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ABSTRACT

Previous work has shown that for super-resolution image

reconstruction from low resolution images, image acquisition

with a diverse optical system improves reconstructed image

quality as measured by the expected and actual mean squared

error. However, other measures of image fidelity should also

be considered. An alternative performance measure might be

based on edge errors, since edges are often the first step in

more complex image analysis for both image processing sys-

tems and biological systems. This paper explores the behavior

of edge errors and intensity errors for super-resolution image

reconstruction applications in which ill-posed inversions may

cause the actual mean squared error to be highly dependent

of image content and thus poorly predicted by the expected

mean squared error.

Index Terms— super resolution image reconstruction, op-

tical system diversity, minimum variance estimator

1. INTRODUCTION

Super-resolution image reconstruction attempts to compute

a higher resolution image using information from multiple

lower resolution images (see e.g. [1]). Each individual low

resolution image is captured with a slightly different projec-

tion of the 3D world. The low resolution images may come

from a fixed camera array (e.g. [2]), a steerable array [3],or

an image sequence from a single moveable camera (e.g. [4]).

Successful algorithms could be used to create cameras based

on computational imaging which might include low cost high

resolution cameras or flat form-factor cameras. This image

reconstruction problem is often ill-posed and improvements

in performance can be achieved through diversity in the ac-

quisition of an array of low resolution images [5, 6].

Although the average expected squared pixel error is a

commonly used performance metric, it is not always the best

∗The authors gratefully acknowledge the support of the Defense Ad-

vanced Research Projects Agency (DARPA) through a grant (N00014-05-

1-0841) with the Office of Naval Research.

indicator of image quality or relevant information content.

For example, adding a constant to all image values will change

the brightness of an image and increase the squared error sig-

nificantly. However, it will not change a viewer’s perception

of an image much, and many algorithms that extract infor-

mation from images will not be sensitive to a constant offset.

In addition, the expected mean squared error is not always a

good predictor of the actual mean squared error. For ill-posed

inversion problems the specific image content has a signifi-

cant effect on the actual mean squared error.

A simple candidate for a versatile feature measure, in ad-

dition to intensity, is an edge element. Simple edge detection

is a often a first step of complex image processing tasks, and

edge detection is also a first level of visual processing in bio-

logical systems.In this paper we compare the expected mean

squared error to the actual mean squared error in a variety

of images, and then also compare the edge detection perfor-

mance using a basic Sobel edge detector (e.g. [7]). Results

are compared for arrays of identical lens systems with iden-

tifiable null spaces and arrays with diverse magnification or

shift variant systems which provide better observability.

2. MATHEMATICAL MODEL

The three dimensional source of the desired image is assumed

to be far enough away from the imaging system to be accu-

rately represented by a two dimensional surface model on a

portion of a plane or sphere. This continuous source, f(x, y),
is projected onto a detector surface to create fC(x, y), which

is bandlimited by the point spread function of the optical sys-

tem and scaled relative to the image source. The objective

of super-resolution image reconstruction will be to recover

fC(x, y) sampled at a desired resolution of (∆xd, ∆yd).

The detector surface of a digital camera contains an array

of rectangular detector elements with a specified shape and

array spacing. The point spread function of the optics is as-

sumed to be small compared to the detector size, so that it is

the detector array that limits the resolution of the image. Let

a(x, y) represent the sensitivity of a symmetric detector cen-



tered at the origin. The response of the single detector would

be
∫ ∫

a(x, y)fC(x, y)dxdy. The convolution of fC(x, y)
with a(x, y) produces gC(x, y), which represents the output

of a sensor element centered at any position. This function is

sampled at the detector element spacing (∆x,∆y) to produce

the sampled acquired image. If a(x, y) represents a rectan-

gular detector of width b and height c which integrates uni-

formly over its active surface, it will have a spatial frequency

response of A(u, v) = (sin(πub)/(πu))(sin(πvc)/(πv)).

For a single array of detector elements, a sub-imager (SI),

the sampling intervals (∆x,∆y) may cause aliasing of some

spatial frequencies in fC(x, y). For increased resolution mul-

tiple images are acquired from SIs with relative translations

that are fractions of the sampling intervals. Then the com-

bined data set from all SIs will have a increased effective

sampling rate, and fC(x, y) can be estimated at frequencies

higher than those obtainable from a single detector array. How-

ever, spatial frequencies for which A(u, v) = 0 will not be

present in any acquired image regardless of the translation of

individual sensors.

For a one-dimensional image model, if images are ac-

quired from two different arrays of SIs using detector element

widths that do not have common nulled frequencies, informa-

tion about all spatial frequencies will be captured in at least

one set of images. For a two-dimensional model, three dif-

ferent widths are needed [5, 6]. Width variation for translated

images may be achieved by varying the sensor size or the op-

tical magnification. Rotation may also provide effective width

variation.

Figure 1 compares the combined continuous frequency re-

sponse of two systems with diversity of magnification and

orientation. Arrays are translated to provide a linear mag-

nification increase of 3. In the upper left the magnitude of

the frequency response of SI arrays translated by 1/3 of the

sensor width is shown as an intensity pattern of the logarithm

of the response. Representative slices through the response

are plotted on a logarithmic scale below. The same results

are shown in the center for arrays with three different sensor

sizes and on the right for arrays at three orientations. In both

diverse cases the minimum combined response is much larger

than the uniform array.

3. IMAGE RECONSTRUCTION

Let F represent the desired image fC(x, y) sampled at the de-

sired resolution. It will be an Ny row and Nx column image

source with N = NyNx source pixels. This source image ar-

ray is stored by rows in an N ×1 column vector, f . Similarly,

the My ×Mx sensor image, G is stored by rows in the M ×1
column vector, g. For a traditional imaging system, M = N ,

but if the resolution of the observed image is lower than the

desired image, then M < N .
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Fig. 1. Continuous spatial frequency response of SI arrays:

uniform, magnification diversity, and rotational diversity.

A linear mathematical model of an SI array is given by,

g = Hf + v, (1)

where H is the observation matrix representing the combined

effects of the optics and the detector, and the noise vector v
includes uncorrelated random noise from a variety of sources.

For Gaussian measurement noise and a-priori statistics with

E[fvT ] = 0, the minimum variance estimate (MVE), f̂ , can

be computed as [8],

f̂ = f0 + K(g − Hf0) (2)

Let R̂v = E[vvT ] and R̂v = E[vvT ] be the estimated noise

and a-priori image variances respectively. Then the matrix K
is given by

K = P̂0H
T (HP̂0H

T + R̂v)−1 (3)

The covariance of the estimate error is ξ = E[f̃ f̃T ] where

f̃ = f − f̂ . For an actual noise covariance Rv and an ac-

tual a-priori covariance P0, which may be different from the

estimated values, the estimation error is given by,

ξ = E(f̃ f̃T ) = (I − KH)P0(I − KH)T + KRvKT (4)

Let H0,0 = H represent a single SI in which the detector

fields-of-view (FOVs) are not overlapping, and each detector

averages a q × q pixel area of the desired image. A q × q
array of sub-imagers with FOVs offset from each other by

one desired source pixel width can be used to increase the

effective sampling rate by a factor of q. The combined NxE×
NyE FOV of the array will be q − 1 source pixels wider and

taller than the FOV of a single SI. Define a shift matrix Zl as

an N × NE matrix in which Zl(i, j) = δ(i − (j − l)). Post



multiplication of the H matrix of a SI by the correct shift will

correctly position it within the combined FOV.

Let the vector gk,l represent the (k, l)th SI detector image.

Using the measurement model of (1),

gk,l = HZkNxE+lf + vk,l = Hk,lf + vk,l. (5)

The total number of observed pixels from the sub-arrays is

the same as the number of pixels in a traditional high resolu-

tion imager. However, the total FOV for the array of SIs is

extended because no assumptions are made about boundary

conditions. All the gk,ls in (5) can be stacked in a single array

in (6) where the subscript q on the combined H matrix indi-

cates a q × q array of SI with linear resolution reduced by a

factor of q..

g = Hqf + v

gT = [gT
0,0, gT

0,1, · · · , gT
q−1,q−1]

T

HT
q = [HT

0,0, HT
0,1, · · · ,HT

q−1,q−1]
T

vT = [vT
0,0, vT

0,1, · · · , vT
q−1,q−1]

T

(6)

A simple reordering of g creates an image that would be ob-

tained if gC(x, y) were sampled at q times the actual SI sam-

pling rate.

Using a singular value decomposition [7], the expected

squared error for the MVE reconstruction can be estimated.

Let Hq = USV T , where U and V are N ×N and NE ×NE

unitary matrices and S is an N × NE matrix with singular

values along the diagonal. If Rv = σ2IN and P0 = p0INE
,

then HqP0H
T
q = p0USST UT . Using (4), ξ = V ΛV T and

the NE diagonal elements of the diagonal matrix Λ are given

by (7).

λi =

{

p0σ2

p0s2

i
+σ2

for 1 ≤ i ≤ N

p0 for N + 1 ≤ i ≤ NE

(7)

For magnification diversity an Hq matrix is generated for

each magnification, and the observed images for arrays of SI’s

at the three magnification levels are treated as a single set of

observations as follows.

g =





gq1

gq2

gq3



 =





Hq1

Hq2

Hq3



 f + v = Hf + v (8)

The performance of this diverse system can be analyzed us-

ing,

f̂ = (HT R−1
ve

H + P−1

0e
)−1(HT R−1

ve
g + P−1

0e
f0) (9)

If HT = [HT
q1 HT

q2 HT
q3] then HT R−1

ve
H can be written as

HT R−1
ve

H = HT
q1R

−1
veq1

Hq1+HT
q2R

−1
veq2

Hq2+HT
q3R

−1
veq3

Hq3

(10)

If each Hq represents a large shift invariant convolution, then

the eigenvectors of all three HT
qiHqi matrices can be approx-

imated as the same DFT vectors. Then the matrices in (10)

could be added by simply adding the eigenvalues of each

of the HT
qiHqi matrices scaled by the corresponding inverse

noise variance. This matches the intuitive concept of adding

new types of SIs to capture all spatial frequencies and demon-

strates the value of diversity as shown in Figure 1 . The large

desired image can be divided into smaller tiles which can

be independently reconstructed using magnification diversity.

For these small Hq matrices, the DFT approximation is not

accurate,but exact methods can be used to invert the smaller

matrices in this overdetermined set of measurements.

Figure 2 shows the expected mean squared error as a func-

tion of actual noise variance on logarithmic scales for two

different imaging geometries which each use the same num-

ber of detector elements. Each was designed to improve the

linear resolution by a factor of 3. One uses a uniform detec-

tor size and the other uses three different detector sizes with

widths that are 1.0, 1.33 and 1.67 times the detector width of

the uniform array. For each geometry results are shown for

four different estimators each using a different value for the

estimated noise variance.

The a-priori image covariance was set to have the pixel

variance equal to the variance of a uniform distribution be-

tween 0 and 256, and it was assumed that pixel values were

uncorrelated. The measurement noise can come from a num-

ber of sources and may not be well modeled by the indepen-

dent Gaussian approximation. However, the number of bits

per pixel should be selected so that the quantization noise

does not add significant variance. Although 8-bit per pixel

cameras are common, cameras with a larger number of bits

can be used for high quality computational imaging. For 8-bit

measurements the quantization noise variance would be 0.08

and for 16-bit measurement the variance would be 1.3×10−6.

Actual noise variances between 10−4 and 2 are shown.

Over this range, the uniform arrays give the same result re-

gardless of the estimated noise variance and there is no no-

ticeable improvement as the actual measurement noise is de-

creased. This is due to the values of λi in (7) that are not re-

duced by decreasing the noise variance. In contrast, the imag-

ing system with three different magnifications shows lower

expected mse at all actual noise levels, and the expected mse

is reduced as the actual noise variance is reduced until it is

limited by the expected noise variance parameter used in the

estimator.

The impact of these performance differences is demon-

strated in reconstructions from two images. Figure 3(b) shows

a segment of an aerial image of the Oakland Bay Bridge from

the USC SIPI Image Database at http://sipi.usc.edu/database.

The full image is shown to the left. Low resolution images

were simulated with an added noise variance of σ2
a = 0.01,

which is the same value used for the estimated noise vari-

ance. Figure 3(c)shows the reconstruction from the uniform
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array in which each measurement was the average of a 3 × 3
pixel area in the original image. Figure 3(d) shows results

made from the same number of measurements from the array

with magnification diversity as described for Figure 2. Each

measurement was the average of a 3×3 or 4×4 or 5×5 pixel

area of the original image. The image reconstructed from the

diverse array looks almost exactly like the original image and

edge definition for the features is good. In contrast, the im-

age reconstructed from the uniform array shows noticeable

degradation and patterned variability. A more controlled set

of soft edges is shown in Figure 4 which has edge segments

at all orientations and a range of radii of curvature. The noise

variance used for these simulated measurements was 0.1. The

results are similar to those shown in previous image with a

noticeable interference pattern in the reconstruction from the

uniform array.

Figure 5(a) is an image of a vertical stripe pattern with

most of its energy at a spatial frequency that is lost by the

uniform sensor array. The reconstruction in Figure 5(b) has

a good estimate of the average intensity value, but the stripe

values and boundary positions are not correct. This error is far

more significant than the lower level interference pattern. In

contrast, the reconstructed image below made with the diverse

array is almost indistinguishable from the original image.

4. EDGE DETECTION ERROR

Many image analysis processes begin with the detection of

simple edge segments as a first step to defining object bound-

aries or image segments. A measure of how much the vari-

ance of the image reconstruction error affects the definition

of edge segments could be useful for both visual and auto-

matic image analysis. A number of well known local edge

(a) (b)

(c) (d)

Fig. 3. (a) Bay Bridge aerial image, (b) image tile, (c) recon-

struction from uniform system, (d) reconstruction from di-

verse magnification system

detectors use a 3× 3 pixel neighborhood to determine a local

gradient magnitude and direction. The Sobel operator con-

volves an image with SH and SV as given in (11) to create

two images of horizontal and vertical edge strength. Using

point processing, a gradient magnitude and direction is com-

puted for each pixel based on the horizontal and vertical edge

component values for the pixel.

SV =





1 0 −1
2 0 −2
1 0 −1



 SH =





1 2 1
0 0 0

−1 −2 −1



 (11)

s̃(n)2 = (s(n) − ŝ(n))2 (12)

= (sx(n)2 + sy(n)2) − (ŝx(n)2 + ŝy(n)2)

The magnitude of the frequency response of the separable

SV filter is 4| sin(ωx)(1 + cos(ωy))| where ω is the normal-

ized digital frequency variable. The convolution of SV with

f̂ will heavily attenuate the very high and very low frequen-

cies leaving the frequencies that are considered most useful in

terms of visual perception of image content. The magnitude

of the frequency response of SH will have the same form with

the frequency variables interchanged.

The edge error for reconstructed images was tested us-

ing stripe patterns with slowly varying intervals and pattern

changes such as Figure 5, random patterns, and a few selected

images with low and high contrast. Figure 6 and Figure 7

show the average squared errors and average squared edge er-

rors for four images. In both cases the top plots show results

for an estimator based on an expected noise variance of 0.01

and the lower plots show results for a more pessimistic esti-

mator using an expected noise variance of 1. The four images

are the low contrast bay bridge image from Figure 3, a higher



(a) (b)

(c) (d)

Fig. 4. (a)Synthetic image with ring contours, (b) image tile

(c) reconstruction from uniform system, (d) reconstruction

from diverse magnification system

contrast airport image from the same database, an image cre-

ated with random pixel values, and the vertical stripe image

from Figure 5. These results can be compared to the expected

mean squared error in Figure 2.

In Figure 6(b) the reconstruction for all images by the di-

verse magnification system, shown in dashed lines, have ap-

proximately the same mean squared error. Since the estimated

noise value is low, the mse continues to decline as the ac-

tual noise is reduced. Under these same conditions there is

a large difference in the mse, shown in the solid lines, from

the uniform system reconstructions. As expected from previ-

ous examples, the vertical stripe image has the largest mse,

followed by the random image, the high contrast image and

then the low contrast image. When the actual noise variance

is reduced below 10−2 there is little improvement in the mse.

In the lower plots the more pessimistic estimator for the uni-

form system produces almost the same results as shown in

the upper plot. However the performance of the diverse sys-

tem is limited by the more cautious use of measurement data

with the random image showing the worst performance and

the low contrast image showing the best. For actual noise

variances less than 1, the diverse magnification system sig-

nificantly outperforms the uniform system. In Figure 7 the

average squared edge error follows similar trends.

5. CONCLUSIONS

The reconstructions of a variety of images using both a uni-

form array and an array with magnification diversity demon-

strate that as as the measurement noise variance is reduced,

the actual and expected noise variance in the reconstructed

(a)

(b)

(c)

Fig. 5. (a) A vertical stripe synthetic image, (b)reconstruction

from uniform system, (c) reconstruction from diverse magni-

fication system

image are also reduced for the diverse array data. For the uni-

form array reducing the noise variance below 1 does not result

in any improvement in the reconstructed image as predicted

by the mathematical analysis for q = 3. In addition, depend-

ing on the specific image content, the actual mse for specific

images can be far different from the expected values. This

is significant because achieving noise levels lower than this

floor may be essential for high quality image reconstruction

allowing the confident detection of low contrast features. For

the diverse system lowering the measurement noise through

better detectors or longer observation times can achieve this

improvement.

For both visual inspection and automated image analysis,

the correct reconstruction of edges is important. Since the

typical edge detection filters, such as the Sobel operator, sup-

press very high and very low frequencies while estimating the

edges, an alternative fidelity measure using gradient magni-

tude was explored. It was expected that there would be image

content dependent difference in this when there was signif-

icant noise variance in the reconstruction. Although some

variability was observed, the behavior of the mean squared

gradient error was similar to that of the mse.
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Fig. 6. Actual averaged squared errors for four images. In (a)

σ2
e = 0.01, and in (b) σ2

e = 1.0
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