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Abstract—This contribution introduces the technique of F-
transform as a tool for handling the problem of edge detection.
An explanation of the problem together with a detailed descrip-
tion of the F-transform technique will be given. Consequently,
an algorithm for solving the problem will be provided together
with a study of its behavior w.r.t. various parameter setting as
well as w.r.t. various existing methods.
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I. INTRODUCTION

The problem of edge detection is one of the most attractive
problems for the image processing community. Mainly due
to various important applications in the practical sphere
(microscopy, medicine, safety management etc.) and also
a wide spectrum of methods use the edge detection as a
preprocessing technique. The development in this field has
become immense in the last two decades. Techniques such
as Wavelet transform, neural networks and also statistical or
soft computing techniques has been employed to improve
the original approaches represented by works published in
[1], [2], [3] or to introduce a completely new approaches
to detect edges (see e.g. [4], applying Wavelets [5], [6],
statistical methods and optimization [7], [8], soft computing
[9], [10], [11]).

Generally, the edge detection problem is one of the
problems that are intuitively easy to describe and understand
but, it is hard to formalize mathematically since there is no
explicit definition of the term “edge”. Existing algorithms
differ mainly in the mathematical characterization of this
term and consequently, by methods that search for pixels
in the input image matching these characteristics. Symbol-
ically, if u is an input image (considered as a function of
two variables) then the edge detection can be viewed as
its transformation to a many-valued (fuzzy) set U that is
visualized as image. The membership degrees of U represent
property of belonging to an edge, i.e. (x,y) is an edge pixel
to the degree U(x,y).

The main purpose of this contribution is to introduce
the F-transform technique as a new method for the edge
detection problem. The original motivation for F-transform
came from fuzzy modeling [12], [13]. It performs a transfor-
mation of an original universe of functions into a universe of
their “skeleton models” (vectors of F-transform components)

where further computation is easier (see e.g., an application
to the initial value problem with fuzzy initial condition
[14]). In this respect, F-transform can be as useful in
applications as traditional transforms (see applications to
image compression [15], image fusion [16], [17], time series
processing [18], etc.). Moreover, sometimes F-transform can
be more efficient than its counterparts.

This contribution is organized as follows: Section II
introduces the F-transform technique and gives an overview
of its properties; Section III is devoted to a theoretical
explanation of an efficiency of F-transform in the problem
of edge detection and moreover it goes into the details of the
algorithm; and in Section IV, some particular images will be
analyzed using F-transform based algorithm and moreover,
a comparison with some existing methods will be provided
for these images. Finally, conclusions, comments and some
future trends in our research will be drawn in Section V.

II. F-TRANSFORM.

To find edges, we propose a new algorithm which is
based on the technique of F-transform (a short name of
fuzzy transform). Before going into the details of edge
detection algorithm, let us give a general characterization
and necessary details of the used technique. We assume that
the reader is familiar with the notion of fuzzy set and a way
how is it represented.

Below, we explain F-transform in more details and adapt
our explanation to the purpose of this chapter (we refer to
[12] for a complete description). The explanation will be
given on the example of a discrete function that corresponds
to the image u.

Let u be represented by the discrete function u : P→R of
two variables where P = {(i, j) | i = 1, . . . ,N, j = 1, . . . ,M}
is an N×M array of pixels. If (i, j) ∈ P is a pixel then the
u(i, j) represents its intensity range. We extend the domain
P of u to the Cartesian product of intervals [1,N]× [1,M]
and assume that u is a partial function on [1,N]× [1,M].

At first, we will introduce the notion of a fuzzy partition.
It will be defined for the interval [1,N] and then extend to
[1,N]× [1,M].

Let [1,N] = {x | 1 ≤ x ≤ N} be an interval on the real
line R, n ≥ 2, a number of fuzzy sets in a fuzzy partition
of [1,N], and h = N−1

n−1 a distance between nodes x1, . . . ,xn ∈



[1,N], where x1 = 1, xk = x1 +(k−1)h, k = 1, . . . ,n. Fuzzy
sets A1, . . . ,An : [1,N]→ [0,1] establish an h-uniform fuzzy
partition of [1,N] if the following requirements are fulfilled:

1) for every k = 1, . . . ,n, Ak(x) = 0 if x ∈ [1,N] \
[xk−1,xk+1] where x0 = x1, xn+1 = xN ;

2) for every k = 1, . . . ,n, Ak is continuous on [xk−1,xk+1]
where x0 = x1, xn+1 = xN ;

3) for every i = 1, . . . ,N, ∑n
k=1 Ak(i) = 1;

4) for every k = 1, . . . ,n, ∑N
i=1 Ak(i) > 0;

5) for every k = 2, . . . ,n− 1, Ak is symmetrical with
respect to the line x = xk.

It is easy to see that if the fuzzy partition A1, . . . ,An is
h-uniform, then there exists an even function

A : [−h,h]→ [0,1]

such that for all k = 2, . . . ,n−1,

Ak(x) = A(x− xk) = A(xk− x), x ∈ [xk−1,xk+1].

We call A a generating function of an h-uniform fuzzy
partition.

The example of a triangular-shaped uniform fuzzy parti-
tion A1, . . . ,An, n≥ 2, of the interval [1,N] is given below.

A1(x) =

{
1− (x−x1)

h , x ∈ [x1,x2],
0, otherwise,

Ak(x) =

{ |x−xk|
h , x ∈ [xk−1,xk+1],

0, otherwise,

An(x) =

{
(x−xn−1)

h , x ∈ [xn−1,xn],
0, otherwise.

Note that the shape (triangular, sinusoidal, etc.) of a basic
function in a fuzzy partition is not predetermined and can
be chosen according to extra requirements.

If fuzzy sets A1, . . . ,An establish a fuzzy partition of [1,N]
and B1, . . . ,Bm do the same for [1,M] then the Cartesian
product {A1, . . . ,An}×{B1, . . . ,Bm} of these fuzzy partitions
is the set of all fuzzy sets Ak×Bl , k = 1, . . . ,n, l = 1, . . . ,m.
The membership function Ak × Bl : [1,N]× [1,M] → [0,1]
is equal to the product Ak ·Bl of the respective membership
functions. Fuzzy sets Ak×Bl , k = 1, . . . ,n, l = 1, . . . ,m estab-
lish a fuzzy partition of the Cartesian product [1,N]× [1,M].

Now we can introduce the F-transform of u : P→R with
respect to the chosen partition of [1,N]× [1,M].

Let u : P → R and fuzzy sets Ak × Bl , k = 1, . . . ,n,
l = 1, . . . ,m establish a fuzzy partition of [1,N]× [1,M].
The (direct) F-transform of u (with respect to the chosen
partition) is an image of the mapping F [u] : {A1, . . . ,An}×
{B1, . . . ,Bm}→ R defined by

F [u](Ak×Bl) =
∑N

i=1 ∑M
j=1 u(i, j)Ak(i)Bl( j)

∑N
i=1 ∑M

j=1 Ak(i)Bl( j)
, (1)

where k = 1, . . . ,n, l = 1, . . . ,m. The value F [u](Ak×Bl) is
called an F-transform component of u and is denoted by

F [u]kl . Components F [u]kl can be arranged into the matrix
representation or into the vector representation as follows:

(F [u]11, . . . ,F [u]1m, . . . ,F [u]n1, . . . ,F [u]nm). (2)

The inverse F-transform of u is a function on P which
is represented by the following inversion formula where i =
1, . . . ,N, j = 1, . . . ,M:

unm(i, j) =
n

∑
k=1

m

∑
l=1

F [u]klAk(i)Bl( j). (3)

It can be shown that the inverse F-transform unm approxi-
mates the original function u on the domain P. The proof
can be found in [12], [13].

Example 1 Let a discrete real function u = u(x,y) be
defined on the N ×M array of pixels P = {(i, j) | i =
1, . . . ,N, j = 1, . . . ,M} so that u : P → R. We will charac-
terize F-transforms of u for two extreme fuzzy partitions.

The largest partition of [1,N]× [1,M] contains only one
fuzzy set A1 ×B1 such that for all (x,y) ∈ [1,N]× [1,M],
A1 × B1(x,y) = 1. The respective F-transform component
F [u](A1 ×B1) and the respective inverse F-transform unm
are as follows:

F [u](A1×B1) =
∑N

i=1 ∑M
j=1 u(i, j)

NM
,

unm(i, j) = F [u](A1×B1), i = 1, . . . ,N, j = 1, . . . ,M.

It is easy to see that F [u](A1×B1) is the arithmetic mean
of u.

The finest partition of [1,N]× [1,M] is established by
N ×M fuzzy sets Ak × Bl such that for all k = 1, . . . ,N,
l = 1, . . . ,M, Ak × Bl(xk,yl) = 1 and for all r = 1, . . . ,N,
s = 1, . . . ,M, (k, l) 6= (r,s), Ak ×Bl(xr,ys) = 0. The respec-
tive F-transform components F [u](Ak × Bl), k = 1, . . . ,N,
l = 1, . . . ,M, and the respective inverse F-transform unm are
as follows:

F [u](Ak×Bl) = u(k, l),
unm(i, j) = u(i, j), i = 1, . . . ,N, j = 1, . . . ,M.

It is easy to see that unm = u.

The following statement (for the proof see [19]) expresses
a useful property of the F-transform components. It can be
characterized by saying that each component F [u]kl is a local
mean value of u over a support set of the respective fuzzy
set Ak×Bl .
P1. The kl-th component F [u]kl (k = 1, . . . ,n, l = 1, . . . ,m)

minimizes the function

Φ(y) =
l

∑
j=1

(u(i, j)− y)2Ak(i)Bl( j)

The next statement [20] is useful for a verification that
the proposed edge detection technique works correctly. The



statement describes a representation of the discrete Fourier
transform of the F-transform components.
P2. Let Zl = {0,1, . . . , l−1} and f̂ be the Fourier transform

of a function f : Zl → R. Let n ≥ 3 and A1, . . . ,An−1
be a triangular-shaped h-uniform fuzzy partition [a,b]
where h = b−a

n . Let F : Zl → R be the discrete function
given by

F(t) =
l−1

∑
j=0

A(t− j) f ( j); t = 0, . . . , l−1,

which contains the F-transform components of f
among its values.
Then the Fourier transform of F is given by

F̂(0) = f̂ (0);

F̂(k)≈ mn2

2π2k2 exp(−2πik/n)(1− cos
2πk

n
) · f̂ (k);

k = 1, . . . , l−1,

(4)

where m is a fixed parameter.
By P2., the influence of the Fourier coefficient f̂ (k) in

the representation (4) is weakened by the factor 1
k2 . In other

words, every F-transform component works as a low-pass
filter of an original function.

Having in mind the two above mentioned facts, namely:
the inverse F-transform approximates an original function,
and the F-transform components are low-pass filters, we
come to the conclusion that the difference between an
original function and its inverse F-transform works as a high-
pass filter of the former. Therefore, the mentioned above
difference can be used for the edge detection problem.

III. F-TRANSFORM BASED ALGORITHM FOR EDGE
DETECTION

Informally, we understand edges in a picture as visu-
ally important places that can be distinguished mainly by
a significant change of intensity. Further on, we aim to
emphasize these places by assigning degrees of membership
to a particular edge. For an image u : P → R, the edge
elements can be collected in the set as follows:

B = {(xi,y j) ∈ P| ∃(x,y) ∈ P (d((xi,y j),(x,y))≤ δ )
and |u(xi,y j)−u(x,y)| ≥ ε}, (5)

where d is a distance, δ determines a size of the “important”
neighborhood or in another words, a thickness of the edge,
and ε specifies a “significance” of the intensity change.

For our approach, it is important that the F-transform com-
ponents are local weighted arithmetic means with weights
taken as membership degrees of the respective fuzzy set in
the fuzzy partition, see the property P1. An important part of
the preliminary analysis of the input image is a choice of the
parameters of F-transform that are in our case the numbers
n,m of fuzzy sets in the fuzzy partition of [1,N]× [1,M].
P2 provides a relationship between the Fourier transform

of the F-transform components and a frequency spectrum
of the input image, which gives a direction for estimation
of n,m so that the particular frequency is captured by the
components.

Let us explain a way of characterization of edge elements
using F-transform components. The numbers n,m of fuzzy
sets in a respective fuzzy partition determine its robustness.
This relates to a size of a chosen neighborhood which in
(5) was characterized by the inequality d((xi,y j),(x,y))≤ δ .
In our approach, the above inequality is generalized by
Ai(x) ·B j(y), where δ relates to lengths of supports of Ai,B j.
Both numbers n,m and shapes of fuzzy sets Ai,B j in a fuzzy
partition determine components F [u]i, j of the F-transform
of u. The difference |u(x,y) − F [u]i, j| approximates the
respective difference |u(xi,y j)− u(x,y)| in (5). Thus we
come to the following generalization of (5):

B = {[x,y] ∈ P| (∃i, j)(x ∈ Ai) and (y ∈ B j)
and |u(x,y)−F [u]i, j|< ε}, (6)

where B is now fuzzy set with the membership function in
[0,1], ∃ is computed as addition, “and” is product, (x∈Ai) is
interpreted as Ai(x) (the same for B j,B), and finally |u(x,y)−
F [u]i, j|< ε is the rescaled |u(x,y)−F [u]i, j| onto [0,1]. Even
thought this interpretation is not easy to be understood the
above fuzzy class definition (6) of B is very natural and
intuitive because it uses the usual symbols of the classical
set theory.

Now let us summarize the main steps of the edge detection
algorithm that uses F-transform (FTransform-EDA):
Input: Image u, the numbers of fuzzy sets in the fuzzy
partition n,m

1) Compute F [u] – the direct F-transform of u by (1);
2) Compute un,m – the inverse F-transform using the

components F [u] by (3);
3) Compute the error function e(x) = |u(x)−un,m(x)| for

all x ∈ P.
4) Rescale and round the values of e from

[0,maxx∈P e(x)] to the integers in [0,255], which
results in the new image er.

Output: Image er.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

As it was mentioned in the previous section, the input
arguments n,m determine the thickness of the edge. Hence,
the bigger are n,m the thinner are edges. It follows that the
edges of all objects in focus can be determined from the
change of intensities of the pixels of the closest neighbor-
hoods, i.e. setting n,m such that each Ai,B j covers min. 4
pixels (i.e. h≥ 2 pixels) see Figure 3.

Naturally, problem comes with blurred images, with a
various depth of the focus or objects that are in (partial)
shadow. Let us present here the second case and show
how the setting of the edge thickness (i.e. the setting of



(a) Original image.

(b) er with 4 pixels covered

(c) er with 10 pixels covered

(d) er with 100 pixels covered

Figure 1. Examples of various setting of the input parameters of
FTransform-EDA

n,m) affected the result. Figure 2(a) shows an exemplary
image where the object of an interest is blurred. Obviously,
edge elements of this object do not correspond with the
characterization of edge elements for an object in focus, i.e.
the intensity change in a small neighborhood of the edge
element is not significant. Hence, the edges of the blurred
objects cannot be captured using small values n,m, see
Figure 2(b). A different situation comes with higher values
of n,m (see Figure 2(c)): in this case, lower intensity changes
are captured by the components of F-transform, edges are
thicker and the edge of the blurred object is specified in
a negative way which means its edge elements have the
degrees of memberships close to zero.

Now, let us make a comparison with standard methods for
the edge detection problem. Due to the space limitation, we
will provide a comparison only for one image (Figure 3(a))
with a complex scene comprising from a heterogenous
background and some objects in a foreground. The results
of FTransform-EDA are on Figure 3(b). Outputs of the
standard methods are on Figure 4. To compare our results
with the binary images (outputs of the chosen standard
methods) we have to do a thresholding, see Figure 3(c).

As standard methods we take gradient-based algorithms -
the Prewitt algorithm, the Sobel algorithm and the multi-
stage Canny algorithm. We recall [?] that these methods
deal with the edge characterized by properties of the picture
fragment which is given by a magnitude of change of
intensity and a direction of the greatest increase of the
picture values.

The Prewitt and Sobel algorithms have a major drawback
of being very sensitive to noise. The size of the kernel filter
and coefficients are fixed and cannot be adapted to a given
image. These methods determine thicker edges and then they
give an imprecise localization. The Canny algorithm is more
flexible and depends on the adjustable parameters. It can be
described as an ”optimal” edge detection algorithm. But it
is computationally more expensive compared to the Sobel
and Prewitt algorithms. In comparison with those methods,
the FTransform-EDA behaves acceptably well. According
to a visual comparison, we can say that it outperforms the
Sobel and Prewitt algorithms but for this particular image,
the Canny algorithm wins.

V. CONCLUSION

This contribution has focused on the application of F-
transform to the problem of the edge detection. We proposed
the algorithm that uses an error function created on the
basis of F-transform technique. A detailed description of
this algorithm has been given together with a motivation,
explanation and justification of its suitability in the given
problem. Finally, various examples were tested and we
showed that the proposed approach can be successfully
applied to the images with a complex scene as well as to
the blurred images. In a comparison with standard methods



(a) Original image.

(b) er with 10 pixels covered

(c) er with 100 pixels covered

Figure 2. FTransform-EDA applied to image with objects in various
focus.

we have demonstrated that the edge detection algorithm
based on F-transform performs acceptably well. The deeper
analysis, improvements related to the automatization of the
thresholding as well as the input parameters together with a
comparison study is a matter of the future research.
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(a) Original image.

(b) er with 4 pixels covered

(c) thresholded Figure 3(b)

Figure 3. FTransform-EDA applied to image with a complex scene.
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