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Abstract

We study edge-decompositions of highly connected graphs into copies of a given
tree. In particular we attack the following conjecture by Barát and Thomassen: for
each tree T , there exists a natural number kT such that if G is a kT -edge-connected
graph, and |E(T )| divides |E(G)|, then E(G) has a decomposition into copies of
T . As one of our main results it is sufficient to prove the conjecture for bipartite
graphs. The same result has been independently obtained by Carsten Thomassen
(2013).

Let Y be the unique tree with degree sequence (1, 1, 1, 2, 3). We prove that if G
is a 191-edge-connected graph of size divisible by 4, then G has a Y -decomposition.
This is the first instance of such a theorem, in which the tree is different from a
path or a star. Recently Carsten Thomassen proved a more general decomposition
theorem for bistars, which yields the same result with a worse constant.

Keywords: graph theory; decomposition; tree; edge-connectivity.

∗Research is supported by OTKA Grants PD 75837 and K 76099, Australian Research Council grant
DP120100197, and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

†Research supported in part by the Hungarian NSF under contract NK 78439 and PD 109537.

the electronic journal of combinatorics 21(1) (2014), #P1.55 1



1 Introduction

Our notations and concepts strictly follow [9]. A graph G has an H-decomposition, if
the edges of G can be decomposed into subgraphs isomorphic to H. There is a necessary
condition: |E(H)| divides |E(G)|. In what follows, we always assume this hypothesis.
The general problem of H-decompositions was proved to be NP-complete for any H of
size greater than 2 by Dor and Tarsi [3]. However Barát and Thomassen [1] posed the
following

Conjecture 1. For each tree T , there exists a natural number kT such that the following
holds: if G is a kT -edge-connected simple graph such that |E(T )| divides |E(G)|, then G
has a T -decomposition.

In Section 2 we prove that it is sufficient to prove the conjecture for bipartite graphs.
The same result has been independently obtained by Carsten Thomassen [11].

Theorem 2. Let T be a tree with t edges, where t > 3. The following two statements are
equivalent.
(i) There exists a natural number kT such that for any kT -edge-connected bipartite graph
G, if t divides |E(G)|, then G has a T -decomposition.
(ii) There exists a natural number k′

T such that for any k′

T -edge-connected graph G, if t
divides |E(G)|, then G has a T -decomposition.

In many cases k-edge-connectivity is provided by the existence of k edge-disjoint span-
ning trees. Nash-Williams [6] and Tutte [12] independently proved the following converse.

Theorem 3. If k is a natural number, and G is a 2k-edge-connected graph, then G
contains k pairwise edge-disjoint spanning trees.

At the time of posing there was no tree with at least three edges, for which Conjecture 1
was known to be true. A nice and thorough introduction to the subject is [8], where
Thomassen proved that every 207-edge-connected graph G has a set E of at most 6 edges
such that G−E has a decomposition into paths of length 4. Approximately at the same
time Thomassen [9] proved

Theorem 4. If G is a 171-edge-connected graph of size divisible by 3, then G has a
3-path-decomposition.

Recently Thomassen [10] proved the following.

Theorem 5. Let k be any natural number. If G is a (2k2 + k)-edge-connected graph and
|E(G)| is divisible by k, then G has a K1,k-decomposition.

It is also mentioned in [10] that Conjecture 1 holds for any path with 2t edges. In view
of these results by Thomassen, our Theorem 13 is the first confirmation of Conjecture 1,
where T is different from a path or a star. Our result is the following:

the electronic journal of combinatorics 21(1) (2014), #P1.55 2



Theorem Let Y denote the tree with degree sequence (1, 1, 1, 2, 3). If G is a 191-edge-
connected graph of size divisible by 4, then G has a Y -decomposition.

However, very recently Thomassen proved a more general theorem which gives a de-
composition into bistars [11]. In his notation our main result is an S(2, 3)-decomposition.
In Thomassen’s result the necessary connectivity condition for our case is 784·24 = 12544.

The proof of Theorem 4 consists of three main ingredients. In principle the method
could be applied to any tree T . Let G be a graph of sufficiently high edge-connectivity,
and let T be a tree on k edges. In a nutshell Thomassen set up the following scheme:
1. Remove copies of T from G such that a bipartite graph G[A,B] remains with parts A
and B that still contains many edge-disjoint spanning trees.
2. Remove more copies of T such that each degree in A becomes divisible by k, and the
rest still contains some edge-disjoint spanning trees.
3. Group the edges from A such that copies of T arise, which altogether decompose the
rest.

It looks natural to use the number of edge-disjoint spanning trees in a condition
instead of edge-connectivity. We formulate a tempting qualitative conjecture, which is
partly inspired by Thomassé [7].

Conjecture 6. Let T be a tree with t edges. If a graph G contains t edge-disjoint
spanning trees and t divides |E(G)|, then G has a T -decomposition.

Using a maximum cut idea it is easy to prove the following

Lemma 7. If k is a natural number and G is a (2k − 1)-edge-connected graph, then G
has a partition into A and B such that G[A,B] is k-edge-connected.

We make heavy use of the following result by Ellingham, Nam and Voss [4].

Lemma 8. If G is an m-edge-connected graph, then G has a spanning tree T such that
dT (v) 6 ⌈dG(v)/m⌉+ 2 for each vertex v.

There is a unique tree with degree sequence (1, 1, 1, 2, 3). For simplicity we call it
Y . It is shown in Figure 1. The vertex of degree 3 in Y is the 3-vertex, and the vertex
of degree 2 is the 2-vertex for any further reference. In Section 3 we prove that every
191-edge-connected graph G has a Y -decomposition (Theorem 13).

Figure 1: The unique tree on 5 vertices with a vertex of degree 3

These constants in the edge-connectivity are most likely far from optimal. At the end
of the paper we list a few examples indicating some lower bounds.

A path with k edges is a k-path and denoted by Pk+1.
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2 Making the graph bipartite

In Thomassen’s scheme the first step is to delete some copies of the tree such that the
remaining graph is a highly edge-connected bipartite graph. It was mentioned in [9] that
perhaps this method works for every tree. In this section we validate this hypothesis. We
need the following result that is practically a consequence of Lemma 8.

Lemma 9. For any natural numbers k, ℓ and m, where m > 3, if G contains km2ℓ edge-
disjoint spanning trees, then we can choose subgraphs M1 ⊂ M2 ⊂ · · · ⊂ Mℓ ⊂ Mℓ+1 such
that Mi is the union of km2(i−1) edge-disjoint spanning trees and dMi

(v) 6 dMi+1
(v)/m

for every vertex v and 1 6 i 6 ℓ.

Proof. By Lemma 8 if we are given m2 edge-disjoint spanning trees of G, then there exists
a spanning tree T such that dT (v) 6 ⌈d∗(v)/m

2⌉ + 2, where d∗(v) is the total degree in
that particular collection of m2 spanning trees. Now ⌈d∗(v)/m

2⌉ + 2 6 d∗(v)/m since
d∗(v) > m2 and m > 3.

We prove the Lemma by induction on ℓ. We start with the base case ℓ = 1. If we
are given km2 edge-disjoint spanning trees, then we divide them into k equal sets. Let
S1, . . . , Sk each be the union of the m2 spanning trees in those sets. By the previous
argument there exists a spanning tree Ti in Si such that dTi

(v) 6 dSi
(v)/m for any vertex

v, where 1 6 i 6 k. Now M1 := ∪k
i=1Ti and M2 := ∪k

i=1Si. Summing all the inequalities
yields dM1(v) 6 dM2(v)/m as required for ℓ = 1.

In the induction step let ℓ > 1. There are m2km2(ℓ−1) edge-disjoint spanning trees
given. We partition this set of spanning trees into S1, . . . , Skm2(ℓ−1) such that each Si

contains m2 spanning trees. For every i there exists a spanning tree Ti in Si such that
dTi

(v) 6 dSi
(v)/m, where 1 6 i 6 km2(l−1). By the induction hypothesis we can find

a sequence M1 ⊂ M2 ⊂ · · · ⊂ Mℓ in ∪km2(ℓ−1)

i=1 Ti satisfying the conditions of the lemma.

Finally let Mℓ+1 = ∪km2(ℓ−1)

i=1 Si. Now dMi
(v) 6 dMi+1

(v)/m is satisfied for every vertex v
and 1 6 i 6 ℓ − 1 by the induction hypothesis and for i = ℓ by the same summation as
in the base case.

In our paper we only use the disjoint union of spanning trees inMi to ensure sufficiently
large minimum degree.

Now we are ready to prove Theorem 2.

Proof. We only prove the non-trivial implication. Let k′

T = 8t2t+3+4kT −1. By Lemma 7
we can find a partition (A,B) of the vertex set such that the edge-connectivity of G[A,B]
is 4t2t+3+2kT . By Theorem 3 there are at least 2t2t+3+kT pairwise edge-disjoint spanning
trees in G[A,B]. In what follows we show how to delete all edges inside A by removing
copies of T from G using at most t2t+3 of the spanning trees. We can repeat the same
procedure to empty B. After that the remaining kT spanning trees provide kT -edge-
connectivity of the remaining bipartite graph.

First we arbitrarily delete copies of T from G[A] as long as possible. We partition
the remaining edges into subgraphs of T as follows. In each round we consider subgraphs
of G[A] which are isomorphic to subtrees of T and choose one with the most number of
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edges. We remove it from the current graph, and start another round on the remaining
edges of G[A]. This way we create a sequence H1, . . . , Hr of proper subtrees of T such
that their union is G[A] and their size is monotone decreasing.

Let H be a graph in H. Then there exists a homomorphism φ from H to T . A vertex
v is unsaturated in H, if the degree of φ(v) is higher in T than the degree of v in H. Note
that since H is isomorphic to a proper subtree of T , there is at least one unsaturated
vertex in H. However, we claim that for every vertex v in A there are at most t − 1
trees in H, in which v is unsaturated. Indeed, consider the first occasion that v becomes
unsaturated, say in tree Hi. At this point all remaining edges (i.e. edges of G[A] which
are not in H1, . . . , Hi−1) incident to v must be incident only to vertices in Hi, otherwise
we could add that edge to Hi in order to get a larger subtree of T .

The size of Hi is at most t − 1, which shows that after this round, there are at most
t − 2 edges incident to v, which are in Hi+1, . . . , Hr. This implies that v is in at most
t − 2 trees among those, hence even if it is unsaturated in all of them, it is unsaturated
at most t− 1 times. With a different argument we can prove this to be at most t/2, but
for simplicity we use t− 1 in the counting below.

Claim 10. The set H can be partitioned into t2 sets H1, . . . ,Ht2 such that for each i and
each vertex v in A, there is at most one tree in Hi where v is unsaturated, 1 6 i 6 t2.

Proof. As long as possible we select trees from H into H1 without violating the property.
We similarly create H2, . . . ,Ht2 in the remainder of H. If a tree H is not selected into
Hi, then one of its vertices violates the property, say v. Necessarily v is unsaturated in a
tree that is already put into Hi. The size of H is at most t + 1 and v is unsaturated at
most t − 1 times. Therefore, such a bad event can happen at most (t + 1)(t − 1) times
and the claim holds.

Back to the proof of Theorem 2: We save kt edge-disjoint spanning trees for later,
and partition the remaining available spanning trees into 2t2 sets each of which contains
t2t+1 spanning trees. First we complete all trees in H1 to copies of T using the edges of
t2t+1 spanning trees only. We apply Lemma 9 with t = k = ℓ = m to the graph which is
the union of these spanning trees. (Here ℓ = t − 1 would suffice.) We get the subgraphs
M1, . . . ,Mt+1 with the properties as in Lemma 9.

We first describe our process for one H ∈ H1. Select all unsaturated vertices of H
forming a set D0(H). We extend H into a copy of T level by level starting at D0(H). In
the first step we use the edges from the t edge-disjoint spanning trees that form M1, to
add as many edges between D0(H) and vertices not in H as needed. Notice that every
vertex in D0(H) has degree at least t in M1. Since at most t edges are to be added in
total, we can choose to extend the tree H to H(1) by using edges with pairwise distinct
endvertices in B. These new vertices form the set D1(H) and we produced a larger tree
H(1) that is isomorphic to a subtree of T . Now the only unsaturated vertices of H(1) are
these new vertices in B. We next use the edges of M2 to proceed with the completion of
T . We know that dM2(v) > tdM1(v). Therefore, we can choose the edges to complete the
next level of T such that their endvertices (at most t) are pairwise disjoint, and they are
distinct from the (at most t) vertices in H(1). Generally in step (j + 1) we can use the
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edges of Mj+1 \Mj to extend H(j) to H(j + 1). Since dMj+1
(v) > tdMj

(v), we can avoid
creating a cycle and we can fulfill any demand for an edge.

Instead of a concrete H we do the above process simultaneously for all subtrees in H1.
Let all unsaturated vertices in H1 form D0(H1). We extend each subtree in H1 to a larger
subtree of T . Each vertex of A is unsaturated at most once in H1 and dM1(v) > t for any
vertex v. Therefore, M1 provides a sufficient amount of edges to create a set of subtrees
H1(1) to complete level 1. to add new vertices forming D1(H1). It might happen that
many edges from different vertices of A connect in M1 to a particular vertex u of B. It
makes dM1(u) large, but the growth dM2(u) > tdM1(u) ensures us that we can continue
with step 2.

In general in step j+1 we extend the trees H(j) to H(j+1). We form Dj+1(H1) and
create H1(j+1) to complete level (j+1). Consider a vertex v, which is on level j in H(j)
and possibly in some other trees. We know that v is on level j in at most dMj

(v) trees.
For each subtree where v is unsaturated we select (t− 1) edges of Mj+1 \Mj incident to
v. As dMj+1

(v) > tdMj
(v) we can make the selection such that every edge is chosen at

most once. We do the same for every vertex in Dj(H1).
We use only the selected edges for the extension of the subtrees. We have to show

that any subtree H(j) in H1(j) can be extended to H(j + 1) using those edges. Now
there might be many unsaturated vertices v1, . . . , vq in H(j), but at most (t − 1) edges
have to be added altogether. As we selected t − 1 edges for every vi, we can choose the
edges of the next level such that no cycle occurs. Two different subtrees H(j) and H ′(j)
can be extended simultaneously since the selected sets of edges are disjoint. Therefore,
all subtrees of H1(j) can be extended to H1(j + 1) simultaneously.

The proof is completed by repeating the argument for each Hi with another sequence
M1 ⊂ · · · ⊂ Mt+1 provided by another set of t2t+1 edge-disjoint spanning trees.

We repeat the argument with B and remove all complete copies of T . It yields a
bipartite graph that contains the remaining set of kt edge-disjoint spanning trees, hence
it is kT -edge-connected.

For any fixed tree, the above edge-connectivity condition can be substantially reduced.
For any such improvement, we use the same principal argument, but we can decrease the
necessary number of spanning trees, by using the structure of the fixed tree. In particular
for the graph Y we show the following.

Lemma 11. If G is a (4k+23)-edge-connected graph, then we can remove some Y -copies
such that a bipartite graph with k edge-disjoint spanning trees remains.

Proof. By Lemma 7 we can find a bipartitionG[A,B] ofG that is (2k+12)-edge-connected.
By Theorem 3 we find (k + 6) edge-disjoint spanning trees in G[A,B]. Let T1, T2, T3 be
three of them. We remove Y -copies from G[A] arbitrarily as long as we can. What remains
in G[A] is a collection of paths, cycles, stars and subgraphs of K4. We cut each path and
each cycle into paths with three edges and a possible shorter path. We select one of the
middle vertices of such a 3-path to be the 3-vertex of a future Y -copy. The idea is to
extend these 3-paths into Y -copies using T1, and remove them from G. For a 2-path we
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select one endvertex to be the candidate 3-vertex of Y . For a single edge we select one
endvertex to be the candidate 3-vertex of Y , and the other endvertex to be the 2-vertex of
Y . We cut the stars into 3-stars and a remaining part, which is a 2-path or a single edge
as above. For a 3-star we select a leaf to be the 2-vertex of Y . Until now any vertex in
A is selected at most once. For any subgraph H of K4 that is different from the previous
ones, we do as follows. We cut H into paths of length at most three such that after the
above selection of 3- and 2-vertices of Y , each vertex is used at most once. This is always
possible with one exception, the triangle.

If a vertex of A is selected to be a 3- or 2-vertex of Y , then we extend the subgraph
with edges of T1 and T2 to achieve a Y -copy that we remove. It works fine except for a
single edge or a triangle. In case of a single edge we have to add three additional edges
to get a Y -copy. For the vertex selected to be the 3-vertex we use edges from T1 and T2.
Now there exists an edge in T1, T2 or T3 from the other end of the single edge that avoids
creating a cycle, hence it completes to a Y -copy that we remove.

In case of a triangle we cut it into a single edge and a 2-path. We do as above for the
single edge, and let v be the vertex selected to be the 2-vertex. For the 2-path we select
v to be the 3-vertex of Y . Since we used one of T1 − T3 for the single edge, there are two
edges left to use. We create a Y -copy and remove it.

We have to execute the same process for G[B], where we use three more spanning trees.
After all a bipartite graph remains that has at least k edge-disjoint spanning trees.

Even if there are only (k+ 5) spanning trees in G[A,B], we can delete Y -copies using
5 spanning trees such that a k-edge-connected bipartite graph remains. It requires a more
detailed argument, and implies an improvement by 4 in the statement of the Lemma and
subsequently in Theorem 13.

3 Proof of the main theorem

We recall an implicit result from [9]. The second and third paragraphs on page 291
describe a P4-decomposition of a special graph. We realised that the vertices of A are
used in the decomposition in a balanced way.

Lemma 12. Let G be a 2-edge-connected bipartite graph with classes A and B. If the
degree of each vertex in A is divisible by 3, then G can be decomposed into paths with 3
edges such that each vertex v of A is the endvertex of d(v)/3 paths and middle vertex of
d(v)/3 paths.

We use this lemma in the finishing stage of the next result that gives a sufficient
edge-connectivity condition for Y -decompositions.

Theorem 13. Let Y denote the tree with degree sequence (1, 1, 1, 2, 3). If G is a 191-
edge-connected graph of size divisible by 4, then G has a Y -decomposition.

Proof. We first apply Lemma 11 with k = 42. As a result we are given a bipartite graph
G[A,B] with 42 edge-disjoint spanning trees T1, . . . , T42.
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In the next step we delete some copies of Y to make all degrees in A divisible by 4.
In the first phase we achieve that all degrees are even. Thus, let us call vertices in A
of odd degree bad. Let M(1) be a subgraph of G that is the union of 7 edge-disjoint
spanning trees T1, . . . , T7. By Lemma 8, m = 7, M(1) has a spanning tree T (1) such that
for each vertex v, dT (1)(v) 6 ⌈dM(1)(v)/7⌉+ 2 6 dM(1)(v)/2, since dM(1)(v) > 7. Similarly
the union M(2) of 7 spanning trees T8, . . . , T14 contains a spanning tree T (2) such that
dT (2)(v) 6 dM(2)(v)/2 for each vertex v. The union of T (1) and T (2) contains a spanning
Eulerian subgraph E1, i.e. a closed trail which visits every vertex. For a proof of this, see
e.g. [5].

We start a walk on E1 at a bad vertex u1. We construct and delete Y -copies as follows.
Let e1 be the edge adjacent to u1 in E1, and let e2, e3, . . . be the edges of E1 in order.
Walking along e1 and e2 we are back in A in a vertex u2. We continue this way till we
arrive to another bad vertex ur. We selected an edge incident to u1 that we later will
remove. Therefore, when E1 possibly arrives to u1 next time, it is no longer considered a
bad vertex. That is, ur 6= u1. For every i with 1 6 i 6 r − 1 we consider e2i−1, e2i and
two edges in M(1) ∪M(2) \ E1 that are incident to ui+1. These four edges form a copy
of Y that we delete. In this way we delete an odd number of edges incident to u1 and ur,
and an even number of edges incident to any other vertex in A. Therefore, the number
of bad vertices decreases. A vertex can appear multiple times in the above sequence, but
that does not change the parity of the degree.

Now we continue the walk along E1 and do nothing until we find another pair of bad
vertices. We repeat the above process of removing Y -copies between the bad vertices.
Iterating these two steps we finish the Eulerian trail, and all degrees are now even. There
is a small remark that we have to make: there are enough edges in M(1) ∪ M(2) \ E1

to use. Indeed, whenever the walk arrives to a vertex v, it means there are two incident
edges in E1. Hence we can find two more edges, as the degree of a vertex v in E1 is at
most half of the degree of v in M(1) ∪M(2).

In the second phase all degrees in A are even. Our goal is to remove some Y -copies
to make all degrees divisible by 4. Thus, in this phase we call vertices in A of degree
2 mod 4 bad. As in the first phase we need an Eulerian spanning subgraph for our
purposes. Let M(3) be a subgraph of G that is the union of 9 edge-disjoint spanning
trees T15, . . . , T23. By Lemma 8, m = 9, M(3) has a spanning tree T (3) such that for each
vertex v, dT (3)(v) 6 ⌈dM(3)(v)/9⌉ + 2 6 dM(3)(v)/2− 1, since dM(3)(v) > 9. Similarly the
union M(4) of the spanning trees T24, . . . , T32 contains a spanning tree T (4) such that for
each vertex v, dT (4)(v) 6 dM(4)(v)/2−1. The union of T (3) and T (4) contains a spanning
Eulerian subgraph E2.

On the Eulerian trail we mark the bad vertices. We start the marking at a bad vertex
b1, and mark the bad vertices at the first appearance only. We get a list b1, . . . , br of bad
vertices, and this list reflects their order of first appearance on E2. This direction on E2

is fixed from now on.
In what follows we remove Y -copies to achieve that all degrees in A are divisible by 4.

If v is a bad vertex, then we remove 2 or 6 edges incident to v during the process, when
we arrive to the marked copy of v. If x is an unmarked vertex, then we remove precisely
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4 edges. If x is a vertex on E2, then let x+ be the next vertex of A on E2. There are two
building blocks:
1. the removal of a Y -copy at x is a step, when two consecutive edges of E2 starting at
x, and two edges of M(3) ∪M(4) \ E2 at x+ are removed.
2. the removal of a reversed Y -copy at x is a step, when two consecutive edges of E2

starting at x, and two edges of M(3) ∪M(4) \ E2 at x are removed.
We start at b1 and remove a Y -copy. We continue along E2 and remove all edges of E2

two by two. Every such pair of edges corresponds to a 2-path in a Y -copy, where one end
is the 3-vertex. The only decision to make is the placement of the other two edges from
M(3) ∪M(4) \E2, either at the current vertex x or at the subsequent vertex x+. This is
actually automatic, according to the degree condition: we either deleted 1 or 3 edges at
x due to the previous Y -copy, and our goal might be to remove 2, 4 or 6 edges in total
(as our goal is to remove either 0 or 2 edges modulo 4). If we need to remove one more
edge at x, then we remove a Y -copy. If we need to remove three more edges at x, then
we remove a reversed Y -copy. Notice here that finishing the Eulerian trail we get back
to b1. The last condition automatically removes one more edge at b1, since the remaining
number of edges has to be divisible by 4.

After this process bad vertices become good, and the degrees of good vertices are still
divisible by 4. Here we also remark that there are enough edges in M(3) ∪M(4) \ E2 to
use every time the walk arrives to a vertex v. This again follows from the upper bound
on dT (3) and dT (4). Whenever we arrive to v, it means there are two edges incident to
v in E2, and we usually need two edges in M(3) ∪M(4) \ E2. If that vertex is bad, we
might need four edges in M(3) ∪M(4) \ E2, but only once (and then it becomes good).
Therefore, we need the degree of v in M(3) ∪M(4) \ E2 to be at least dE2(v) + 2, which
is satisfied.

We are left with a bipartite graph which we denote by M [A,B]. Here all degrees in A
are divisible by 4. Let M(5) be the union of 5 spanning trees T33, . . . , T37. By Lemma 8,
m = 5, M(5) contains a spanning tree T (5) such that for each vertex v, dT (5)(v) 6

⌈dM(5)(v)/5⌉ + 2 6 3dM(5)(v)/4, since dM(5)(v) > 5. We similarly define M(6) and find
T (6). Now for every vertex v in A, the following holds: dT (5)(v) + dT (6)(v) 6 3dM(v)/4.
For every vertex v in A we put aside 1/4 of the edges such that T (5) and T (6) remains in
the graph. Note that there is no rounding here, hence the remaining graph M ′ satisfies
the conditions of Lemma 12.

Therefore, we can decompose M ′ into paths of length 3 such that for a vertex v with
degree 4d in M (hence degree 3d in the smaller graph M ′), there are d paths starting
from v, and d paths, where v is a middle vertex. For every vertex v we glue the d edges,
which we put aside in the beginning of the third phase, one by one to the d paths, where
v is a middle vertex. This gives us a Y -decomposition.

4 Discussion

The edge-connectivity constants in the solved cases of Conjecture 1 are apparently far from
best possible. There is very little known about lower bounds. For trees with three edges: if
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T is the 3-path, then there is a 2-edge-connected graph without a 3-path-decomposition [5].
In [1], there is a 4-edge-connected graph without a 3-star-decomposition. Figure 2 shows
a 3-edge-connected bipartite graph with 27 edges and without a 3-star-decomposition.

Figure 2: A bipartite graph without 3-star-decomposition

There are three different trees with four edges: the 4-star, the 4-path and Y . We
present lower bounds for these trees. Consider a C4 and replace every vertex by a K6

and every edge by three edges such a way that we get a 6-regular graph. This is a
6-edge-connected graph without a 4-star-decomposition.

Figure 3 shows a 3-edge-connected graph without P5-decomposition.

Figure 3: A graph without 4-path-decomposition

The 4-wheel is a 3-edge-connected graph without a Y -decomposition.
One might feel that using the edge-connectivity instead of the number of spanning

trees and applying Theorem 3 and Lemma 7 is too generous. About the sharpness of
Theorem 3, see [2].
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