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	e Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive de
nition similar to the Fibonacci numbers.
In this paper, we prove that a hypercube of dimension ℎ admits two edge-disjoint Fibonacci trees of height ℎ, two edge-disjoint
Fibonacci trees of height ℎ − 2, two edge-disjoint Fibonacci trees of height ℎ − 4 and so on, as subgraphs. 	e result shows that
an algorithm with Fibonacci trees as underlying data structure can be implemented concurrently on a hypercube network with no
communication latency.

1. Introduction

High speed computing is a key requirement for many
applications of science and technology. Parallel computers
perform high speed computing with thousands of processors
operating parallelly and concurrently. 	e interconnection
network of a parallel computer connects various components
of the system and plays a crucial role in the computational
process. A natural way to represent this interconnection
network is to construct a graph where each processor of the
system is represented by a vertex and each link connecting
two processors is represented by an edge.	is representation
is the genesis for the interdisciplinary research involving
engineering and computational aspects of parallel computers
and graph theory.

Among the interconnection networks of parallel comput-
ers, the binary hypercube has received much attention. An
important property of a hypercube, which makes it popular,
is its ability to e�ciently simulate the message routings of
other interconnection networks. De
ningmathematically, an
n-dimension hypercube,��, has 2� vertices each labelled with
a binary string of length �. Two vertices are adjacent if and
only if their labels di�er in exactly one position. Figure 1
shows hypercubes of dimensions 1, 2, and 3.

	e problem of e�ciently implementing parallel algo-
rithms on parallel computers has been studied as a graph

embedding problem, which is to embed the communication
graph � (underlying a parallel algorithm �) within the
interconnection network topology � (underlying a paral-
lel computer �) with minimum communication overhead.
Graph embeddings are mathematical models capturing the
issues involved in the implementation of parallel algorithms
on a parallel computer (see [1]) and establishing equivalence
between interconnection networks of two parallel computers
(see [2, 3]).

Formally de
ning, an embedding 	 of (guest) graph
�(
, �) into (host) graph�(�,) is a function 	 : 
 → �
such that if (�, V) is an edge in �, then 	(�) and 	(V) are
connected by a path in �. Dilation is one of the important
parameters that measure the quality of an embedding. De
n-
ing mathematically, dilation (	) := max{dist�(	(�), 	(V)) :
(�, V) ∈ �}, where dist�(�, �) denotes the length of the
shortest path connecting two vertices � and � in� in�.	e
dilation measures the communication delay when graph � is
embedded on graph �. If dilation equals 1, then it implies
that there is no communication latency and � is isomorphic
to a subgraph of � and we write � ⊆ �. Since one aims to
reduce the communication latency in a network, the goal of a
parallel algorithm designer is to map the algorithm graph �
into the corresponding network� such that � ⊆ �.

From a computing perspective, trees form an important
class of computational structures. 	ey naturally arise in
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Figure 1: Hypercubes of small dimension.
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Figure 2: Examples of Fibonacci trees and recursive construction.

the design of parallel algorithms which require basic oper-
ations like merging, sorting, and searching. Hence, there is
a large literature on embedding of various kinds of trees
into the graphs of interconnection networks. In particular,
embedding of binary trees into hypercubes has received
special attention since trees serve as computational structures
for parallel algorithms that employ, divide, and conquer
paradigm.

Several researchers work on the problem of embedding
a set of subgraphs, such as paths, rings, and trees, satisfying
some constraints in a network. 	e problem of 
nding edge-
disjoint spanning trees is an important example [4–6]. A
number of trees of a graph � are said to be edge-disjoint if
no two trees contain the same edge of �. Besides being of
theoretical interest, this problem has two practical applica-
tions. One is to enhance the ability of fault tolerance. One
way to achieve fault tolerant interprocessor communication
is by exploiting and e�ectively utilizing the disjoint paths
that exist between pairs of source and destination. 	e other
application is to develop e�cient collective communication
algorithms in distributed memory parallel computers [5].
Several researches have been done to recognisewhat trees and
how many of them can be accommodated in the hypercube;
see [4–6].

It has been proved in [7] that a Fibonacci tree Fℎ of height
ℎ is a subgraph of a hypercube with dimension ⌊0.75ℎ⌋ +
1.5. Since the hypercube �⌊0.75ℎ⌋+1.5 is not big enough to
accommodate two copies of Fℎ, we choose �ℎ to embed at
least two copies of edge-disjoint Fibonacci trees. In this paper,
we prove that, for ℎ ≥ 3, the hypercube �ℎ contains edge-
disjoint copies of two Fℎ, two Fℎ−2, . . ., and two F�, where
� = 2 if ℎ is even and � = 3 if ℎ is odd. 	is is denoted by
�ℎ ⊇ 2Fℎ ∪ 2Fℎ−2 ∪ ⋅ ⋅ ⋅ ∪ 2F�. For any graph �, an embedding
� : � → �� is a labelling of the vertices of � with binary
strings of length �. Clearly, � ⊆ �� if and only if �(�) and
�(V) di�er in exactly one position whenever (�, V) is an edge

in �. 	is labelling technique is widely used in our proofs of
embedding.

2. Edge-Disjoint Embedding of Fibonacci Trees

A formal recursive de
nition of the Fibonacci tree (denoted
by Fℎ if its height is ℎ) is given below.

De�nition 1. F0 := �1, F1 := �2, where�� is a complete graph
on � vertices. For ℎ ≥ 2, Fℎ is obtained by taking a copy of Fℎ−1,
a copy of Fℎ−2, and a new vertex � and joining � to the roots
of Fℎ−1 and Fℎ−2.

Figure 2 shows a few examples of small Fibonacci trees
and the recursive construction.

	e above recursive de
nition implies that the number
of vertices in Fℎ is |
(Fℎ)| = |
(Fℎ−1)| + |
(Fℎ−2)| + 1. On
solving this recurrence relation, we get |
(Fℎ)| = �(ℎ + 2) −
1, where �(�) is the �th number in the Fibonacci sequence,
�(0) = 1, �(1) = 1, �(�) = �(� − 1) + �(� − 2); this
justi
es the terminology Fibonacci tree. 	e number of
vertices of the Fibonacci tree has helped to give a closed-form
representation of the Fibonacci numbers; see [8].

�eorem 2. For every ℎ ≥ 3, the hypercube �ℎ contains two
edge-disjoint Fibonacci trees F	ℎ and F



ℎ of height ℎ such that

roots of F	ℎ and F


ℎ are labelled 0ℎ and 0ℎ−211, respectively.

Proof. We prove the result by induction on ℎ. To do so, it is

su�cient to give two labellings �	ℎ : F	ℎ → �ℎ and �
ℎ :
F


ℎ → �ℎ for the tree Fℎ. For the basic case ℎ = 3, 4, the two
labellings for each of F	3 and F

	
4 are given in Figures 3 and 4,

respectively. In Figure 3(c) (resp., Figure 4(c)), we show the

two trees F	3 and F


3 (resp., F

	
4 and F



4 ) inside �3 (resp., �4)

as dashed and dotted lines, respectively.
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Figure 3: Embedding F	3 and F


3 in �3.
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Figure 4: Embedding F	4 and F


4 in �4.
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Figure 5: Two labellings �	ℎ and �
ℎ for Fℎ.

For ℎ ≥ 5, we give a labelling procedure for F	ℎ and F


ℎ .

We 
rst provide the labelling for F	ℎ . By induction hypothesis

we are given embeddings (labellings) �	ℎ−1 : F	ℎ−1 → �ℎ−1
and �	ℎ−2 : F	ℎ−2 → �ℎ−2. For notational convenience, we
denote �	ℎ−1(F	ℎ−1) by �	ℎ−1 and �	ℎ−2(F	ℎ−2) by �	ℎ−2. We extend

the labellings�	ℎ−1 and�	ℎ−2 to a labelling�	ℎ of F	ℎ by pre
xing
the labels of all the vertices of F	ℎ−1 by 1 and the labels of

all the vertices of F	ℎ−2 by 01 and label the root of F	ℎ by

0ℎ; see Figure 5(a). We note that the roots of F	ℎ−1 and F
	
ℎ−2

are labelled 10ℎ−1 and 010ℎ−2 and both are adjacent to the

root of F	ℎ which is labelled 0ℎ. In a similar way, we next

provide the labelling for F
ℎ . By induction hypothesis we are

given embeddings (labellings) �
ℎ−1 : F
ℎ−1 → �ℎ−1 and
�
ℎ−2 : F
ℎ−2 → �ℎ−2. For notational convenience, we denote

�
ℎ−1(F
ℎ−1) by �
ℎ−1 and �
ℎ−2(F
ℎ−2) by �
ℎ−2. We extend the

labellings �
ℎ−1 and �
ℎ−2 to a labelling �
ℎ of F
ℎ by pre
xing
the labels of all the vertices of F
ℎ−1 by 1 and the labels of all

the vertices of F
ℎ−2 by 01 and label the root of F
ℎ by 0ℎ−111;
see Figure 5(b). 	e recursive labelling technique of F	ℎ (and
hence F
ℎ ) does not alter the adjacency property of the vertices

since �	ℎ (and hence �
ℎ ) is an injective extension of �	ℎ−1 and
�	ℎ−2 (�
ℎ−1 and �
ℎ−2). 	e trees F	ℎ and F



ℎ are the required

two edge-disjoint copies of ∗ℎ in �ℎ.

�eorem 3. For ℎ ≥ 3, �ℎ ⊇ 2Fℎ ∪ 2Fℎ−2 ∪ ⋅ ⋅ ⋅ ∪ 2F�, where
� = 2 if ℎ is even and � = 3 if ℎ is odd.

Proof. In the labelling technique of Fℎ discussed in
	eorem 2, the root is the only vertex whose label starts
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with 00. Hence, apart from the two copies of Fℎ, the edges
of 00�ℎ−2 are unused in �ℎ. By recursion, �ℎ−2 contains
2Fℎ−2∪2Fℎ−4∪⋅ ⋅ ⋅∪2F�, hence the theorem. As an illustration,
referring to Figure 4, the hypercube�4 apart from containing
two F4 shown in dashed and dotted lines, it also contains two
F2 as follows: since F2 is isomorphic to a path on four vertices,
we give two path labellings (1) 1110 − 0110 − 0010 − 1010
and (2) 0010 − 0011 − 0111 − 1111.

Remark 4. An induced subgraph of the hypercube based
on the Fibonacci numbers is called the Fibonacci Cube.
	is interconnection network was introduced by Hsu in [9].
Several topological properties of the Fibonacci cube have
been studied over the recent years and various extensions
have been introduced; see [10, 11]. Also, recently there has
been some work done on graph indexing and we refer to [12–
14].

3. Conclusion

In this paper we proved that, for every ℎ ≥ 3, the hypercube
�ℎ of dimension ℎ contains two edge-disjoint copies of
Fℎ, Fℎ−2, . . . F2 as subgraph (that is with dilation 1). 	is
result shows that an algorithm with Fibonacci tree as its
underlying data structure can bemade to run concurrently on
a hypercube network with no communication latency. 	us,
this mathematical result will have a signi
cant interest in the

elds of parallel computing and interconnection networks.

Conflict of Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

References

[1] S. N. Bhatt and I. C. F. Ipsen, “How to embed trees in hyper-
cubes,” Research Report YALEU/DCS/RR-443, Yale University,
Department of Computing Science, 1985.

[2] F. T. Leighton, Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes, MorganKaufmann, SanMateo,
Calif, USA, 1992.

[3] B. Monien and H. Sudborough, “Embedding one interconnec-
tion network in another,” Computing Supplementary, vol. 7, pp.
257–282, 1990.

[4] S.Wagner andM.Wild, “Decomposing the hypercube�� into n
isomorphic edge-disjoint trees,” Discrete Mathematics, vol. 312,
no. 10, pp. 1819–1822, 2012.

[5] B. Barden, R. Libeskind-Hadas, J. Davis, and W. Williams,
“On edge-disjoint spanning trees in hypercubes,” Information
Processing Letters, vol. 70, no. 1, pp. 13–16, 1999.

[6] J. F. Fink, “On the decomposition of �-cubes into isomorphic
trees,” Journal of Graph	eory, vol. 14, no. 4, pp. 405–411, 1990.

[7] S. A. Choudum and I. Raman, “Embedding height balanced
trees and Fibonacci trees in hypercubes,” Journal of Applied
Mathematics and Computing, vol. 30, no. 1-2, pp. 39–52, 2009.

[8] I. Raman, “A note on closed-form representation of Fibonacci
numbers using Fibonacci trees,” ISRN Discrete Mathematics,
vol. 2014, Article ID 132925, 3 pages, 2014.

[9] W. J. Hsu, “Fibonacci Cubes. A new interconnection topology,”
IEEETransactions on Parallel andDistributed Systems, vol. 4, no.
1, pp. 3–12, 1993.
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