficult; if it is too small residual edge effects will re-
main; if it is too large valuable data are discarded unneces-
sarily (Diggle 2003).

Other edge-correction methods can be considered as being
only speculative (Pretzsch 2002; Diggle 2003), as they ex-
trapolate the spatial structure from within W to an infinite
plane and join parts of the point pattern that do not occur so
close together in nature. Two examples are translation (also
referred to as torus or periodic boundary conditions; Diggle
2003) and reflection (e.g., Radtke and Burkhart 1998; see
Fig. 1).

It is clear that these two methods do not easily work with
circular sample plots or with plots of irregular shape
(Windhager 1997). Furthermore, translation and reflection
are believed to result in unrealistic periodicities of the spatial
point pattern and therefore neighbourhood situations that do
not naturally occur (Pretzsch 2002; Diggle 2003).

This paper explores the need for edge correction of five
spatial structural indices involving nearest neighbours. The
performance of six edge-correction methods for these indi-
ces is investigated through simulations. Included in the study
are two recently developed nearest-neighbour edge-correction
concepts, NN1 and NN2 (Hanisch 1984).

Materials and methods

Indices used in this study
Tables 1 and 2 give an overview of the nearest-neighbour

indices used in this study.

The integer variable n in Table 1 is the number of nearest
neighbours included in the determination of the index. In
this study, n is set to 4 for indices 1, 2, and 3, while the
DBH differentiation, Clark and Evans, and Pielou indices
generally use only one neighbour. The uniform angle index
is derived from the angles subtended by adjacent neighbours
at the reference trees. The six indices were selected so that
similar aspects of spatial structure are accounted for by two
indices (1 and 5, 2 and 6, 3 and 4; Table 1).

The two new edge-correction concepts, NN1 and NN2
(Hanisch 1984), can be applied to any structural index that is
based on the nearest-neighbour principle, for example, those
of Clark and Evans (1954) and Pielou (1977). The mingling
index, an indicator of spatial species diversity (Füldner
1995; Fig. 2), will be used to explain and demonstrate NN1
and NN2. It is representative of a group of neighbourhood-
based indices describing the spatial distribution of tree at-
tributes.

The mingling index (Mi) gives, for each individual tree i,
the proportion of its n nearest neighbours that do not belong
to the same species as the reference tree i. Figure 2 illus-
trates the index for the case n = 4.
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The mingling index can only take one of a limited number
of values. For example, when n = 4 neighbours there are
n + 1 = 5 possible values of Mi, calculated as k/n, with k = 0,
1, …, n: 0.00, 0.25, 0.50, 0.75, and 1.00 (Fig. 2). Using
these scores, all trees of the stand can be individually classi-
fied, and the overall stand structure can be characterized by
the distribution of the values of Mi. The mean population
mingling, M, can be expressed as

[1] M
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= =
= =

∑ ∑
1 1

1

where mk is the proportion of trees that have a mingling in-
dex of k/n and N is the number of trees in the population
considered. Naturally, the full distribution of mk provides
more information than M.

The number n is fixed for all trees of an observation win-
dow, but can be chosen by the forestry statistician, deter-
mined by the objectives of individual studies on species
diversity, the size of the window of observation and the den-
sity of points. For example, Füldner (1995) recommended
n = 3 neighbours, while more recent publications (Aguirre et
al. 2003) have suggested that n = 4 neighbours is to be pre-
ferred. For more information on how to use and interpret the
mingling index and the other indices listed in Table 1, see
Aguirre et al. (2003) and Pommerening (2002).

NN1 and NN2 estimators
In addition to the existing edge-correction methods, which

will be described in Table 3, the authors have considered
two new concepts, the NN1 and NN2 estimators. Stoyan
(2005) demonstrated that NN1 in particular, which has its
origin in Hanisch (1984), is a very successful estimator of
the nearest-neighbour distance distribution function, G(r),
and therefore it seemed appropriate to study its performance
in the estimation of indices. The estimator NN1 is ratio-
unbiased and includes more points than the unbiased buffer
zone estimator, which, as noted earlier, has the additional
disadvantage that buffer zone width is statistically difficult
to determine. NN1 and the closely related NN2 are specifi-
cally designed for the statistical estimation of characteristics
related to nearest neighbours and so are referred to as near-
est-neighbour or NN-correction estimators. The principle is
explained in Stoyan and Stoyan (1994, p. 297) for the case
of G(r). The idea is to use variable buffer zones for the trees
close to the edge of the observation window. NN1 and NN2
incorporate a buffer but, in contrast to the traditional buffer
method with a constant d, the decision to exclude trees close

to the window’s edge is made individually, based on the
spatial arrangement of the trees.

In the statistical estimation of nearest-neighbour indices,
tree i is used as a reference tree only if its distance si to the
boundary of the window W is further than or equal to its dis-
tance ci from its nth nearest neighbour in W. In this case all
nearest neighbours are known to be within W and all neces-
sary information for the index estimation of tree i is pro-
vided by the window. However, if the distance from the
boundary is shorter than that from the nth neighbour, then it
is possible that nearer trees to tree i occur outside W. In this
case it is uncertain whether the window provides all the nec-
essary information for index estimation, and therefore these
trees are rejected in the analysis.

An indicator variable ni is introduced, where ni = 1 if tree
i is to be accepted for analysis and ni = 0 if it is to be re-
jected. The principal is illustrated in Fig. 3. Points P1 and P2

have the same distance s1 = s2 to the boundary of the win-
dow of observation W. Points P1n and P2n are the corre-
sponding nth nearest neighbours in W. Because c1 > s1, n1 =
0 and point P1 is not accepted. Point P2, however, is ac-
cepted, since c2 < s2 and n2 = 1.

As in the buffer method, there is an inevitable loss of a
number of data points. To compensate for this loss when ap-
plying NN approaches, the accepted points are weighted to
obtain an unbiased estimator. In statistical theory such
weights are called Horvitz–Thompson weights (Horvitz and
Thompson 1952), and the idea is to give rare events larger
weights than the more common ones. The weights in this
case are the inverses of the so-called reduced areas, Fi, of W.
The reduced area, Fi, is a function of ci and W. For the two
most important cases it is

[2] F
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where ci is the distance between tree i and its nth nearest
neighbour; a, b are the lengths of the sides of a rectangular
sample plot; and r is the radius of a circular sample plot.

If ci is small it is probable that ci < si, Fi is large, and tree
i receives only a small weight; for larger ci, it is increasingly
unlikely that ci < si, Fi is small, and therefore larger weights
are given. Theoretically, Fi can also be defined for windows
of irregular shape.

In the estimation of M (eq. 1) by means of the NN1 esti-
mator a further point process parameter plays an important
role, the intensity or point density, that is, the mean number
of points per unit area. Intensity is simply another way of
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Fig. 1. Illustration of the translation (left) and reflection (right) edge-correction methods used in this study. The observation window,

W, is in the centre with boundaries in bold.
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expressing the forestry variable stems per hectare (SPH). It
characterizes the density of trees in a certain area regardless
of their marks or attributes such as their diameters.

The NN1 estimators of the mingling index class k and the
mingling mean value are

[3] �
�

( )

�
m

k n

F

m
k

i i

ii

N

k= =
=
∑1 1

1λ

λ

λ
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where
�λ estimated intensity of the point pattern (see eq. 6);
N number of trees of the forest stand or monitoring plot

(window of observation) under consideration;
Mi mingling index of tree i;
M estimator of the mean mingling index;

Fi reduced area of the window of observation (see eq. 2);
ni indicator variable defining whether a tree’s index is af-

fected by plot edge (0) or not (1);
1i(k) indicator function of mingling index class k assuming

the value of one, if the neighbouring tree is of a differ-
ent species, and zero otherwise.

It can be seen that M and mk are not directly estimated but

only λM and λmk, which are then divided by an intensity es-

timator �λ. Thus, the estimation is not unbiased but only

ratio-unbiased.

The standard intensity estimator
~
λ is given by eq. 5.

[5]
~
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=
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1

where
~
λ is the number of points in W divided by the area F

of W.
However, in this study a less precise estimator �λ (eq. 6)

was used. This is because �λ has the same structure as λM

and it can be expected that fluctuations of λM are evened

out by fluctuations of �λ. This effect is weaker with
~
λ:
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NN2 is closely related to NN1, having the advantage of
perhaps being intuitively more appealing and easier to com-
pute. However, it is not ratio-unbiased.

In this estimator the sum of all Mi of the accepted points
(those with ni = 1) is simply divided by the number of ac-
cepted points:
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Experimental design

Edge-correction methods
Six different edge-correction methods were considered

and compared in this study (Table 3). Estimation without
edge-correction (method 0) was used as a control. In the
control all trees within the monitoring plot or window of ob-
servation were processed as reference trees and their nearest
neighbours were taken from within the window, ignoring the
existence of outside trees. “Translation” or “periodic bound-
ary conditions” (method 1) means that the plot W containing
the tree locations is exactly replicated throughout space to
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Species of nearest neighbour

Species of reference tree i A B

A a b m

B c d n

r s N

Table 2. A 2 × 2 table for the calculation of the coefficient of

segregation (Pielou 1977).

Fig. 2. Illustration of the mingling index for n = 4 neighbours. The neighbours are numbered according to increasing distance from the

reference tree.



form an infinite lattice (Torquato 2002). This method is the
same as wrapping the window on a torus and joining oppo-
site edges (see Fig. 1). All the trees in W are used as refer-
ence trees, and all their neighbours also come from W or its
copies.

The reflection method (2) also replicates the pattern
throughout space (see Fig. 1), but as the name implies, the
additional locations of the trees are obtained by reflection
along the plot edges. As in the translation method, all refer-
ence and neighbour trees are to be found in the window of
observation or its reflected copies.

The buffer zone method (3) uses only the trees in the in-
ner part of W as reference trees; the trees within a buffer
strip of 5 m along the plot boundaries are used only in the
calculation of the indices. NN1 and NN2 (methods 4 and 5)
have already been explained in detail in the previous section.
The last three edge corrections belong to the group of
minus-sampling methods (Stoyan and Stoyan 1994; Stoyan
et al. 1995).

Investigated point processes
Data from both point process models and real forests were

used in the comparisons. Point process models guarantee
knowledge of the true population values of the mean indices
around which the sample values must necessarily fluctuate.
Employing these models also enables unlimited repetitions
and the statistical assumption of stationarity is guaranteed
(Stoyan et al. 1995). To validate the results obtained from
the point process models two real forest sites were included
in the investigation.

Three different processes were simulated: a Poisson, a
Matérn hard-core, and a Matérn cluster process (Stoyan et
al. 1995). The second process is a process with some degree
of regularity and a positive minimum interpoint distance.

The third is a classical cluster process, where the cluster
centres form a Poisson process and the cluster points are
randomly scattered in circles of constant radius around the
centres. The three different processes and their specific pa-
rameters (see Table 4) were chosen to produce rather dis-
tinct patterns. The point process models approximate
patterns found in real forest situations. In our study the
Matérn cluster processes represent young forests of natural
origin consisting of trees with heavy seeds or with heteroge-
neous soil conditions leading to a clustered arrangement of
trees. Alternatively, this process may represent a failed re-
stocking with species 1 and a moderate secondary invasion
of species 2. The Matérn hard-core process can be thought
of as representing older forests where it is impossible for
trees to be located closer together than a certain minimum
distance, perhaps because of inter- and intra-specific compe-
tition and (or) forestry thinning activities. The Poisson pro-
cess is a situation between the young clustered and the more
mature hard-core arrangement of tree positions. Such pat-
terns, which are close to randomness, are common in forests
(Tomppo 1986; Pommerening 2002).

For the simulation of all three processes, points were
marked both dependently and independently with species
and diameter attributes. Dependent marking leads to a corre-
lation between tree locations and species and diameter attrib-
utes, while independent marking excludes such a correlation.
Both cases can be found in real forests. The marks were as-
signed as follows:

(i) Dependent marking: Within a circle of radius r0

around each tree the number m of other trees was
counted. If m > 1 the tree was assigned the species at-
tribute 2, otherwise it was assigned species 1.

(ii) Independent marking: The qualitative marks species 1
and species 2 were assigned randomly.

In both cases for the assignment of diameters, uniform
random numbers were transformed to Weibull-distributed
random numbers by applying the method developed by
Nagel and Biging (1995). The species-specific scale and
form parameters of the two-parameter Weibull function were
estimated from a quadratic mean diameter by using linear re-
lationships. In contrast to their original approach, the maxi-
mum diameter, which was required for estimating the form
parameter, was estimated from the quadratic mean diameter,
again by using a linear equation. The diameters assigned to
each point are sampled from the corresponding species-
specific Weibull functions by using the inverse transforma-
tion method. The Weibull distributions were restricted by a
minimum diameter of 5 cm. The regression parameters used
for the estimation of the parameters of the two-parameter
Weibull function were taken from Nagel and Biging’s (1995)
original publication and are representative of northwest Ger-
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No. Name Reference Comment

0 No edge-bias compensation — Control

1 Translation (= torus, periodic boundary conditions) Torquato 2002; Radtke and Burkhart 1998 Fig. 1

2 Reflection Pretzsch 2002; Radtke and Burkhart 1998 Fig. 1

3 Buffer zone Diggle 2003; Gadow et al. 2003; Ripley 1981 5 m

4 NN1 Equations 3–4 —

5 NN2 Equations 7–8 —

Table 3. Overview of the edge-bias compensation methods used in this study.
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P2n
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Fig. 3. Illustration of the working principle of the indicator vari-

able ni. For point P1, n1 = 0 (since its distance s1 to the bound-

ary of W is smaller than the distance c1 to the nearest neighbour

P1n in the window), and for point P2, n2 = 1.
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many (where species 1 is oak (Quercus robur L., Quercus
petraea (Matt.) Liebl.) and species 2 is beech (Fagus
sylvatica L.)). Specific quadratic mean diameters were ap-
plied to each species (see Table 4) and as a result the diame-
ter ranges of both species are also very different.

The purpose of the dependent marking procedure is to ob-
tain isolated trees of species 1 and clusters of species 2.
Such patterns appear, for example, in managed central Euro-
pean oak forests, where each dominant oak tree is sur-
rounded by a group of smaller sized trees of one or more
shade-tolerant species, for example, beech (Pommerening
2002).

Tables 4 and 5 summarize the specific processes used in
the study. While the point patterns of Table 4 illustrate only
1 replication out of 10 000, the numerical values in the first
six columns of Table 5 are the estimated true values, for the
simulated models, of the indices for the processes involved.
Formulae for these values could be derived mathematically
in the case of Poisson processes with independent marks, but
not for the more complicated processes. Thus, all values of
Table 5 relating to the processes were determined numeri-
cally by simulation. For this purpose 100 very large forests
(1000 m × 1000 m) were simulated to be sure that edge ef-
fects are negligable. The true index values were then deter-
mined as the arithmetic means of the 100 replications.

The mean values of the indices clearly reflect the qualita-
tive differences between the processes. For example, for the
aggregation index of Clark and Evans, a value larger than 1
for the Matérn hard-core processes indicates the given ten-
dency towards regularity. For the Matérn cluster processes
on the other hand the value is, as expected, smaller than 1.

The uniform angle index also behaves as expected, and in
the case of the Poisson process a value of 0.5 is obtained ex-
actly in accordance with its method of construction (Hui and
Gadow 2002).

Real forest data

To validate the results of the statistically advantageous
point processes, data from two monitoring sites in mixed
oak–beech woodlands were used. Detailed information on
the two monitoring plots is given in Fig. 4 and Table 5 (last
two columns).

Manderscheid is a monitoring plot of 80 m × 80 m situ-
ated in the forest district of Manderscheid in the German
federal state Rhineland–Palatinate (Pommerening 2002). The
plot was surveyed in 1996 and consisted of a 118-year-old
oak (Quercus petraea) stand intermingled with beech (Fagus
sylvatica).

The second monitoring site, Boeselager, is also a mixed
oak–beech stand of Quercus robur and Fagus sylvatica. The
plot of 95 m × 116 m was also surveyed in 1996 and is situ-
ated in the Boeselager Estate in the Sauerland region (Ger-
man federal state Northrhine–Westfalia; Bölsing 1996). At
the time of surveying the oak trees were 151 years old and
the beech trees 65 years old.

Manderscheid has a structure similar to the simulated
model case Poisson with dependent marks, and Boeselager
reflects Matérn hard-core with dependent marks.

Simulation procedure

The simulation for quantifying the performance of the six

different edge-correction methods (Table 3) was done in the
following way:
(i) Processes: Simulation of 10 000 forests (Poisson,

Matérn hard-core, and Matérn cluster processes) in a
window of 250 m × 250 m. Samples with smaller win-
dows of decreasing size from 200 m × 200 m down to
30 m × 30 m were cut out of the centre.

(ii) Real forest data: Simulation of 100 replications in the
original plot windows. Samples with smaller windows
of decreasing size from 70 m × 70 m (90 m × 90 m)
down to 15 m × 15 m were cut, with a centre point
randomly selected for each replication so that the sam-
ple window was located fully inside the original plot
window.

Evaluation statistics
For the evaluation of the performance of the six edge-bias

compensation methods (estimators) the bias and root mean
squared error (RMSE) were used.

[9] Bias = −M M�

[10] RMSE =
−

−
=

∑1

1

2

1n
M Mk

k

n

( � )

where
M “theoretical” mean index value (i.e., “population”

value), that is, “theoretical” mean species mingling;
�M index value, that is, species mingling, estimated from

the 10 000 (100) replications;
�Mk index value, that is, species mingling, estimated from

replication k;
n number of replications; here n = 10 000 (100).

Because of a lack of space the bias is displayed only for
the uniform angle, Clark and Evans, and Pielou indices in
the next section. Graphs showing the bias of the other indi-
ces can be obtained from the authors upon request.

All results were obtained from the authors’ own software
routines written in Pascal and Java and from the first au-
thor’s CRANCOD program.

Results and discussion

Figures A1–A12 (Appendix A) show the behaviour of the
edge-correction methods expressed by bias (eq. 9) and
RMSE (eq. 10) for each of the six indices depending on
number of trees and point process model or monitoring plot.
To enable comparisons, plot size was converted to number of
trees using the known intensities. The Clark and Evans and
the uniform angle index only account for the spatial arrange-
ment of tree positions, so the results in Figs. A1, A2, A6,
and A7 are the same for both dependent and independent
marking. As expected, the RMSEs increase with decreasing
numbers of trees.

The reaction of the six edge-correction methods of Ta-
ble 3 to decreasing numbers of trees differs with the index
involved. The speculative methods of no edge correction (0)
and translation (1) (Pretzsch 2002; Diggle 2003) perform
surprisingly well. This can be explained by the fact that
these methods use all points in the window as reference
points and accept some incorrect local values of the indices,
which perhaps cancel each other out. Edge-bias investiga-
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tions into competition indices came to similar conclusions
(Monserud and Ek 1974; Radtke and Burkhart 1998). The
translation method provides good estimators for all indices
investigated. No edge correction is a good approach with
most indices investigated and generally does not result in
bad estimations. Two exceptions are the behaviour of the
uniform angle and the Clark and Evans index. With these
two indices, applying no edge correction is usually associ-
ated with a considerable bias throughout the range of num-
bers of trees observed. In the case of the uniform angle
index, for points close to the window edge the nearest neigh-
bours in the window are positioned towards the interior of
the window, resulting in quite unusual angles, which spoil
the statistical estimation.

The traditional method of reflection (2) leads, in many
cases, to the highest RMSE (e.g., DBH dominance, DBH
differentiation, Clark and Evans, and Pielou indices). The
bias analysis reveals that the reflection method (2) results in

the largest bias values across all processes and real forest
data, the only exception being the uniform angle index, for
which reflection provides a good estimator.

Edge-correction methods that reject trees close to the
boundaries of the observation window (methods 3–5) usu-
ally result in rapidly increasing bias values with decreasing
numbers of trees, since the remaining number of trees be-
comes so small that ratio-unbiased estimators lose their good
properties.

In most cases the buffer method (3) produces reasonable
estimators (with the exception of cluster processes and
Pielou index for hard-core processes and the mingling, DBH
differentiation, Clark and Evans, and Pielou indices for the
two real forest data sets). Where it performs well it often
leads to similar RMSEs as those produced by the NN1 esti-
mator.

A comparison of the theoretically unbiased methods, NN1
(4) and NN2 (5), shows that throughout the application

Matérn cluster Poisson Matérn hard-core

Parameters R = 3.0

λ = 0.03

dg1 = 36 cm

dg2 = 13 cm

λ = 0.02

dg1= 60 cm

dg2 = 26 cm

h = 5.5

λ = 0.01

dg1 = 75 cm

dg2 = 41 cm

Note: “Dependent” and “independent” refer to the dependent and independent ways of marking tree locations with binary species and DBH. The spe-
cific parameters of the processes are given in a specific row and below the images. R, cluster diameter (m); λ, intensity; dg1, dg2: quadratic mean diame-
ter (cm) of species 1 and 2, respectively; h, minimum distance between tree locations; r0, tree influence zone radius (m); p1, probability of species 1.

Table 4. Visualization (in a 100 m × 100 m window) of the processes involved in this study (species 1, black; species 2, gray).



range of this study both approaches behave similarly, al-
though NN1 leads in a number of cases (uniform angle,
DBH dominance, DBH differentiation, Clark and Evans,
Pielou indices) to a smaller bias and can therefore be re-
garded as a safe option. Judging by the RMSE, NN1 pro-
vides a good estimator for the Clark and Evans index in
particular. Both NN1 and NN2 perform well for DBH domi-
nance, DBH differentiation, Clark and Evans, and Pielou in-
dices if cluster processes are involved. The NN estimators
(methods 4 and 5) omit many points close to the plot edge,
which results in a large variability of the estimators. Their
bias characteristics, however, especially those for NN1

(method 4), are very favourable except for a very small
numbers of trees.

The bias analyses also clearly illustrate the difference be-
tween point patterns with dependent and independent mark-
ing. Figure A9, for example, shows that in the case of
dependent marking there is a much larger differentiation be-
tween the different edge-correction methods, while the cor-
responding curves for the independent cases are very close
together. Similar behaviour occurs with the mingling, DBH
dominance, and DBH differentiation indices. The stronger
the dependencies between tree locations and tree attributes
the larger the bias differences of the estimators.
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Fig. 4. Visualization of the real forestry data used in this study (left: Manderscheid, right: Boeselager; oak (species 1), black; beech

(species 2), gray).

Matérn cluster Poisson Matérn hard-core Real forests

Marking Dep. Indep. Dep. Indep. Dep. Indep. Manderscheid Boeselager

UAI 0.60 0.60 0.50 0.50 0.42 0.42 0.47 0.46

Mingling 0.21 0.39 0.25 0.39 0.38 0.50 0.44 0.26

DBH dominance 0.53 0.50 0.53 0.50 0.52 0.50 0.53 0.51

T1 0.33 0.41 0.35 0.40 0.33 0.34 0.40 0.42

Clark and Evans 0.43 0.43 1.00 1.00 1.44 1.44 1.03 1.18

Pielou 0.44 0.00 0.38 0.00 0.22 0.00 –0.22 –0.15

BA (both species) 13.72 13.49 22.62 22.57 30.07 30.06 28.69 40.59

SPH (both species) 363.90 357.87 200.01 199.98 99.97 99.97 381.25 668.78

dg (both species) 21.33 21.91 37.94 37.91 61.89 61.88 30.95 27.80

BA (species 1) 9.97 9.80 14.97 14.94 24.12 24.11 17.12 23.48

SPH (species 1) 98.11 96.45 53.49 53.41 54.22 54.18 126.56 97.10

dg (species 1) 35.98 35.97 59.70 59.68 75.26 75.27 41.50 55.49

BA (species 2) 3.75 3.68 7.64 7.63 5.95 5.95 11.57 17.11

SPH (species 2) 265.79 261.42 146.52 146.57 45.75 45.79 254.69 571.69

dg (species 2) 13.40 13.40 25.77 25.75 40.71 40.69 24.05 19.52

Note: UAI, uniform angle index (eq. 1 in Table 1); mingling, species mingling (eq. 2 in Table 1); DBH dominance (eq. 3 in Table 1); T1, DBH differ-
entiation (eq. 4 in Table 1); Clark and Evans, Clark and Evans (1954) aggregation index; Pielou, Pielou’s (1977) coefficient of species segregation; BA,
basal area (m2); SPH, trees per hectare; dg, quadratic mean diameter (cm). “Dep”. and “Indep.” refer to the dependent and independent ways of marking
tree locations with binary species and DBH. In the case of the real forest sites oak is coded as species 1 and beech as species 2.

Table 5. “Theoretical” arithmetic mean values (mean values of 100 very large forest stands were simulated in a 1000 m × 1000 m

window) and population values (of the two real forest sites) of selected forestry characteristics.



Especially when comparing DBH dominance and DBH
differentiation indices it is evident that there are similar error
patterns with indices quantifying equivalent aspects of spa-
tial diversity. That the DBH of trees, especially, is correlated
with the pattern of tree positions is well known from studies
investigating competition indices (e.g., Pretzsch 2002). The
error patterns of the indices accounting for species diversity
and the diversity of tree positions are also similar but not as
much as in the case of dimension diversity.

Conclusions

The optimal choice of edge-correction method is depend-
ent on the algorithm of the index and on the spatial pattern
of tree positions. This is particularly important when there
are dependencies between the pattern of tree positions and
the other tree attributes (marks), as this is often the result of
competition processes and (or) woodland management. This
highlights the importance of conducting sensitivity studies
whenever new indices are developed or existing ones are
modified.

The results clearly demonstrate the poor performance of
the reflection method (2). This approach to edge correction
should therefore be avoided in any investigation.

All methods that reject some sample trees (minus sam-
pling, 3–5) usually lead to large bias values when the num-
ber of trees is small and therefore they should only be
applied to samples containing a sufficiently large number of
trees (≥100). These methods emphasize that the number of
trees available for the index estimation is an important per-
formance criterion.

Using the mathematical–statistically motivated edge-
corrected NN1 estimator (method 4) with most indices leads
to small bias values and can therefore be regarded as a se-
cure option with sufficiently large numbers of trees. How-
ever, the NN1 and NN2 estimators can in many cases lead to
larger RMSEs than those produced by ignoring the effect of
edge bias or translation. Future research in edge-correction
methods should develop the NN1 and NN2 approach by
minimizing the loss of data and reducing the variability of
the estimators.

Indices accounting for tree positions and especially those
based on angles require edge-correction methods, no matter
how large the sample size is. Translation, buffer zone, and
NN1 methods are suitable methods to reduce error.

Plots to monitor indices of spatial biodiversity by means
of spatial indices should be sufficiently large to minimize
edge effects. This is especially crucial with long-term moni-
toring in forestry where the number of trees steadily de-
creases during the rotation period. Where small plot sizes
are unavoidable, for example, in forest inventories with
small-sized circular sample plots designed for other pur-
poses (Gignoux et al. 1999), it is advisable to include the
neighbours immediately outside the plot in the survey.
Stoyan and Stoyan (1994) and Stoyan et al. (1995) refer to
this method as plus-sampling. Plus-sampling is unbiased but
requires additional measurements.
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Matérn cluster Poisson Matérn hard-core
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Fig. A1. Uniform angle index: results of the RMSE performance of the edge-bias compensation methods 0–5 (see Table 3) in relation

to the point process models.

Matérn cluster Poisson Matérn hard-core

0 500 1000 1500 2000

0 1 2 3 4 5

Bias

Number of trees

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0 200 400 600 800 1000

0 1 2 3 4 5

Bias

Number of trees

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0 100 200 300 400 500

0 1 2 3 4 5

Bias

Number of trees

0.02

0.00

- 0.02

- 0.04

- 0.06

- 0.08

- 0.10

- 0.12

Fig. A2. Uniform angle index: results of the bias performance of the edge-bias compensation methods 0–5 (see Table 3) in relation to

the point process models.
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Fig. A3. Mingling index: results of the RMSE performance of the edge-bias compensation methods 0–5 (see Table 3) in relation to the

point process models. “Dependent” and “independent” refers to the dependent and independent way of marking tree locations with bi-

nary species and DBH.
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Fig. A4. DBH dominance index: results of the RMSE performance of the edge-bias compensation methods 0–5 (see Table 3) in rela-

tion to the point process models. “Dependent” and “independent” refers to the dependent and independent way of marking tree loca-

tions with binary species and DBH.
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Fig. A5. DBH differentiation index: results of the RMSE performance of the edge-bias compensation methods 0–5 (see Table 3) in re-

lation to the point process models. “Dependent” and “independent” refers to the dependent and independent way of marking tree loca-

tions with binary species and DBH.
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Fig. A6. Clark and Evans index: results of the RMSE performance of the edge-bias compensation methods 0–5 (see Table 3) in rela-

tion to the point process models.
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Fig. A7. Clark and Evans index: results of the bias performance of the edge-bias compensation methods 0–5 (see Table 3) in relation

to the point process models.
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Fig. A8. Pielou index: results of the RMSE performance of the edge-bias compensation methods 0–5 (see Table 3) in relation to the

point process models. “Dependent” and “independent” refers to the dependent and independent way of marking tree locations with bi-

nary species and DBH.
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Fig. A9. Pielou index: results of the bias performance of the edge-bias compensation methods 0–5 (see Table 3) in relation to the

point process models. “Dependent” and “independent” refers to the dependent and independent way of marking tree locations with bi-

nary species and DBH.
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Fig. A10. Results of the RMSE performance of the edge-bias compensation methods 0–5 (see Table 3) and the uniform angle, min-

gling, and DBH dominance indices in relation to the two forestry data sets.
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Fig. A11. Results of the RMSE performance of the edge-bias compensation methods 0–5 (see Table 3) and the DBH differentiation,

Clark and Evans, and Pielou indices in relation to the two forestry data sets.
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Fig. A12. Results of the bias performance of the edge-bias compensation methods 0–5 (see Table 3) and the uniform angle, Clark and

Evans, and Pielou indices in relation to the two forestry data sets.


