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Edge-Coupling of O-Band InP Etched-Facet
Lasers to Polymer Waveguides on SOI by

Micro-Transfer-Printing
Ruggero Loi , Simone Iadanza , Brendan Roycroft, James O’Callaghan, Lei Liu, Kevin Thomas,

Agnieszka Gocalinska , Emanuele Pelucchi, Alexander Farrell, Steven Kelleher, Raja Fazan Gul,

António José Trindade, David Gomez, Liam O’Faolain , and Brian Corbett

Abstract— O-band InP etched facets lasers were heteroge-
neously integrated by micro-transfer-printing into a 1.54 µm
deep recess created in the 3 µm thick oxide layer of a 220 nm
SOI wafer. A 7 × 1.5 µm2 cross-section, 2 mm long multimode
polymer waveguide was aligned to the ridge post-integration
by e-beam lithography with <0.7 µm lateral misalignment and
incorporated a tapered silicon waveguide. A 170 nm thick metal
layer positioned at the bottom of the recess adjusts the vertical
alignment of the laser and serves as a thermal via to sink the
heat to the Si substrate. This strategy shows a roadmap for active
polymer waveguide-based photonic integrated circuits.

Index Terms— Heterogeneous integration, III-V semiconduc-
tors laser, silicon photonics, polymer waveguides.

I. INTRODUCTION

S ILICON photonics exploits the high-volume manufactur-
ing capability of the CMOS microelectronics industry

[1], [2] offering low-cost photonic circuits. The Silicon-on
Insulator (SOI) platform of 220 nm of Si on 2 µm of SiO2 on a
silicon substrate provides compact waveguides due to the high
refractive index contrast between the Si waveguide core and
the SiO2 cladding. Alternatively, a thicker buried oxide (BOX)
can be used for waveguides with lower refractive index such as
those based on polymers. Silicon photonic integrated circuits
for application in the telecommunication wavelength domain
of 1300–1600 nm benefit from the use of InP-based materials
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as these provide the most mature direct band-gap structures for
light amplification, modulation and detection [3]. The light-
coupling between the InP component and the SOI waveguide
can be achieved by edge-coupling which offers broad band,
polarization-agnostic low coupling losses of less than 1 dB [4].
The approach does not require the definition of tapers on the
InP reducing its footprint and in turn the use of expensive
material. Mode mismatch is the major source of the insertion
losses in edge-coupling, which is overcome by the use of
mode size converters (MSC) and tight alignment tolerances.
Reflective semiconductor optical amplifier (RSOA) chips have
been edge-coupled to silicon photonics in external cavity laser
configuration, with no need of MSC nor wafer bonding but
still needing precise alignment [5], [6]. The edge coupling
of fully packaged lasers on chip has been reported [7]–[10].
The integration of active photonic devices on SOI has been
successfully accomplished by die/wafer bonding [11]–[16]
and more recently by micro-transfer-printing (µTP) [17]–[19].
In particular, InP-based Fabry-Perot and DFB lasers, LEDs,
and photodiodes have been heterogeneously integrated with
silicon photonics by using µTP [20]–[23]. Heterogeneous
integration by µTP offers high-throughput, parallel and scal-
able transfer of devices or dies of material in the desired
locations on the integration platform. The technique offers
planar placement accuracy of less than 1.5 µm (over 3σ)

for arrays of dies or devices and less than 1 µm tolerant
alignments for single posts [24]–[26] by utilizing pattern
recognition. Highly dense arrays of transfer-printable coupons
can be accommodated on the source wafer. µTP permits the
heterogenous integration of fully pre-fabricated or partially
processed devices, enabling a known-good die micro assembly
approach with different elements that can be integrated to
a common platform. The only requirement for the bonding
surfaces is that they are locally flat and co-planar. µTP allows
integration onto both rigid and flexible substrates, inside
recesses, with and without adhesive layers [27], [28].

The edge-coupling of InP-based etched-facet lasers to sil-
icon photonics waveguides by heterogeneous integration into
recesses defined on the SOI has been recently demonstrated
through µTP [29]–[31]. In this case the devices are printed
directly on the Si substrate and use an n-InP cladding layer of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9511-3344
https://orcid.org/0000-0001-8470-4600
https://orcid.org/0000-0003-3974-347X
https://orcid.org/0000-0002-9002-8212
https://orcid.org/0000-0003-1160-7441


6400108 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 56, NO. 1, FEBRUARY 2020

tailored thickness for the alignment of the emitting waveguide
to a trident MSC defined on the SOI. Mode size conversion is
required as the mode size in the laser waveguide is mismatched
to that of the SOI waveguide. Recesses are etched at the ends
of the SOI waveguide for reduced longitudinal misalignment.
Printing in contact to the Si substrate provides reduced thermal
impedance to the laser [32]. A similar approach can be applied
for edge-coupling an InP laser to a polymer waveguide defined
on the oxide layer of an SOI [33]. The light injected into the
polymer waveguide can be used to power polymer-based pho-
tonic circuits [34], [35] or it can be next evanescently coupled
to the SOI to create hybrid polymer-SOI photonics [36], [37].

This work reports the first O-band Fabry-Perot InP laser
heterogeneously integrated into a recess on the SOI by µTP
and edge-coupled to an SU8 polymer waveguide. The process
allows accurate engineering for the waveguide alignments
where an intermediate metal layer deposited at the bottom
of the recess calibrates the alignment along the vertical axis
with sub-micron precision and sinks the heat produced by
the device to the Si substrate. The configuration provides
reduced thermal impedance compared to devices integrated
on the SOI layer [32], a different geometry of the thermal via
is simulated here and shows how the thermal sink could be
further improved.

II. INTEGRATION STRATEGY

An edge-coupled laser is to be integrated inside a recess
etched into the SOI in order to achieve vertical alignment of
the waveguides. The recess requires vertical sidewalls with
mirror quality defined at the end of the SOI for maximum
coupling efficiency which must not damage the delicate tip
of any tapers defined on the SOI for mode size conversion
[29, 30]. Careful choice of alignment marks is required for
accurate positioning.

A. Layout

As the position of the InP die along the vertical axis inside
the recess has to be tailored, different configurations have been
studied [Fig. 1]. The first layout is with the recess etched to
the Si substrate of the SOI wafer and the laser printed directly
on the substrate, the arrangement offers the best thermal
sink as the bottom of the device is in direct contact to the
substrate [32]. In this case a >2 µm thick n-InP layer of
calibrated thickness is required to achieve vertical alignment
of the laser waveguide to the SOI waveguide [Fig. 1(a)].
A tailored and thick n-InP layer increases the epitaxial growth
costs and makes the fabrication of the devices more challeng-
ing due to the increased thickness of the coupons. Alterna-
tively, for a general n-InP layer thickness, a metal layer of
calibrated thickness can be evaporated at the bottom of the
recess on the Si substrate with ∼10 nm tolerance [Fig. 1(b)].
The strategy would increase the thermal sink as the gold has
higher thermal conductivity than InP [32], but evaporation of
thick metal layers can be expensive and require extra care in
the preparation of the Si surface and in the metal deposition
parameters for achieving flat and smooth surfaces that are
essential for achieving adhesive-less printing or bonding with

Fig. 1. Possible configurations for edge-coupling of a laser printed in a
recess. (a) A laser die with an n-InP layer of calibrated thickness aligned to
the SOI and in direct contact to the Si substrate. (b) A laser aligned to the SOI
with an intermediate metal layer of calibrated thickness. (c) A laser printed
in a recess of calibrated depth where a thin intermediate metal layer provides
fine vertical alignment to the SOI and heat sink to the Si substrate. (d) Same
layout as (c) for light coupling to a polymer waveguide.

thin (< 50 nm) adhesive layers. Imperfections or residual
materials present on the starting surfaces or high rate metal
evaporations can lead to metal seeding effects which create
protrusions up to hundreds of nm in diameter on the final
surface. These defects require the coupons to be printed with
a thick adhesive layer which affects the vertical alignment of
the coupon and the thermal impedance [32].

Another option is to calibrate the recess depth into the
buried oxide layer of the SOI and then adjust the vertical
alignment of the coupon by evaporating an appropriate thin
(<200 nm) metal layer at the bottom of the recess [Fig. 1(c)].
The metal layer works as an electrical contact and it can
be connected to the Si substrate to act as a thermal via for
enhanced heat dissipation. The laser integrated in the recess
has the bottom closer to the Si substrate and then reduced
thermal impedance compared to a laser printed on the SOI
[32]. This strategy does not require either a n-InP layer of
fixed thickness nor the evaporation of a thick metal layer.

The same strategies can be applied to edge-couple the laser
to a polymer waveguide sitting on a cladding layer [Fig. 1(d)].
The layout reported in Fig 1(d) was designed for edge-
coupling O-band InP lasers to a mode matched single mode
polymer waveguide. One of the main advantages of the layout
is the full butt coupling of the polymer waveguide to the facet
which removes any air spacing and undesired Fabry-Perot res-
onances and the requirement to apply refractive-index-matched
in-fillers, usually difficult to process. Full butt-coupling and
accurate vertical alignment makes mode matching between the
laser and the polymer waveguide easier compared to printing
the laser at the top of the SOI and adjust the thickness of the
polymer to align the waveguides. The polymer waveguide can
act as an optical link to other optical functions of a photonic
circuit or it can be used to evanescently couple the light to
a tapered SOI waveguide for hybrid polymer-SOI photonics
[35] or to realize advanced lasers [6]. The configuration allows
the recess facet to be positioned far from the tip of the SOI
taper, preventing damaging the taper during the etch process.
The etched facets lasers do not require fabrication of tapers
on the III-V reducing complexity of fabrication.
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TABLE I

WAIST SIZE OF THE LASER TM MODE ALONG THE HORIZONTAL AND
VERTICAL AXIS, FOR THE 2 µm WIDE RIDGE LASERS FABRICATED

B. Light Edge-Coupling Model

The edge-coupling strategy was chosen to couple the light
emitted by the laser waveguide to a polymer waveguide. The
highest potential coupling efficiency with this configuration is
achieved when the laser mode field is matched to that of the
waveguide in size and in phase. Accurate (<1 µm) positional
alignment must be usually achieved in order to obtain <1 dB
injection loss when coupling the light from the device to the
waveguide.

The fundamental mode of the lasers fabricated as 2 µm wide
ridge waveguides on an epitaxial structure emitting at 1340 nm
and transverse magnetic (TM) polarized were simulated with
Fimmwave. The beam-waist, w0, of the mode along the
horizontal and the vertical direction are reported in Table I.
A mode matched SU8-polymer waveguide of refractive index
n = 1.57 edge coupled to the laser waveguide was dimensioned
by simulation. The polymer waveguide was sitting on a 3 µm
thick SiO2 (oxide) cladding, for optical insulation to the Si
substrate, and surrounded by air at the sidewalls and on top.
The highest light coupling efficiency, η, was calculated to be
90.5 % for a 1 µm thick and 3.2 µm wide polymer waveguide.
The light transmission into the fundamental mode TM of the
polymer waveguide was T ∼75 % and the reflectivity at the
facet of the laser was estimated of R ∼15.5 %. The light loss
in the edge-coupling is due by not perfect matching of the
modes in the laser and in the polymer waveguide. The energy
loss goes into higher order modes of the polymer waveguide.
The engineering of a cladded polymer waveguide can increase
the coupling efficiency.

The facet of the laser is spaced from the sidewall by a
distance d , and the polymer infills this spacing. In this case
the Rayleigh range, Z R , can be calculated to roughly estimate
the light coupling loss given by d . Z R was calculated for the
vertical component of the laser beam as it has the narrower
waist and the largest divergence. For a gaussian beam with
waist of w0 = 0.578 µm, the Rayleigh range of the beam is:

Z R =
π · w2

0 · n

λ0
= 1.23µm (1)

where n is the refractive index of the SU8-polymer and λ0 is
the wavelength of the light. This means that the edge-coupling
studied can be estimated tolerant to longitudinal misalignment
of up to ∼1.2 µm.

The simulation of the lateral and vertical misalign-
ment shows a <1 dB loss in coupling efficiency for
1x < 0.7µm and 1y < +0.2 µm and 1y < −0.7µm
respectively [Fig. 2]. The asymmetric behavior of the light
coupled when moving the laser vertically [Fig. 2(b)] is due

Fig. 2. (a) Study of the fundamental mode TM transmission from the laser to
the polymer waveguide versus lateral and (b) vertical misalignment (in µm)
simulated with LUMERICAL and FIMMWAVE.

Fig. 3. Diagram of the thermal sink simulated with COMSOL, (a) for
the O-band laser integrated in the recess on top of a metal thermal via and
(b) for the same laser with a modified thermal via that shortens the heat path
to the sink. The Zt drops from 90 to 45 K/W.

to the geometry of the system with the cladding below the
polymer waveguide and the air on top of it.

C. Thermal Model

A thermal model of the laser integrated in the SOI recess
using COMSOL [32] provides a simulated thermal impedance
of Z t ∼99 K/W [Fig. 3(a)] while the same laser printed on the
surface of the SOI would result in a higher thermal impedance
of Z t ∼132 K/W. A metal via under the laser that sinks the
heat to the substrate with a shorter path reduces Z t to 49 K/W
[Fig. 3(b)]. Simulations also suggest that an increase in the
thickness of the metal layer used for thermal via reduces the
thermal impedance by a few K/W, and it is less effective when
sinking the heat far from the active region of the device. Only



6400108 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 56, NO. 1, FEBRUARY 2020

the thermal via proposed in Fig. 3(a) was applied in this work
as printing on metal layers with topography has not yet been
explored.

III. EXPERIMENTAL METHODS

O-band InP lasers were integrated into recesses fabricated
on a SOI wafer by µTP with the strategy of Fig 1(d). The
µTP process involved shearing the coupon to a sidewall of
the recess while in gentle contact to the bottom of the recess
and then bonding the coupon when matched to the sidewall.
The method removes longitudinal misalignment and rotation.
The lateral alignment to the pre-defined SOI waveguide is
determined by the tolerances of the µTP technique [24] which
depend sensibly on the application of pattern recognition
techniques. A calibrated thickness metal layer deposited at
the bottom of the recess allowed accurate vertical alignment
of the lasers to the SOI waveguiding layer. The same metal
layer has been proven to work as electrical contact and has
the potential to work as an effective thermal via as analyzed
in the previous section. A polymer waveguide was aligned
to the laser waveguide while achieving full butt-coupling.
The polymer waveguide was further aligned to a tapered SOI
waveguide.

A. Laser Devices

550 µm long and 60 µm or 80 µm wide micro-transfer-
printable laser coupons were fully pre-fabricated on the source
InP wafer as dense arrays of about 1,000 devices per cm2.
A 500 µm long Fabry-Perot cavity was defined by two dry
etched facets and passivated by an optically neutral SiO2 layer
and the back facet was then coated with a reflective metal
layer. A 2 µm wide ridge etched just above the active region
provides the lateral confinement of the light for single mode
output. Accessible P- and N-type metal contacts were defined
for testing the devices before and after transfer. The fabrication
of the lasers included the steps for preparing the coupons to
the undercut and the µTP as shown in our previous work
[20], [38]. The coupons were released from their native sub-
strate by selectively etching a 500 nm thick InAlAs sacrificial
layer below the N-InP cladding with FeCl3:H2O (1:2). The
resulting suspended devices were then picked up and transfer-
printed epitaxial-side-up to the pre-fabricated recesses on
the SOI.

B. SOI Platform

A 220 nm SOI layer on a 3 µm thick buried oxide cladding
was patterned to create an array of 1.57 µm deep rectangular
recesses suitable for edge coupling to waveguides [Fig. 4,
Fig. 5]. Electron-beam (e-beam) lithography and a Cl-based
dry-etch were used to define the profile of the recesses and
some 0.6 µm wide SOI waveguides for optical connection
[Fig. 4(a)]. Tapers with a 140 nm wide tip were defined at
the end of each SOI waveguide for evanescent light coupling
with the polymer waveguides. A second CF4:CHF3-based dry-
etch formed the recesses in the SiO2 with ±0.03 µm tolerance
on the targeted etch depth and without reaching the substrate

Fig. 4. (a) The recesses were fabricated by dry-etching the SOI layer,
(b) the oxide (without reaching the Si substrate) and a recess to the Si
substrate; (c) then a metal layer is evaporated to adjust the recess depth and
sinks the heat to the substrate.

Fig. 5. Cross section of a 1.57 µm deep recess formed in the buried oxide
to accommodate the laser. The 170 nm thick metal layer allows tuning the
height of the active region to be 0.5 µm above the top of the oxide layer.
Then a 1 µm thick patterned SU8 waveguide is edge coupled to the laser
waveguide.

[Fig. 4(b)]. A third patterning and dry-etch opened part of
the recesses created to access the Si substrate close to the
printing area of the device [Fig. 4(b)]. A 1 Å/s slow-rate flat
evaporation of a Ti:Au (10:110) nm followed by a slow-rate
(1 Å/s) 360◦ angled Ti:Au (10:40) nm evaporation defined
a smooth flat metal layer suitable for adhesive-less printing
at the bottom of the recess [Fig. 4(c)] and the thermal via
for the heat sink. A high flatness and smoothness of the
underlying SiO2 surface is crucial to prevent defect formation
on the metal layer. Presence of imperfections and debris on
the metal surfaces require thick adhesive layers. The resulting
metal surface shows flatness of <0.03 nm/µm and nominal
roughness of <1 nm. The metal layer thickness can be tuned
with ±10 nm accuracy and allows alignment of the active
region of the device to the SOI and the polymer waveguide
along the vertical axis.

C. µTP of the Laser Into the Recess on the SOI

The pre-released InP lasers were heterogeneously integrated
to the recesses fabricated on the SOI wafer by µTP in
full manual mode and without using alignment marker and
pattern recognition. The robotic arm of the transfer printer
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Fig. 6. (a) Digital microscope image of a laser printed in a type 2 recess in the
SOI. (b) A zoom on the emitting facet shows a misalignment of 1x∼1.6 µm
and 1z∼1.4 µm to the SOI given by the encapsulation ledge.

brought the coupons to <0.1 µm distance from the metal
layer, then they were moved to the sidewall of the recess
and matched to it removing any longitudinal misalignment and
rotation of the coupon to the SOI. Finally, they were printed
onto the metal layer. Even if the integrated laser coupon
was completely matched to one of the sidewalls [Fig. 6(a)],
the facet was recessed by 1z = 1.4 µm to the sidewall as
a 1.4 µm wide ledge was defined around the coupon for the
encapsulation [Fig. 6(b)]. The lateral alignment of the emitting
facet to the SOI was measured at 1x = 1.6 µm [Fig. 6(b)],
which can be improved through a pattern-recognition-based
alignment. The vertical alignment to the SOI was determined
of 1y <30 nm due to the tolerance of the etch depth along
the SOI chip. The application of a nanometer scale thin vapor
coated hexamethyldisilazane (HMDS) layer inside the recesses
before the µTP helped to keep the printing yield high (100%)
as observed when printing an array of 20 devices on an Au
coated Si substrate.

D. Polymer Waveguide

A straight polymer waveguide was defined post-integration
on top of the SiO2 cladding and edge coupled to the laser
and evanescent coupled to the tapered SOI waveguide [Fig. 7,
Fig. 8]. This was achieved by spinning a SU8 polymer layer
of 1.5 µm thickness on the SOI after printing the devices
in the pre-fabricated recesses. The thickness targeted was 1
µm with the difference between expected and actual thickness
due to the topography present on the SOI. An etch-back of
the polymer will bring the height of the waveguide back to
1 µm. E-beam lithography was used to define a 7.5 µm
wide and 2 mm long waveguide edge coupled to the ridge
of the laser with <0.7 µm misalignment [Fig. 7(a)]. Full butt-
coupling of the polymer waveguide to the facet of the laser
was achieved despite the 1.4 µm spacing between the facet
and the sidewall of the recess [Fig. 7(b, c)], with the coupon

Fig. 7. Scanning electron microscopy images (a) of the waveguide aligned to
the ridge of the laser with <0.7 µm lateral misalignment, (b, c) complete butt
coupling to the facet and (d) full match of the laser coupon to the sidewall
of the recess created into the buried oxide layer (BOX).

Fig. 8. (a) Digital microscope image of the InP laser printed in a recess on
the SOI and edge coupled to the polymer waveguide. (b) A zoom-in on the
polymer waveguide connection allows visualize the SOI tapered waveguide
positioned 4.75 µm far from the edge of the recess.

completely matched to the sidewall [Fig. 7(d)]. The spacing
allowed for full light transfer to the waveguiding section as
estimated in paragraph B of the previous section (dmax ∼2.4
µm). The polymer waveguide incorporated a parallel SOI
waveguide with the taper positioned at 4.75 µm from the edge
of the recess [Fig. 8(b)]. The misalignment of the polymer
waveguide to the SOI waveguide was 1x ∼2.25 µm, given
by the sum of the misalignment to the laser waveguide (0.65
µm) and of the laser to the SOI (1.6 µm). The second end
of the waveguide lands in another recess aligned to the first.
Additional pads around the coupon were defined with the
polymer layer for locking the device in place in case further
processing on the sample could affect the adhesion to the
substrate [Fig. 8(a)].

IV. EXPERIMENTAL RESULTS

The integrated devices were characterized electrically and
spectrally before and after µTP to the recess and after
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Fig. 9. IR camera imaging of the laser operating on the SOI and coupled to
the 2 mm long polymer waveguide, the light comes out at the free end of the
waveguide with a bright spot. Some transverse cleaving lines etched beside
the waveguide for following cleaving of the chip reflect the light dispersed
beside the laser coupon.

Fig. 10. L-I characteristics for the laser printed in the recess before and
after coupling the light to the SU8 waveguide. The inset shows the emission
wavelength of ∼1340 nm for the laser operating at 20◦C before transfer.

edge-coupling to the polymer waveguide. The light cou-
pling from the laser to the polymer waveguide and the SOI
waveguide was detected with an infrared (IR) camera that
shows the light coming out at the end of the 2 mm long
polymer waveguide [Fig. 9].

The light-current (L-I) characteristics of the devices show
a threshold current of Ith ∼17 mA before and after µTP
to the SOI. Ith rises to ∼23 mA after coupling the light to
the SU8 waveguide [Fig. 10] due to reduced reflectivity on
the front mirror from R ∼32 % (in air) to R ∼15.5 %. The
intensities of the two L-I curves are not related in the graph
as the light was collected at an angle to the SOI chip, the
decreased light power measured after the butt coupling of
the polymer waveguide highlights the light is coupling into
the waveguide and does not diverge as when the laser emits
in air. The series resistance of the laser was measured of
∼14 �. The thermal impedance of the laser was measured
of Z E X P ∼116 K/W. The laser operating on the original
InP substrate at 20 ◦C emits light at ∼1340 nm wavelength
[Fig. 10, inset].

V. CONCLUSION

We reported the edge-coupling of an O-band etched facets
InP laser to a polymer waveguide. Lasers were heteroge-
neously integrated into recesses of calibrated depth fabricated
into the SOI by µTP. The integration layout was designed and
dimensioned starting from the study of the light coupling by
simulation. The strategy allows heterogeneous integration of
pre-determined thickness InP transfer printable devices in a
desired location and on the desired layer of the SOI. Fine
vertical alignment of the laser waveguide to the SOI and
thermal sink are achieved through an intermediate metal layer
of calibrated thickness deposited at the bottom of the recess
and connected to the Si substrate. Longitudinal alignment and
rotation are improved by matching the coupon to one of the
sidewalls of the recess. A layout for the improvement of the
thermal via was simulated with COMSOL and proposed here.
Alignment markers and pattern recognition have to be applied
for improved lateral alignment.

A path for the application of µTP to the micro assembly
of pre-fabricated InP optical functions to silicon photonics
by edge coupling the light to polymer waveguides has been
demonstrated in this work. The strategy enables the creation
of PICs based on polymer or hybrid polymer-SOI waveguides
interconnects.
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