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Abstract. We apply to edge detection a recently introduced method for computing geometric structures in a

digital image, without any a priori information. According to a basic principle of perception due to Helmholtz,

an observed geometric structure is perceptually “meaningful” if its number of occurences would be very small in

a random situation: in this context, geometric structures are characterized as large deviations from randomness.

This leads us to define and compute edges and boundaries (closed edges) in an image by a parameter-free method.

Maximal detectable boundaries and edges are defined, computed, and the results compared with the ones obtained

by classical algorithms.
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1. Introduction

In statistical methods for image analysis, one of the

main problems is the choice of an adequate prior. For

example, in the Bayesian model [9], given an observa-

tion “obs”, the aim is to find the original “model” by

computing the Maximum A Posteriori (MAP) of

P[model | obs] =
P[obs | model] × P[model]

P[obs]
.

The term P[obs | model] represents the degradation

(superimposition of a gaussian noise for example) and

the term P[model] is called the prior. This prior plays

the same role as the regularity term in the variational

framework. This prior has to be fixed and it is gener-

ally difficult to find a good prior for a given class of

images. It is also probably impossible to give an all-

purpose prior!

In [6 and 7], we have outlined a different statis-

tical approach, based on phenomenological observa-

tions coming from Gestalt theory [21, 27, 29]. Accord-

ing to a perception principle which seems to go back

∗Author to whome correspondence should be addressed.

to Helmholtz, every large deviation from a “uniform

noise” image should be perceptible, provided this large

deviation corresponds to an a priori fixed list of geo-

metric structures (lines, curves, closed curves, convex

sets, spots, local groups, . . . ). Thus, there still is an a

priori geometric model, but, instead of being quantita-

tive, this model is merely qualitative. Let us illustrate

how this should work for “grouping” black dots in a

white sheet. Assume we have a white image with black

dots spread out. If some of them form a cluster, say, in

the center of the image, then, in order to decide whether

this cluster indeed is a group of points, we compute the

expectation of this grouping event happening by chance

if the dots were uniformly disributed in the image. If

this expectation happens to be very low, we decide that

the group in the center is meaningful. Thus, instead

of looking for objects as close as possible to a given

prior model, we consider a “wrong” and naive model,

actually a random uniform distribution, and then de-

fine the “objects” as large deviations from this generic

model. One can find in [13] a very close formulation

of computer vision problems.

We may call this method Minimal A Posteriori

Expectation, where the prior for the image is a uniform
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random noise model. Indeed, the groups (geometric

structures, gestalts1) are defined as the best counter-

examples, i.e. the least expected. Those counterexam-

ples to the uniform noise assumption are taken in a

restricted geometric class. Notice that not all such coun-

terexamples are valid: the Gestalt theory fixes a list of

perceptually relevant geometric structures which are

supposedly looked for in the perception process. The

computation of their expectation in the uniform noise

model validates their detection: the least expected in

the uniform noise model, the more perceptually mean-

ingful they will be.

This uniform noise prior is generally easy to define.

Consider for example the case of orientations: since we

do not have any reason to favour some directions, the

prior on the circle S1 will be the uniform distribution.

We applied this method in a previous paper dedicated

to the detection of meaningful alignments [6]. In [7]

we have generalized the same method to the definition

of what we called “maximal meaningful modes” of a

histogram. This definition is crucial in the detection of

many geometric structures or gestalts, like groups of

parallel lines, groups of segments with similar lengths,

etc.

It is clear that the above outlined Minimum A Pos-

teriori method will prove its relevance in Computer

Vision only if it can be applied to each and all of the

gestalt qualities proposed by phenomenology. Actu-

ally, we think the method might conversely contribute

to a more formal and general mathematical definition

of geometric structures than just the ones coming from

the usual plane geometry. Now, for the time being, we

wish to validate the approach by matching the results

with all of the classicaly computed structures in image

analysis. In this paper, we shall address the comparison

of edge and boundary detectors obtained by the Min-

imum A Posteriori method with the ones obtained by

state of the art segmentation methods.

A main claim in favour of the Minimum A Posteriori

is its reduction to a single parameter, the meaningful-

ness of a geometric event depending only on the dif-

ference between the logarithm of the false alarm rate

and the logarithm of the image size! We just have to

fix this false alarm rate and the dependance of the out-

come is anyway a log-dependence on this rate, so that

the results are very insensitive to a change. Our study

of edge detection will confirm this result, with slightly

different formulas though.

In addition, and although the list of geometric struc-

tures looked for is wide (probably more than ten in

Gestalt theory), the theoretical construction will make

sense if they are all deduced by straightforward adap-

tations of the same methodology to the different ge-

ometric structures. Each case of geometric structure

deserves, however, a particular study, in as much as

we have to fix in each case the “uniform noise” model

against which we detect the geometric structure. We

do not claim either that what we do is 100% new:

many statistical studies on images propose a “back-

ground” model against which a detection is tested; in

many cases, the background model is a merely uni-

form noise, as the one we use here. Optimal thresh-

olds have been widely addressed for detection or im-

age thresholding [1, 10, 19, 22] Also, many applied

image analysis and engineering methods, in view of

some detection, address the computation of a “false

alarm rate”. Our “meaningfulness” is nothing but such

a false alarm rate, but applied to very general geomet-

ric objects instead of particular looked for shapes and

events.

As was pointed out to us by David Mumford, our

method is also related to the statistical hypothesis test-

ing, where the asked question is: does the observation

follow the prior law given by Helmoltz principle? The

gestalts will be the “best proofs” (in terms of the a pri-

ori fixed geometric structures) that the answer to this

question is no.

Let us summarize: not all geometric structures are

perceptually relevant; a small list of the relevant ones

is given in Gestalt theory; we can “detect” them one

by one by the above explained Helmholtz principle as

large deviations from randomness. Now, the outcome is

not a global interpretation of the image, but rather, for

each gestalt quality (alignment, parallelism, edges), a

list of the maximal detectable events. The maximality

is necessary, as shows the following example, which

can be adapted to each other gestalt: assume we have

detected a dense cluster of black dots; this means that

the expectation of such a big group is very small for a

random uniform distribution of dots. Now, very likely,

many subgroups of the detected dots and also many

larger groups will have a small expectation too. So we

can add spurious elements to the group and still have a

detectable group. Thus, maximality is very relevant in

order to obtain the best detectable group. We say that

a group or gestalt is “maximal detectable” if any sub-

group and any group containing it are less detectable,

that is, have a smaller expectation.

We shall address here one of the serpents de mers

of Computer Vision, namely “edge” and boundary
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“detection” [8, 9, 12, 17, 20, 25, 26, 30, 33]. We define

an “edge” as a level line along which the contrast of

the image is strong. We call “boundary” a closed edge.

We shall in the following give a definition of mean-

ingfulness and of optimality for both objects. Then,

we shall show experiments and discuss them. A com-

parison with the classical Mumford-Shah segmentation

method will be made and also with the Canny-Deriche

edge detector. We shall give a (very simple in that case)

proof of the existence of maximal detectable gestalt,

applied to the edges. What we do on the edges won’t

be a totally straightforward extension of the method we

developped for alignments in [6]. Indeed, we cannot do

for edge or boundary strength as for orientation, i.e. we

cannot assume that the modulus of the gradient of an

image is uniformly distributed.

2. Contrasted Boundaries

We call “contrasted boundary” any closed curve, long

enough, with strong enough contrast and which fits

well to the geometry of the image, namely, orthogonal

to the gradient of the image at each one of its points.

We will first define ε-meaningful contrasted bound-

aries, and then maximal meaningful contrasted bound-

aries. Notice that this definition depends upon two

parameters (long enough, contrasted enough) which

will be usually fixed by thresholds in a computer vi-

sion algorithm, unless we have something better to

say. In addition, most boundary detection will, like

the snake method [12], introduce regularity parame-

ters for the searched for boundary [16]. If we remove

the condition “long enough”, we can have boundaries

everywhere, as is patent in the classical Canny filter

[2].

The considered geometric event will be: a strong

contrast along a level line of an image. Level lines are

curves directly provided by the image itself. They are

a fast and obvious way to define global, contrast insen-

sitive candidates to “edges” [3]. Actually, it is well ac-

knowledged that edges, whatever their definition might

be, are as orthogonal as possible to the gradient [2, 4,

8, 14, 20]. As a consequence, we can claim that level

lines are the adequate candidates for following up lo-

cal edges. The converse statement is false: not all level

lines are “edges”. The claim that image boundaries (i.e.

closed edges) in the senses proposed in the literature

[18, 23] also are level lines is a priori wrong. How

wrong it is will come out from the experiments, where

we compare an edge detector with a boundary detec-

tor. Surprisingly enough, we will see that they can give

comparable results.

We now proceed to define precisely the geometric

event: “at each point of a length l (counted in indepen-

dent points) part of a level line, the contrast is larger

than µ”. Then, we compute the expectation of the num-

ber of occurrences of such an event (i.e. the number of

false alarms). This will define the thresholds: minimal

length of the level line, and also minimal contrast in

order to be meaningful. We will give some examples

of typical numerical values for these thresholds in dig-

ital images. Then, as we mentioned has been done for

other gestalts like alignments and histograms, we will

define here a notion of maximality, and derive some

properties.

2.1. Definitions

Let u be a discrete image, of size N × N . We consider

the level lines at quantized levels λ1, . . . , λk . The quan-

tization step q is chosen in such a way that level lines

make a dense covering of the image: if e.g. this quan-

tization step q is 1 and the natural image ranges 0 to

256, we get such a dense covering of the image. A level

line can be computed as a Jordan curve contained in the

boundary of a level set with level λ,

χλ = {x/u(x) ≤ λ} and χλ = {x/u(x) ≥ λ}.

Notice that along a level line, the gradient of the image

must be everywhere above zero. Otherwise the level

line contains a critical point of the image and is highly

dependent upon the image interpolation method. Thus,

we consider in the following only level lines along

which the gradient is not zero. The interpolation con-

sidered in all experiments below is the order zero in-

terpolation (the image is considered constant on each

pixel and the level lines go between the pixels).

Let L be a level line of the image u. We denote

by l its length counted in independent points. In the

following, we will consider that points at a geodesic

distance (along the curve) larger than 2 are independent

(i.e. the contrast at these points are independent random

variables). Let x1, x2, . . . , x1 denote the l considered

points of L . For a point x ∈ L , we will denote by c(x)

the contrast at x . It is defined by

c(x) = |∇u|(x), (1)

where ∇u is computed by a standard finite difference

on a 2 × 2 neighborhood [7]. For µ ∈ R
∗
+, we consider
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the event: for all 1 ≤ i ≤ l, c(xi ) ≥ µ, i.e. each point of

L has a contrast larger than µ. From now on, all com-

putations are performed in the Helmholtz framework

explained in the introduction: we make all computa-

tions as though the contrast observations at xi were

mutually independent. Since the l points are indepen-

dent, the probability of this event is

P[c(x1) ≥ µ] × P[c(x2) ≥ µ]

× · · · × P[c(xl) ≥ µ] = H(µ)l , (2)

where H(µ) is the probability for a point on any level

line to have a contrast larger than µ. An important ques-

tion here is the choice of H(µ). Shall we consider that

H(µ) is given by an a priori probability distribution,

or is it given by the image itself (i.e. by the histogram

of gradient norm in the image)? In the case of align-

ments, we took by Helmholtz principle the orientation

at each point of the image to be a random, uniformly

distributed variable on [0, 2π ]. Here, in the case of con-

trast, it does not seem sound at all to consider that the

contrast is uniformly distributed. In fact, when we ob-

serve the histogram of the gradient norm of a natural

image (see Fig. 1), we notice that most of the points

have a “small” contrast (between 0 and 3), and that only

a few points are highly contrasted. This is explained by

the fact that a natural image contains many flat regions

(the so called “blue sky effect”, [11, 32]. In the follow-

ing, we will consider that H(µ) is given by the image

itself, which means that

H(µ) =
1

M
#{x/|∇u|(x) ≥ µ}. (3)

where M is the number of pixels of the image where

∇u �= 0. In order to define a meaningful event, we

have to compute the expectation of the number of oc-

currences of this event in the observed image. Thus, we

first define the number of false alarms.

Definition 1 (Number of false alarms). Let L be a

level line with length l, counted in independent points.

Let µ be the minimal contrast of the points x1, . . . , x1

of L . The number of false alarms of this event is defined

by

NF(L) = Nll × [H(µ)]l , (4)

where Nll is the number of level lines in the image.

Notice that the number Nll of level lines is provided

by the image itself. We now define ε-meaningful level

lines. The definition is analogous to the definition of

ε-meaningful modes of a histogram or to the definition

of alignments: the number of false alarms of the event

is less than ε.

Definition 2 (ε-meaningful boundary). A level line L

with length l and minimal contrast µ is an ε-meaningful

boundary if

NF(L) = Nll × [H(µ)]l ≤ ε. (5)

The above definition involves two variables: the

length l of the level line, and its minimal contrast µ.

The number of false alarms of an event measures the

“meaningfulness” of this event: the smaller it is, the

more meaningful the event is.

Let us now proceed to define “edges”. We denote by

Nllp the number of pieces of level lines in the image.

Definition 3 (ε-meaningful edge). A piece of level

line E with length l and minimal contrast µ is an

ε-meaningful edge if

NF(E) = Nllp × [H(µ)]l ≤ ε. (6)

Here is how Nllp is computed: we first compute all

level lines at uniformly quantized levels (grey level

quantization step is 1 and generally ranges from 1 to

255. For each level line, L i with length li , we compute

its number of pieces, sampled at pixel rate, the length

unit being pixel side. We then have

Nllp =
∑

i

li (li−1)

2
.

This fixes the used number of samples. This number of

samples will be fair for a 1-pixel accurate edge detec-

tor. Clearly, we do detection and not optimization of

the detected edge: in fact, according to Shannon condi-

tions, edges have a between two or three pixels width.

Thus, the question of finding the “best” edge represen-

tative among the found ones is not addressed here, but

has been widely addressed in the literature [2, 4].

2.2. Thresholds

In the following we will denote by F the function de-

fined by

F(µ, l) = Nll × [H(µ)]l . (7)
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Figure 1. From left to right: 1. original image; 2. histogram of the norm of the gradient; 3. its repartition function (µ �→ P[|∇u| ≥ µ]).

Thus, the number of false alarms of a level line of length

l and minimal contrast µ is simply F(µ, l).

Since the function µ �→ H(µ) = P[c(x) ≥ µ] is

decreasing, and since for all µ, we have H(µ) ≤ 1, we

obtain the following elementary properties:

– We fix µ and l ≤ l ′, then

F(µ, l) ≥ F(µ, l ′),

which shows that if two level lines have the same

minimal contrast, the more meaningful one is the

longer one.

– We fix l and µ ≤ µ′, then

F(µ, l) ≥ F(µ′, l),

which shows that if two level lines have the same

length, the more meaningful one is the one with

higher contrast.
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When the contrast µ is fixed, the minimal length

lmin(µ) of an ε-meaningful level line with minimal con-

trast µ is

lmin(µ) =
log ε− log Nll

log H(µ)
. (8)

Conversely, if we fix the length l, the minimal contrast

µmin(l) needed to become ε-meaningful is such that

µmin(l) = H−1([ε/Nll]
1/ l). (9)

2.3. Maximality

In this subsection, we address two kinds of maximal-

ity for the edges and the boundaries. Let us start with

boundaries. A natural relation between closed level

lines is given by their inclusion [15]. If C and C ′ are

two different closed level lines, then C and C ′ can-

not intersect. Let D and D′ denote the bounded do-

mains surrounded by C and C ′. Either D ∩ D′ = φ or

(D ⊂ D′ or D′ ⊂ D). We can consider, as proposed

by Monasse, the inclusion tree of all level lines. From

now on, we work on the subtree of the detected level

curves, that is, the ones for which F(µ, l) ≤ ε where

ε is our a priori fixed expectation of false alarms. (In

practice, we take ε = 1 in all experiments.) On this sub-

tree, we can, following Monasse, define what we shall

call a maximal monotone level curve interval, that is, a

sequence of level curves Ci , i ∈ [1, k] such that:

– for i ≥ 2, Ci is the unique son of Ci−1,

– the interval is maximal (not contained in a longer

one)

– the grey levels of the detected curves of the interval

are either decreasing from 1 to k, or increasing from

1 to k.

We can see many such maximal monotone intervals

of detected curves in the experiments: they roughly cor-

respond to “fat” edges, made of several well contrasted

level lines. The edge detection ideology tends to define

an edge by a single curve. This is easily made by select-

ing the best contrasted edges along a series of parallel

ones.

Definition 4. We associate with each maximal mono-

tone interval its optimal level curves, that is, the ones

for which the false alarms number F(µ, l) is minimal

along the interval. We call “optimal boundary map” of

an image the set of all optimal level curves.

This optimal boundary map will be compared in the

experiments with classical edge detectors or segmen-

tation algorithms.

We now address the problem of finding optimal

edges among the detected ones. We won’t be able to

proceed as for the boundaries. Although the pieces of

level lines inherit the same inclusion structure as the

level lines, we cannot compare two of them belong-

ing to different level curves for detectability, since they

can have different positions and lengths. We can in-

stead compare two edges belonging to the same level

curve. Our main aim is to define on each curve a set of

disjoint maximally detectable edges. In the following,

we denote by NF(E) = F(µ, l) the false alarm num-

ber of a given edge E with minimal gradient norm µ

and length l.

Definition 5. We call maximal meaningful edge any

edge E such that for any other edge E ′ on the same

level curve such that E ⊂ E ′ (resp. E ′ ⊂ E) we have

NF(E ′) > NF(E) (resp. NF(E ′) ≥ NF(E)).

This definition follows [6, 7] where we apply it to the

definition of maximal alignments and maximal modes

in a histogram.

Proposition 1. Two maximal edges cannot meet.

Proof: Let E and E ′ be two maximal distinct and

non-disjoint meaningful edges in a given level curve

and µ and µ′ the respective minima of gradient of the

image on E and E ′. Assume e.g. that µ′ ≤ µ. Then

E ∪ E ′ has the same minimum as E ′ but is longer. Thus,

by the remark of the preceding subsection, we have

F(µ′, l + l ′) < F(µ′, l ′), which implies that E ∪ E ′ has

a smaller number of false alarms than E ′. Thus, E ′ is

not maximal. As a consequence, two maximal edges

cannot meet. ✷

3. Experiments

3.1. INRIA Desk Image (Fig. 2)

In this experiment, we compare our method with two

other methods: Mumford and Shah image segmentation

and Canny-Deriche edge detector.

In the Mumford and Shah model [17], given an ob-

served image u defined on the domain D, one looks for

the piecewise approximation v of u that minimizes the
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Figure 2. First row: left: original image; right: boundaries obtained

with the Mumford-Shah model (1000 regions). Second row: edges

obtained with Canny-Deriche edge detector, for two different thresh-

old values (2 and 15). Third row: edges (left) and boundaries (right)

obtained with our model (ε = 1). Fourth row: reconstruction with the

Mumford-Shah model (left) and with our model (right). This last re-

construction is easily performed by the following algorithm: attribute

to each pixel x the level of the smallest (for inclusion) meaningful

level line surrounding x (see [15]).

functional

E(v) =

∫
D

|v−u|2 + λlength(K (v)),

where length (K (v)) is the one-dimensional measure

of the discontinuity set of v, and λ a parameter. Hence,

this energy is a balance between a fidelity term (the

approximation error in L2 norm) and a regularity term

(the total length of the boundaries). The result v, called

a segmentation of u, depends upon the parameter λ, that

indicates how to weight both terms. As shown on Fig. 2,

the Mumford-Shah model generally produces reason-

able boundaries except in “flat” zones where spurious

boundaries often appear (see the front side of the desk

for example). This is easily explained: the a priori

model is: the image is piecewise constant with bound-

aries as short as possible. Now, the image does not fit

exactly the model: the desk in the image is smooth but

not flat. The detected “wrong” boundary in the desk is

necessary to divide the desk into flat regions. The same

phenomenon occurs in the sky of the cheetah image

(next experiment).

The Canny-Deriche filter [2, 5] is an optimization of

Canny’s well known edge detector, roughly consisting

in the detection of maxima of the norm of the gra-

dient in the direction of the gradient. Notice that, in

contrast with the Mumford-Shah model and with our

model, it does not produce a set of boundaries (ie one-

dimensional structures) but a discrete set of points that

still are to be connected. It depends on two parameters:

the width of the impulse response, generally set to 1

pixel, and a threshold on the norm of the gradient that

selects candidates for edge points. As we can see on

Fig. 2, the result is very dependent on this threshold.

Thus, we can consider the meaningfulness as a way to

select the right edges. If Canny’s filter were completed

to provide us with pieces of curves, our algorithm could

a posteriori decide which of them are meaningful. No-

tice that many Canny edges are found in flat regions of

the image, where no perceptual boundary is present. If

we increase the threshold, as is done on the right, the

detected edges look perceptually more correct, but are

broken.

3.2. Cheetah Image (Fig. 3)

This experiment compares our edge detector with the

Mumford-Shah model. As before, we observe that the

Mumford-Shah model produces some spurious bound-

aries on the background, due to the inadequacy of the

piecewise constant model. This means that a more so-

phisticated model must be applied if we wish to avoid

such spurious boundaries: the general Mumford-Shah

model replaces the piece-wise constant constraint by a

smoothness term (the Dirichlet integral
∫

|∇u|2(x) dx)

on each region. Now, adding this term means using a
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Figure 3. First row: original image (left) and boundaries obtained with the Mumford-Shah model with 1000 regions (right). Second row: edges

(left) and boundaries (right) obtained with our method (ε = 1).

two-parameters model since, then, the Mumford-Shah

functional has three terms whose relative weights must

be fixed.

3.3. DNA Image (Fig. 4)

This experiment illustrates the concept of “optimal

boundaries” that we have introduce previously. When

we compute the boundaries of the original image, each

“spot” produces several parallel boundaries due to the

important blur. With the definition of maximality we

adopted, we select exactly one boundary for each spot.

3.4. Segments Image (Fig. 5)

As in the DNA experiment, the “optimal boundaries”

allow to select exactly one boundary per object (here,

hand-drawn segments). In particular, the number of

boundaries we find (21) counts exactly the number of

segments.

3.5. Noise Image (Fig. 6)

This image is obtained as a realization of a Gaussian

noise with standart deviation 40. For ε = 1 and ε = 10,
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Figure 4. From top to bottom: 1. original image; 2. boundaries; 3.

optimal boundaries.

no boundaries are detected. For larger values of ε, some

boundaries begin to be detected: 7 for ε = 100 (see Fig.

6), 148 for ε = 1000 and 3440 for ε = 10000.

4. Discussion and Conclusion

In this discussion, we shall address objections and com-

ments made to us by the anonymous referees and also

by José-Luis Lisani, Yves Meyer and Alain Trouvé.

In all that follows, we call respectively “boundary de-

Figure 5. Up: original image. Downleft: boundaries. Downright:

optimal boundaries.

Figure 6. Left: an image of a Gaussian noise with standart devi-

ation 40. Right: the meaningful boundaries found for ε = 100 (no

boundaries are found for ε = 1).

tection algorithm” and “edge detection algorithm” the

algorithms we proposed. The other edge or bound-

ary detection algorithms put into the discussion will

be called by their author’s names (Mumford-Shah,

Canny).

4.1. Eleven Objections and their Answers

Objection 1: The blue sky effect. If a significant part

of a natural image happens to be very flat, because of
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a “blue sky effect”, then most level lines of the image

will be detected as meaningful. If (e.g.) one tenth of

the image is a black flat region, then the histogram of

the gradient has a huge peak near zero. Thus, all gra-

dients slightly above this peak will have a probability
9
10

significantly smaller than 1. As a consequence,

all level lines long enough (with length larger than,

say, 30 pixels) will be meaningful. In practice, this

means that the image will be plagued with detected

level lines with a small contrast. These detected level

lines are no edges under any decent criterion?

Answer 1: If the image has a wide “blue sky”, then most

level lines of the ground are meaningful because

any strong deviation from zero becomes meaningful.

This effect can be checked on the cheetah image: the

structured and contrasted ground has lots of detected

boundaries (and the sky has none). This outcome can

be interpreted in the following way: when a flat re-

gion is present in the image, it gives, via the gradient

histogram, an indirect noise estimate. Every gradient

which is above the noise gradient of the flat region

becomes meaningful and this is, we think, correct.

Objection 2: Dependence upon windows. Then the

detection of a given edge depends upon the window

(containing the edge) on which you apply the algo-

rithm?

Answer 2: Yes, the algorithm is global and is affected

by a reframing of the image. If (e.g.) we detect edges

on a window essentially containing the sky, we shall

detect more boundaries (see Fig. 7) and if we com-

pute edges in a window only containing the con-

trasted boundaries, it will detect less boundaries.

Question 3: How to compute edges with multiple

windows? Thus, you can apply your detection algo-

rithm on any window of the image and get more and

more edges!

Answer 3: Yes, but, first, if the window is too small,

no edge will be detected at all. Second, if we apply

the algorithm to say, on 100 windows, we must take

into account in our computations that the number of

tests is increased. Thus, we must decrease accord-

ingly the value of ε in order to avoid false detections:

an easy way is to do it is this: if we have 100 win-

dows, we can take on each one ε = 1/100. Then

the global number of false alarms over all windows

Figure 7. First row: left: original image (chinese landscape); right:

maximal meaningful edges for ε = 1. Second row: the same algo-

rithm, but run on a subwindow (drawn on the left image); right: the

result (in black), with in light grey the edges that were detected in

the full image.

remains equal to 1. Thus, a multiwindows version of

the algorithm is doable and recommandable. Indeed,

psychophysics and neurophysiology both advocate

for a spatially local treatment of the retinian infor-

mation.

Objection 4: Synthetic images where everything is

meaningful. If an image has no noise at all (synthetic

image), all boundaries contain relevant information.

All the same, your algorithm won’t detect them all?

Answer 4: Right. If a synthetic binary image is made

(e.g.) of a black square with white background, then

all gradients are zero except on the square’s bound-

ary. The gradient histogram has one single value,

255. (Remember that zero values are excluded from

the gradient histogram). Thus, H(255) = 1 which

means that no line is meaningful. Thus, the square’s

boundary won’t be detected, which is a bit paradox-

ical! The addition of a tiny noise or of a slight blur

would of course restore the detection of this square’s

boundary. This means that synthetic piecewise con-

stant images fall out of the range or the detection

algorithm. Now, in that case, the boundary detection

is trivial by any other edge detector and our algo-

rithm is not to be applied.

Question 5: Class of images to which the algorithm

is adapted? Is there a class of images for which the

Mumford-Shah functional is better adapted and an-

other class of images where your algorithm is more

adapted?
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Answer 5: Our comparison of both algorithms may

be misleading. We are comparing methods with dif-

ferent scopes. The Mumford-Shah algorithm aims

at a global and minimal explanation of the im-

age in terms of boundaries and regions. As we

pointed out in the discussion of the experiments,

this global model is robust but rough, and more so-

phisticated models would give a better explanation,

provided the additional parameters can be estimated

(but how?).

The detection algorithm does not aim at such a

global explanation: it is a partial detection algorithm

and not a global explanation algorithm. In particu-

lar, detected edges can be doubled or tripled or more,

since many level lines follow a given edge. In con-

trast, the Mumford-Shah functional and the Canny

detector attempt at selecting the best representative

of each edge. Conversely, the detection algorithm

provides a check tool to accept or reject edges pro-

posed by any other algorithm.

Objection 6: The algorithm depends upon the quan-

tization step. The algorithm depends upon the quan-

tification step q . When q tends to zero, you will

get more and more level lines. Thus Nll and Nllp

(numbers of level lines and pieces of level lines

respectively) will blow up. Thus, you get less and

less detections when q increases and, at the end,

none!

Answer 6: Right again. The numbers Nll and Nllp stand

for the number of effectuated tests on the image.

When the number of tests tends to infinity, the num-

ber of false alarms of Definition 1 also tends to infin-

ity. Now, as we mentionned, q must be large enough

in order to be sure that all edges contain at least one

level line. Since the quantization noise is 1 and the

standard deviation of noise never goes below 1 or 2,

it is not likely to find any edge with contrast smaller

than 2. Thus, q = 1 is enough, and we cannot miss

any detectable edge. If we take q smaller, we shall

get more spatial accuracy to the cost of less detec-

tions.

Question 7: Accuracy of the edges depends upon

the quantization step. All the same, if q is not very

small, you lose accuracy in the position detection.

Indeed, the quantized levels do not coincide with the

optimal level of the edge, as it would be found by a

Canny edge detector.

Answer 7: Right again. The Canny edge detector per-

forms two tasks in one: detecting and optimizing the

edge’s position at subpixel accuracy. The proposed

detection algorithm does not find the optimal posi-

tion of each edge. The spatial accuracy is roughly

q/ min |∇u|, where the min is computed on the de-

tected edge. In the case of the detection of optimal

boundaries, we therefore get this spatial accuracy for

the detected optimal boundaries. Of course, a post-

processing finding for each edge the best position in

terms of detectability is possible.

Objection 8: Edges are not level lines. You claim that

every edge coincides with some level line. This is

simply not true!

Answer 8: If an edge has contrast kq , where q is the

quantization step (usually equal to 1), then k level

lines coincide with the edge, locally. Of course, one

can construct long edges whose contrast is every-

where k but whose average level varies in such a way

that no level line fully coincides with the edge. Now,

long pieces of level lines coincide partially with it.

Thus, detection of this edge by the detection algo-

rithm is possible all the same, but it will be detected

as a union of several more local edges.

Objection 9: Values of the gradient on the level lines

are not independent. You chose as test set the set of

all level lines. You claim that the gradient amplitudes

at two different points of every edge are independent.

This is, in most images, not true.

Answer 9: The independence assumption is, indeed,

not a realistic assumption. It is made in order to

apply the Helmholtz principle, according to which

every large deviation from uniform randomness as-

sumption is perceptible. Thus, the independence as-

sumption is not a model for the image; it is an a

contrario assumption against which the gestalts are

detected.

Objection 10: A minimal description model would

do the job as well. A minimal description model

(MDL) can contain very wide classes of models for

which parameters will be estimated by the MDL

principle of shortest description in a fixed language

[24, 28, 31]. This fixed language can be the lan-

guage of Gestalt theory: explain the image in terms of

lines, curves, edges, regions, etc. Then existence and
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nonexistence of a given gestalt would come out from

the MDL description: a “detectable” edge would be

an edge which is used by the minimal description.

Thus, thresholds would be implicit in a MDL model,

but exist all the same.

Answer 10: A MDL model is global in nature. Until

we have constructed it, we cannot make any com-

parison. In a MDL model, the thresholds on edges

would depend on all other gestalts. Thus, we would

be in the same situation as with the Mumford-Shah

model: we have seen that a slight error on the re-

gion model leads to a false detection for edges. The

main advantage of the proposed method relies on its

lack of ambition: it is a partial gestalt detection algo-

rithm, which does not require any global explanation

model in order to be applied. We may compare the

outcome of the algorithm with the computation in

optimization theory of feasible solutions. Feasible

solutions are not optimal. We provide feasible, i.e.

acceptable edges. We do not provide an optimal set

of edges as is aimed at by the other considered meth-

ods.

Objection 11: Is ε a method parameter? You claim

that the method has no parameter. We have seen in

the course of the discussion not less than three pa-

rameters coming out: the choice of the windows,

the choice of q , and finally the choice of ε. So

what?

Answer 11: We always fix ε = 1. Indeed, as we proved,

the dependence of detectability upon ε is a Log-

dependence. We also fix q = 1, but, here again, the

q dependence would be a Log-dependence, since

the number of level lines varies roughly linearly

as a function of q . Finally, it is quite licit to take

as many windows as we wish, provided we take

εk = 1/k where k is the number of windows. This

yields a false alarm rate of 1 over all windows.

Again, since the number of windows is necessar-

ily small (they make a covering of the image and

cannot be too small), we can even take εk = 1 be-

cause of the Log-dependence mentioned above. To

summarize, ε = 1 is not a parameter. When we sub-

divide our set of tests in subsets on several windows,

we must of course divide this value 1 by the number

of sets of subtests. This does not require any user’s

input.

5. Conclusion

In this paper, we have tried to stress the possibility of

giving a perceptually correct check for any boundary

or edge proposed by any algorithm. Our method, based

on the Helmholtz principle, computes thresholds of de-

tectability for any edge. This algorithm can be applied

to level lines or to pieces of level lines and computes

then all detectable level lines. One cannot view the al-

gorithm as a new “edge detector”, to be added to the

long list of existing ones; indeed, first, the algorithm

does not select the “best” edge as the other algorithms

do. Thus, it is more primitive and only yields “feasible”

candidates to be an edge. Only in the case of boundary

detection can it be claimed to give a final boundary de-

tector. Now, this boundary detector may anyway yield

multiple boundaries. On the other hand, the proposed

method has the advantage of giving for any boundary

or edge detector a sanity check.

Thus, it can, for any given edge detector, help re-

moving all edges which are not accepted from the

Helmholtz principle viewpoint. As a sanity check, the

Helmholtz principle is hardly to be discussed, since it

only rejects any edge which could be observed in white

noise.

The number of false alarms gives, in addition, a way

to evaluate the reliability of any edge and we think that

the maximality criterion could also be used in conjonc-

tion with any edge detector.

Finally, we can claim that the kind of algorithm and

experiments proposed here advocate for the necessity

and usefulness of an intermediate layer in image analy-

sis algorithms, where feasibility of the sought for struc-

tures is checked before any more global interpretation

is attempted by a variational method.

Note

1. We choose to write gestalt(s) instead of the german original

Gestalt (en). We maintain the german spelling for “Gestalt the-

ory”.
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