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 The set covering problem is to find the minimum cardinality set of locations to site the facilities 
which cover all of the demand points in the network. In this classical problem, it is assumed that 
the potential facility locations and the demand points are limited to the set of vertices. Although 
this problem has some applications, there are some covering problems in which the facilities can 
be located along the edges and the demand exists on the edges, too. For instance, in the public 
service environment the demand (population) is distributed along the streets. In addition, in many 
applications (like bus stops), the facilities are not limited to be located at the vertices 
(intersections), rather they are allowed to be located along the edges (streets). For the first time, 
this paper develops a novel integer programming formulation for the set covering problem 
wherein the demand and facility locations lie continuously along the edges. In order to find good 
solutions in a reasonable time, a matheuristic algorithm is developed which iteratively adds 
dummy vertices along the edges and solves a simpler problem which does not allow non-nodal 
facility locations. Finally, a Benders decomposition reformulation of the problem is developed 
and the lower bounds generated by the Benders algorithm are used to evaluate the quality of the 
heuristic solutions. Numerical results show that the Benders lower bounds are tight and the 
matheuristic algorithm generates good quality solutions in short time. 

© 2020 by the authors; licensee Growing Science, Canada 
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1. Introduction 
 

 
Placing facilities in appropriate locations has a long history but it has been received a great deal of formal 
researches since 1950s (Heragu, 2008). The set covering problem is one of the most well-known facility-
location problems with many applications, especially in the public sector (Farahani et al., 2012; Snyder, 
2011).  In this problem, a demand point would be covered if its distance from at least one sited facility 
does not exceed a given length. The objective of the set covering problem is the minimization of the 
number of used facilities to cover all of the demand points (Snyder, 2011). This problem was introduced 
by (Hakimi, 1965). He addressed the problem of finding the minimum number and the locations of 
policemen to cover the vertices of a highway network. Toregas et al. (1971) proposed the famous integer 
programming formulation for this problem.  
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The abovementioned classical set covering problem assumes that the facilities could be located only at 
the vertices of the network and the demand occurred only at the vertices (Toregas et al., 1971). While 
these two assumptions have their own applications, there are other circumstances where the facilities 
have insignificant geographic footprint and hence can be located anywhere along the network (Wei et 
al., 2014); and at the same time, the demand for these facilities lies continuously along the edges.  For 
example, we can refer to bus stops, interactive kiosks, ATMs, bike sharing stations, convenience shops, 
car charging stations, footbridges and wildlife road crossings, surveillance cameras, municipal waste 
collection bins, accident reporting acoustic sensors on road networks, and fire hydrants, some of which 
are mentioned in Berman et al. (2016) and Wei et al. (2014). As compared to the classical variation of 
the problem, there are two implications in dealing with this unrestricted variation of the problem (Church 
& Murray, 2018). Firstly, an infinite number of candidate facility locations are to be regarded. Secondly, 
there is not a finite set of demand points anymore; instead the continuous parts of the network (i.e. edges) 
must be considered for coverage.  

Hakimi property (also known as nodal optimality) states that in the p-median problem, there is always at 
least one optimal solution that the facilities are sited only on the vertices (Laporte et al., 2015). It is 
known that this property does not carry over for the classical set covering problem (Snyder, 2011). Here, 
by using a simple counterexample, we show that this property does not hold for the case in which the 
demand is distributed along the edges. Hence, the relaxation of the restriction that the facilities must be 
located at the vertices can decrease the number of required facilities to cover the network. Fig. 1 
represents a small network with coverage distance 10 in which the number beside each edge is its length. 
It can be verified that if the facilities are restricted to be located at vertices, the network is covered by at 
least two facilities (e.g. the ones denoted by F). However, the relaxation of this restriction allows the 
coverage of the whole network by only one facility located at point A.  

 
Fig. 1. Unrestricted location of facilities  

In Fig. 1, the coverage of the network is equivalent to the coverage of its vertices. However, this is not a 
general rule. Consider Fig. 2 with coverage distance 10.  Again, the length of each edge is written beside 
it and the located facilities are denoted by F. All vertices are covered by these facilities, but some part of 
the network (i.e. the dotted section) has been left uncovered. Hence, the coverage of the vertices is not 
necessarily equivalent to the coverage of the entire network. 

 
Fig. 2. Total Coverage of the vertices with a partially uncovered edge 

Similar to the edge covering problem, the minimum vertex cover problem is to find the minimum-size set 
of vertices which covers all of the edges (Cormen et al., 2009). However, the notion of coverage is 
different and is not based on the coverage distance, rather it is assumed that each edge is covered if a 
facility is located on one of its endpoints or both. Some researchers like Li et al. (2016) and Cai et al. 
(2019) addressed the weighted extension of this problem in which the aim is to minimize the total weights 
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of the selected vertices. They designed some efficient local search algorithms to solve this problem. 
Pandey and Punnen (2018) studied a generalization of the minimum vertex cover problem in which the 
objective function is composed of the costs of not covering, covering, and double covering of edges. 
They developed the integer programming formulations of the problem and analyzed its computational 
complexity.   

The formal discussion on the edge covering problem regarding the coverage distance dates back to 1976 
when ReVelle et al. studied the set covering problem with the edge demand. They assumed that an edge 
is called covered if at least one sited facility reaches all of its points, meaning that the coverage of one 
edge cannot be accomplished by the joint partial coverage from multiple facilities. Sadigh et al. (2010) 
extended the edge covering problem allowing each edge to be covered from two directions by partial 
coverage of two facilities. They solved the problem using a Tabu search algorithm equipped with size 
reduction rules which decrease the solution time. Similar to ReVelle et al. (1976), they assumed that the 
candidate sites to place the facilities are limited to the set of vertices. Conrow et al. (2018) studied the 
bike sharing siting problem in the city of Phoenix. They considered two objectives of maximization of 
the coverage of demand points and edge segments. They considered a finite set of potential locations for 
bike sharing stations. 

Covering problems with facility location on the edges and discrete demand points have also been studied. 
Church and Meadows (1979) addressed the maximal and set covering problems wherein the demands 
exist on the vertices but the facilities are allowed to be sited anywhere along the network. For both 
problems, they proved that there is an optimal solution that the facilities are located at vertices plus some 
specific points along the edges. They also formulated the set covering and maximal covering of edges 
with the restriction that the facilities can be located only on the vertices and each edge is allowed to be 
covered by multiple facilities. Groß et al. (2009) tackled the problems of locating new facilities (e.g. bus 
stops and railway stations) along the edges of a transportation network in order to satisfy either the 
demand of some finite points in the plane or the nodes of the network. They considered two objectives, 
separately: minimizing the number of stations which cover all demand points and minimizing the total 
distance between demand points and their nearest facilities when the number of stations is given. Also, 
they proved that there are finite sets of optimal location points of polynomial order. Schobel et al. (2009) 
studied adding new bus stops (or train stations) to an existing bus route (or railway network) with the 
objective of minimization of total added stopping times subject to the constraint that all of the discrete 
set of demand points must be covered. They converted the problem to the classical set covering problem 
and found some cases that can be solved more efficiently. Jayalakshmi et al. (2017) addressed 
cooperative maximum covering problem wherein the coverage was not binary, rather its strength 
decreases linearly with increase in distance. Further, they assumed that each demand point is considered 
as covered if the sum of partial coverage from all facilities reaches a threshold. They assumed that the 
sites for locating facilities include continuous parts of edges as well as the vertices. 

A few studies have considered the facility location problems when both demand and location occur 
continuously along the network. De Los Mozos & Mesa (2000) tackled the single facility location 
problem along the network wherein the demand lies both on the vertices and along the edges. By knowing 
the density function of the level of edge demand, they developed a decomposition algorithm to minimize 
the variance of distance between the located facility and all demand points. They showed that this 
approach finds the optimal location of the facility in a more efficient manner than the exhaustive 
approach. Berman et al. (2016) tackled the maximal covering problem that the demand is distributed 
along the edges and facilities can be located anywhere on the network. For the case when the demand is 
distributed constantly along edges and there is only one facility to be located on the network, they derived 
the discrete set of locations called finite dominating set (FDS) which always contains the optimal 
location. Based on the FDS, they designed a greedy adding and improvement heuristic to solve the multi-
facility location problem. They also addressed the minimal covering problem of obnoxious facilities. Wei 
et al. (2014) addressed the set covering problem where the facilities can be located anywhere along the 
network and the demand exists all over the edges. They designed an algorithm which generates lower 
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and upper bounds iteratively in which the gap between these bounds approaches zero as the algorithm 
proceeds. Their algorithm was based on the assumption that the coverage distance is defined based on 
the Euclidian distance (i.e. each demand point is covered if at least one facility is located in its coverage 
circular disk). 

The contributions of this paper are as follows. First, this paper tackles a novel extension of the set 
covering problem where the facilities can be located continuously along the network and the aim is to 
cover all of the edges (i.e. the whole network) with the minimum number of facilities. To the best of our 
knowledge, the only study which has considered this problem is Wei et al. (2014). However, Wei et al. 
(2014) assumed that the coverage is based on the Euclidian distance of the points on the plane. On the 
contrary, we assume that the coverage is defined based on the shortest path along the network. This seems 
more practical for public facilities in which the customers (facilities) should pass through the network to 
reach the facilities (customers).  Second, a novel mathematical programming formulation of the problem 
is developed for the first time. Third, a matheuristic algorithm is designed which can find near optimal 
solutions in a short time. Fourth, a Benders algorithm is developed to generate lower bounds which verify 
the quality of the matheuristic solutions.  

The remaining parts of the paper are organized as follows. Section 2 introduces the problem and develops 
its mathematical formulations. Section 3 is dedicated to the solution approaches. Subsection 3.1 provides 
some dominance rules. Subsection 3.2 introduces the node-adding matheuristic approach. Subsection 3.3 
presents the Benders decomposition formulation of the problem which is used to generate the lower 
bound solutions. Section 4 uses the numerical results to verify the quality of the matheuristic algorithm 
and the tightness of the Benders' lower bounds. Finally, Section 5 concludes the paper and sheds light on 
some future extensions. 

2. Problem formulation and notations 

This paper tackles a novel edge covering problem wherein the facilities can be located anywhere on the 
network. The objective is to determine the minimum number of required facilities and their positions on 
the network. An edge does not need to be covered by a single facility, rather it can be covered 
cooperatively. The following assumptions are considered in the sequel. 

- The graph of the problem is connected and undirected. 

- At most one facility can be located along each edge. 

- There is no parallel edges between any pair of vertices. 

- All edges must be covered. 

- No edge is longer than twice of the coverage distance.  

It should be stated that the multi-graphs can be handled by the following simple trick. As shown in Fig. 
3, adding a dummy vertex (like D) on an arbitrary position of each parallel edge converts the multi-graph 
to an ordinary graph.  

 
Fig. 3. Adding the dummy vertices to handle the parallel edges 

D
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The last assumption guarantees the feasibility of the problem. Although the violation of this assumption 
does not necessarily lead to infeasibility of the problem, the feasibility can be assured by adding some 
dummy vertices over the edges which are longer than two times of the coverage distance. 

 The sets and the parameters of the problem are as follows. 

V: set of vertices (also called nodes) 

E: set of edges 

n: the number of vertices 

m: the number of edges 

DC: the coverage distance 

lij: the length of edge ij  

M: a sufficiently large number 

dij: the length of the shortest path between vertex i and vertex j 

Further, the decision variables are denoted by the following notations: 

xij: binary variable which is 1 if a facility is located on edge ij (i<j) and 0 otherwise 

yij: the distance of the located facility on edge ij from vertex i 

cij: the maximum covered length of edge ij through vertex i  

iji'j': binary variable which is 1 when the coverage of edge i'j' from vertex i' is done by the located 
facility on edge ij through the shortest path between i and i' and 0 otherwise 

eij: The covered length of edge ij from the located facility on this edge toward vertex i 

In the notations, ij and ji refer to the same edge. However, the order that nodes of the edges appeared in 
the indices of the variables yij, cij, iji'j', eij refers to the direction in which the edge is considered. An 
example of the complementary coverage of an edge (ij) with two facilities (denoted by diamond) is 
depicted in Figure 4.  

 
Figure 4. The exemplification of the complementary edge covering 

The parameters dijs are determined before solving the problem by running a shortest path algorithm for 
every pair of vertices. To this end, we used Dijkstra’s algorithm (Cormen et al., 2009) and implemented 
it in Matlab. The mathematical formulation of the problem is as follows: 

P: 

|
min ij

ij E i j
x

 
                             (1) 

; |ij ji ijy y l ij E i j        (2) 

CD 

i j
ije jie 

j
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jic 
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|
2( 1) ; |iji j ij

i j E i j ij
m x ij E i j  

    

       (3) 

|
2( 1) ; |iji j ji

i j E i j ij
m x ij E i j  

    

      (4) 

|
1 ;iji j

ij E ij i j
i j E  

  

         (5) 

 1 ; , &i j C ij ii iji jc D y d M i j ij E ij i j                 (6) 

|
;i j i j iji j

ij E ij i j
c l i j E     

  

             (7) 

; |ij C ije D x ij E i j      (8) 

; |ij C jie D x ij E i j       (9) 
;ij ij ije c y ij E      (10) 

; |ij ji ij ji ijc c e e l ij E i j          (11) 

 0,1 ; |ijx ij E i j       (12) 

, , 0 ;ij ij ijy e c ij E     (13) 

{0,1}; , &iji j ij i j E ij i j            (14) 

The objective function (1) minimizes the number of used facilities. Constraint (2) states that the sum of 
the distance of the location of any facility from the endpoints of its edge equals the length of that edge. 
We remind that for the edges without a located facility, the value of variable y has no meaning. 
Constraints (3) and (4) ensure that if at least one edge is covered by edge ij, a facility have to be located 
along it. Constraint (5) imposes that edge i′j′ is covered through vertex i′ by at most one located facility 
along the other edges. 

Constraints (6) and (7) determine the length of edge ij which is covered by a located facility along other 
edges. To clarify these two constraints, consider the example depicted in Fig. 5 where a facility (denoted 
by a diamond) is located along edge ij. Suppose that the coverage distance (DC) is 10. Assume that the 
shortest path from node i to node i′ is of length 5 (i.e. dii'=5). As shown in this figure, yij=1. Constraint 
(6) does not enforce iji′j′ to be zero. If iji′j′=1, then ci′j′ can be 4. Now, assume that DC is 4. In this case, 
iji′j′ has to be zero. Otherwise, Constraint (6) is violated. If for all edges i′j′ we have iji′j′=0, then 
Constraint (7) imposes that ci′j′=0.  

 
Fig. 5. An explanatory example for the calculation of cij 

Constraints (8-9) ensure that the covered length of edge ij by its own facility is not greater than the 
coverage distance. Constraint (10) prevents erroneous calculation of cijs by precluding twice 
consideration of edge parts. It is worth noting that when an edge does not contain a located facility, this 
constraint is redundant since the values of yij can take arbitrary values. Constraint (11) enforces every 
edge to be totally covered. The remaining constraints determine the domain of the variables. 
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It is worth noting that formulation P can also handle the graphs with directed edges. Suppose that edge 
ij is directed from i to j. Then, it suffices to drop all variables and constraints which consider traversing 
edge ij from j to i. 

3. Solution approach 

In this section first, some dominance rules are presented which reduce the feasible region. Further, a 
matheuristic algorithm is developed which solves a restricted variation of the problem, iteratively. 
Moreover, to evaluate the quality of the matheuristic solutions, Benders decomposition formulation of 
the problem is used to generate the benchmark lower bounds.  

3.1 Dominance rules 

In this subsection, some dominance rules are explained with the aim of reducing the feasible region.  

Observation 1. For any pair of nodes i and i′, if dii′>DC, then iji′j′= 0. This is clear since any located 
facility along edge ij cannot cover any part of edge i′j′ through the shortest path ii′. 

Observation 2. For any pair of edges ij and i′j′, if dii′=dji′+lij, then iji′j′= 0. In these situations, regardless 
of the value of yij, the shortest path from the located facility along edge ij to node i passes through node 
j. Hence, solutions with iji′j′=1 are dominated.  

To illustrate this observation, consider the network shown in Figure 6 in which the straight lines represent 
the edges and the curves denote the shortest paths if the network excludes edge ij. Since dii′=dji′+lij, the 
curve ii is longer than dji′+lij. It follows that the coverage of edge i′j′ through node i′ by a facility located 
along edge ij is always longer (or at least equal) if the coverage is considered through node j. 

 
Fig. 6. Illustration of observation 2 

Observation 3. For any pair of edges ij and i′j′, if dii′=dij′+li′j′, then iji′j′= 0. In this case, the shortest path 
from node i to node i′ traverses through node j′. Hence, solutions with iji′j′=1 are dominated.  

To illustrate this observation, consider the network shown in Fig. 7 in which the straight lines represent 
the edges and the curves denote the shortest paths if the network excludes edge i′j′. Since dii′=dij′+ li′j′, the 
curve ii is longer than dij′+ li′j′. It follows that if the coverage of edge i′j′ by a facility that is located along 
edge ij through nodes i and i′ is positive, this facility completely covers edge i′j′ through nodes i and j. 
Thus, the solutions with iji′j′=1 are dominated. 

 
Fig. 7. An illustration of observation 3.  
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Observation 4. Suppose that ij is a pendant edge (that is, i or j has vertex degree 1) with lijDC. Without 
loss of generality, let i be the vertex with degree 1 and assume that i<j. Then, in any optimal solution 
xij=1. Further, there is an optimal solution in which yij=DC.  

3.2 The Edge-division matheuristic approach (EDA) 

The infinite number of candidate location points (along the edges) is one of the major sources of 
complexity of the problem P. The mathematical formulation of the restricted variation of the problem 
(we denote it by RV for short) in which the facilities are limited to be located on the vertices is as follows. 

RV: 

min k
k V

x

     (15) 

; ,kij kij kji kji ij
k V k V

c c l ij E i j 
 

         (16) 

; ,kij kx k V ij E      (17) 
1 ;kij

k V
ij E



    (18) 

 0,1 ;kx k V   (19) 

0 ; ,kij k V ij E      (20) 
The objective is to minimize the number of located facilities. Parameters ckij determine the coverable 
length of edge ij through vertex i if a facility is located at vertex k. ckij is calculated beforehand and equals 
min{max{0,DC-dki},lij}. Regarding (18) and (20), the first summation of constraint (16) calculates the 
convex combination of scalars ckij s. Thus, the maximum value of this expression for edge ij is resulted 
when kij equals 1 for k with maximum ckij and zero for k′k. This discussion holds for the second 
summation of constraint (16). Suppose these two expressions are in their maximum values. Now, if the 
sum of the covered lengths through both directions of edge ij is greater than or equal to the length of this 
edge, edge ij is covered completely. 

The optimal solution of the problem P can be approximated by adding dummy vertices along the edges 
and solving problem RV which is easier. Adding more dummy vertices may improve the quality of the 
approximate solution but increases the time it takes to solve the problem. Assume that  is the number 
of dummy vertices which are supposed to be located along the edges. Figure 8 describes our proposed 
algorithm to distribute the dummy vertices evenly over the network. 

Initialization: l′ijlij , ij0; ijE 
For iter=1 to  
 Find the edge in E with maximum l′ij and call it as ij 
 ijij+1 
 l′ij l′ijij/(ij+1) 
For each edge ijE with ij>0,  

 Place ij nodes along the edge so that the edge is divided into ij+1 equidistant 
segments. 

Fig. 8. Spreading the dummy vertices 
The vertex set of the new graph includes the original and the dummy vertices. Moreover, the set of edges 
of this graph is composed of the undivided edges and the segments of the divided edges. The length of 
segments are l′ij. Knowing l′ij, the length of the shortest path between any pair of vertices which includes 
at least one dummy vertex can be easily calculated. The pseudocode of the edge-division matheuristic is 
presented in Fig. 9. 
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Initialization: RemTT, 0, GInitial Graph 
Solve problem RV by calling CPLEX with run time limit RemT for the graph with no dummy vertices 
BestObjObj 
BestSolutionSolution 
RemT RemT-RunTime 
While RemT>0  
 Augment G with new graph by adding =2m dummy nodes distributed according to Fig. 8.  
             +1 
 Solve problem RV by calling CPLEX for the new graph with run time limit of RemT 
 RemT RemT-RunTime 
 If Obj< Bestobj 
  BestObjObj 
  BestSolutionSolution 
Report BestObj and BestSol 

Fig. 9. The edge-division matheuristic 
3.3 The Benders decomposition approach (BD) 

In order to evaluate the performance of the heuristic solutions, we need their corresponding optimal or 
lower bound solutions. Problem P is a mixed integer programming problem with a huge number of 
constraints and binary variables which cannot be solved optimally by the general purpose solvers in a 
reasonable time except for small problems. Such solvers (like CPLEX) also provide lower bound 
solutions, but these bounds are not necessarily tight. Benders technique is an optimization algorithm 
which decomposes the original problem into two smaller problems called master problem and 
subproblem (Taskin, 2010). This approach can solve problems with large scale formulations efficiently 
by alternately solving the master and subproblem (Oğuz et al., 2018). The master problem includes only 
a few (or even no) constraints. We use Benders decomposition algorithm to find tight lower bounds. In 
our case, the master problem is feasible and bounded, the subproblem is a feasibility problem, and the 
dual subproblem is also feasible. The optimal solution of P could be obtained by the solution of the 
master problem if it satisfies the constraints of the subproblem. Otherwise, the dual subproblem is 
unbounded and a constraint called feasibility cut needs to be appended to the master problem to exclude 
the corresponding extreme ray. The master problem (MP) of problem P is as follows. 

MP: 

|
min ij

ij E i j
x

 
      (21) 

|
1 ;iji j

ij E ij i j
i j E  

  

    (22) 

|
2( 1) ; |iji j ij

i j E i j ij
m x ij E i j  

    

          (23) 

|
2( 1) ; |iji j ji

i j E i j ij
m x ij E i j  

    

        (24) 

 0,1 ; |ijx ij E i j          (25) 

{0,1}; , &iji j ij i j E ij i j          (26) 

 

Here, we provide three initial cuts (IC) with the aim of reducing the search space of the master 
problem. 

Theorem 1. Expression (27) provides a lower bound for the number of required facilities. 
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where  is an infinitesimal positive number and x is the integral part of x. 

Proof.  

The number of required facilities to cover the shortest path between the farthest nodes is a lower bound 
on the minimum number of required facilities to cover the entirety of the graph. First assume that the 
length of the shortest path between the farthest nodes is less than or equal to 2DC. This path can be 
covered by locating one facility at the middle of it. Now, consider the opposite case. Let the shortest path 
between the farthest nodes i and j be of length K+2DC. The minimum number of required facilities to 
cover this path happens when two facilities are located at distance DC from nodes i and j. If K is multiple 
of 2DC, the part of this path between these facilities can be covered by at least (K/(2DC))-1 facilities 
located along it. On the other hand, if K is not divisible by 2DC, the minimum number of required facilities 
to cover this path is attained by locating K/2DC along this path.   

IC1.The following cut reduces the search region. 

|
ij

ij E i j
x F

 

     (28) 

IC2. If edge i′j′ does not accommodate a facility, its outer covering facilities need to be located along the 
edges that allow the complete coverage. 

   
| & 0 | & 0

; |
C ii C ij

C ii iji j C ij ijj i i j i j i j
ij E ij i j D d ij E ij i j D d

D d D d l x l i j E i j 
 

           
          

            (29) 

According to this constraint, as shown in Figure 10, if two outer facilities (on edges ij and ij) cannot 
completely cover edge i′j′ when their facilities are located on the nearest place to this edge (that is, node 
i and node i), they cannot cover this edge regardless of the position of the located facilities. 

 
Fig. 10. Incomplete coverage 

IC3.  

1 ; , , & & 0 & 0 & 2iji j jii j C ii C ji ij ii ji Cij i j i j E ij i j i j D d D d l d d D                            (30) 

This cut is illustrated by the example provided in Fig. 11. Any located facility along edge ij cannot cover 
edges i′j′ and ij simultaneously since (DC-dii′)+(DC-dji)<lij. 

i′

ii′d 
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ii′d -C D j′id -C D 
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Fig. 11. Impossible joint coverage  

The subproblem (SP) of problem P is as follows. 

SP: 

max0                             (31) 
; |ij ji ijy y l ij E i j             (32)  

 1 ; , &i j ij C ii iji jc y D d M i j ij E ij i j                 (33)  

|
;i j i j iji j

ij E ij i j
c l i j E     

  

             (34)  

; |ij C ije D x ij E i j       (35)  

; |ij C jie D x ij E i j         (36)  
0 ;ij ij ije c y ij E       (37)  

; |ij ji ij ji ijc c e e l ij E i j           (38)  

, , 0 ;ij ij ijy e c ij E     (39) 

It is worth noting that the objective function could be minimization. However, since most of the 
constraints are of the form , it is more convenient to consider the maximization. Let ij, iji′j′, ij, ij, 
ij, and ij denote the dual variables of constraints (32), (33), (34), (35-36), (37), and (38), respectively. 
Then, the dual subproblem (DSP) is as follows. 

DSP: 
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0; |ij ij ji ij E i j           (46) 
0 ; , |iji j ij i j E i j ij             (47) 

, , 0 ;ij ij ij ij E     ;   , , 0; |ij ij ij ij E i j          (48) 
where the free variable ij is replaced by ′ij-ij and the bar sign over the MP variables denote their 
values. DSP always has a feasible region since it contains at least the zero vector. Thus, two cases would 
be occurred. If DSP is bounded, the lower bound and upper bound in the benders algorithm get equal and 
the algorithm is terminated. On the contrary, if the DSP is unbounded, the SP is infeasible and a feasibility 
cut must be added to the MP. Constraints of DSP constitute a polyhedral cone. Hence, every feasible 
solution (except for the origin) is a ray (Bertsimas & Tsitsiklis, 1997). DSP is unbounded if and only if, 
there is an extreme ray where the objective function decreases along it (Bertsimas & Tsitsiklis, 1997). 
Hence, the unboundedness of the DSP can be detected by solving the following modified DSP problem 
(MDSP). 

MDSP: 

min 0      (49) 
subject to (41-48) and 
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(50) 
If the MDSP is feasible, the DSP is unbounded. In this case, cut (51) is added to the MP. 
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(51) 

where the bar sign over the dual variables denote their values. The summary of the Benders algorithm is 
shown in Fig. 12. 

4. Numerical results 

We developed a heuristic algorithm for this problem. We evaluate the quality of the heuristic solutions 
by comparing them with the best found solutions and lower bounds generated by CPLEX and Benders 
algorithm. The heuristic solutions must be attained in reasonable time. The term reasonable depends on 
the nature of the problem (Bramel & Simchi-Levi, 1997). Real time decisions must be made in very short 
time. On the contrary, the process of decision making for long term problems can take a longer time. 
Facility location belongs to the class of long term decisions (Daskin, 2011). Hence, we set the time limit 
of 1200 seconds for the heuristic algorithm, the Benders algorithms, and CPLEX. The numerical 
experiments were run on a computer with 4.02 GHz Intel Core i7 processor and 14 GB RAM. The 
mathematical models were coded in GAMS IDE, version 24.1.2, and solved using the solver CPLEX, 
version 12.5.1. We generate random planar connected graphs as our test bed. To this end, N random 
points are generated in two-dimensional Euclidean plane. Then, Matlab is used to generate the Delaunay 
triangulation network, which implicitly constructs a connected planar graph. The length of each edge is 
calculated using the coordinates of its endpoints. DC is randomly generated in the interval [0.5max{lij}, 
1.5max{lij}]. Finally, the shortest path between each pair of vertices is calculated using Dijkstra’s 
algorithm (Cormen et al., 2009).  
 



K. Alamatsaz et al. / International Journal of Industrial Engineering Computations 11 (2020) 639

 
Fig. 12. The Benders algorithm 

Table 1 represents the results of solving 40 randomly generated problem instances. All run times are in 
seconds. Although the time limit for the EDA algorithm is 1000 seconds, in most of the instances it finds 
its best found solution in less than a few seconds. LB implies for the best found lower bound and BF 
denotes the best found solution.  

 

 

Fig. 13. Lower bounds of Benders and CPLEX 

Fig. 13 reports the difference between the lower bounds found by applying CPLEX on problem P and 
the lower bound found by the Benders algorithm. In all of the instances, the Benders algorithm finds 
tighter lower bounds than CPLEX, except for two instances in which both lower bounds are equal. This 
figure shows the superiority of Benders lower bounds. In 85 percent of the instances, Benders lower 
bounds are at least two times the lower bounds of CPLEX. 

 

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Cplex Benders

Solve MDSP 
 

Augment the feasibility cut 
(51) to the MP 

Report best found lower 
bound 

MDSP is feasible or 
the termination 

condition is met?

to the MDSP and  Pass 

YES
 

NO
 

Solve MP, with feasibility cuts 
added until now 



 

 

640 

Table 1  
The detailed numerical results 

n 

#Instance 

Benders CPLEX EDA 

LB Run time LB BF Run time BF Run time 

45 

1 3 616 1.24 8 1202 4 3 
2 6 1202 2.99 11 1202 7 1124 
3 4 1202 1.5 9 1202 5 1 
4 4 1201 2 5 1201 4 1 
5 5 1201 3.83 7 1201 6 528 

50 

6 4 1203 1.17 7 1201 5 3 
7 3 1202 3 3 1202 3 4 
8 3 1201 1.5 4 1201 3 10 
9 4 1205 3 6 1201 5 80 

10 4 1201 1.75 9 1201 5 8 

55 

11 2 1047 2 2 462 2 7 
12 5 1202 1.56 14 1201 6 16 
13 4 1202 1.27 15 1201 5 6 
14 6 1202 1.72 64 1201 7 24 
15 3 1203 0.33 21 1138 3 6 

60 

16 6 1202 1.98 65 1201 7 2 
17 4 1203 0.55 43 1140 4 18 
18 5 1203 1.07 64 1201 6 19 
19 7 1203 0.91 45 1201 7 20 
20 4 1203 1.11 46 1201 5 66 

65 

21 5 1203 1.68 53 1201 5 6 
22 3 1203 0.33 27 1202 3 4 
23 7 1202 1.22 54 1201 7 13 
24 7 1203 0.55 65 1202 7 50 
25 4 1203 0.51 49 1202 5 137 

70 

26 10 1203 2.33 81 1202 12 1139 
27 3 1205 0.31 30 1202 3 364 
28 4 1137 0.43 59 1202 4 166 
29 6 1205 0.63 70 1202 6 5 
30 5 1204 0.48 58 1203 5 47 

75 

31 7 1203 3.05 17 1202 7 441 
32 5 1204 1.52 56 1202 5 124 
33 8 1203 1.88 59 1202 8 450 
34 7 1204 1.99 77 1203 7 455 
35 9 1203 3.38 23 1202 9 147 

80 

36 7 1205 1.62 64 1204 7 1021 
37 9 1204 2.02 68 1203 10 1200 
38 8 1203 3.33 60 1203 8 37 
39 8 1205 1.91 81 1203 8 383 
40 6 1205 0.97 46 1203 6 178 

 

Fig. 14 compares the solutions of the EDA algorithm with the best found solution obtained through 
solving P by CPLEX. In other words, this figure depicts the savings in number of required facilities when 
the problem is solved by the EDA rather than solving problem P by CPLEX. On average, the number of 
used facilities by CPLEX is 6.5 times the ones used by the EDA algorithm. Further, in three-quarters of 
the instances, solving the problem by EDA, rather than solving P by CPLEX, results in at least 58% 
reduction in the number of required facilities. Fig. 15 represents the quality of the heuristic solutions by 
comparing them with the greatest lower bound found by CPLEX and Benders algorithm. On average, the 
number of used facilities by EDA algorithm are 0.08 larger than the maximum of two lower bounds. In 
75% of the instances, EDA solutions match the maximum lower bound and hence are optimal. There is 
only one instance (i.e. #26) that EDA algorithm uses two additional facilities than the maximum lower 
bound. 
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Fig. 14. Comparing EDA and CPLEX solutions (number of used facilities) 

 

Fig. 15. EDA optimality gap 

5. Concluding results and future research directions 

This paper addressed the total edge covering problem in which the facilities are allowed to be located 
anywhere along the network. The mathematical programming formulation of the problem is developed 
for the first time. A matheuristic which iteratively solves the facility location on real and dummy nodes 
is proposed. In order to evaluate the quality of the heuristic solutions, a Benders algorithm is developed 
which generates tight lower bounds. Numerical results show the efficiency and effectiveness of the 
matheuristic algorithm for problems with 45 to 80 nodes.  

This study addressed one of the facility location problems with continuous demand and location along 
the network. Many other facility location problems, like dispersion and center problems, can be attacked 
regarding the continuous location as well as the distributed demand along the edges. We considered 
uncapacitated facilities. The study can be extended regarding the capacity of the facilities and the density 
of the demand along the edges. For the ease of formulation, we assumed that at most one facility can be 
located along each edge. This assumption can be relaxed by allowing multiple facilities to be located 
along each edge.   
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