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Abstract

A digraph H is infused in a digraph G if the vertices of H are mapped to vertices of G (not
necessarily distinct), and the edges of H are mapped to edge-disjoint directed paths of G joining the
corresponding pairs of vertices of G. The algorithmic problem of determining whether a fixed graph
H can be infused in an input graph G is polynomial-time solvable for all graphs H (using paths
instead of directed paths). However, the analogous problem in digraphs is NP-complete for most
digraphs H. We provide a polynomial-time algorithm to solve a rooted version of the problem, for
all digraphs H, in digraphs with independence number bounded by a fixed integer α. The problem
that we solve is a generalization of the k edge-disjoint directed paths problem (for fixed k).



1 Introduction

In [3], Fortune, Hopcroft, and Wyllie showed that the following algorithmic problem is NP-complete
with k = 2:

k Edge-Disjoint Paths (k-EDP)
Instance: A digraph G, and k pairs (s1, t1), . . . , (sk, tk) of vertices of G.
Question: Do there exist directed paths P1, . . . , Pk of G, mutually edge-disjoint, such that Pi is from
si to ti for i = 1, . . . , k?

On the other hand, in [6], Robertson and the second author showed that the analogous problem
for undirected graphs can be solved in polynomial time for any fixed natural number k. This is a
common phenomenon in algorithmic graph theory, that a problem which can be solved in polynomial-
time in undirected graphs is NP-complete for general digraphs. In this case it is natural to look for
polynomial-time algorithms that solve the problem for restricted classes of digraphs.

The main result of this paper is a polynomial-time algorithm to solve a generalization of k-EDP in
digraphs with independence number at most α, for fixed k and α. Before describing the generalized
problem, however, we need some background and notation. PP Let G be a digraph (all graphs and
digraphs in this paper are finite, and may have loops or parallel edges). We denote the vertex set of
G by V (G) and the edge set by E(G). For u, v ∈ V (G), we let EG

uv denote the set of all edges of G
with tail u and head v (we may just write Euv if it is clear which digraph we are referring to); and
if there is an edge from u to v we say that u is adjacent to v, and v is adjacent from u. A set of
vertices U ⊆ V (G) is independent if for all distinct u, v ∈ U there is no edge between u and v. The
independence number of G, denoted by α(G), is the maximum cardinality of an independent set in
G. (Note that vertices of an independent set may be incident with loops; this is non-standard, but
important for us.) We say that P is a route of G if P is either a directed path or a directed cycle
with a distinguished vertex called its end. For x, y ∈ V (G) we say that P is a route from x to y if
either x 6= y and P is a directed path from x to y, or x = y and P is a directed cycle with x as its
end. If P is a route from x to y then the first edge of P is the unique edge of P with tail x and the
last edge of P is the unique edge of P with head y. The interior of a directed path P is the set of
all its vertices except its ends.

A digraph is a supertournament if for every pair of distinct vertices u, v there is at least one edge
with ends {u, v}. A digraph is simple if it has no loops, and for every pair of distinct vertices u, v there
is at most one edge with tail u and head v. A semi-complete digraph is a simple supertournament.
A digraph is a tournament if it is simple, and for every pair of distinct vertices u, v there is exactly
one edge with set of ends {u, v}. Thus, every tournament is semi-complete.

In [1], Bang-Jensen showed that there exists a polynomial-time algorithm to solve 2-EDP in semi-
complete digraphs. Note that our result generalizes Bang-Jensen’s in two ways (the 2 is generalized
to k and semi-complete digraphs are generalized to digraphs with bounded independence number).

Next, we describe a problem that is closely related to k-EDP. Again, we begin with a definition.
Let G,H be digraphs. An infusion of H in G is a map η such that

• η(v) ∈ V (G) for each v ∈ V (H)

• for each edge e = uv of H (this notation means that e is directed from u to v), η(e) is a route
of G from η(u) to η(v)
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• if e, f ∈ E(H) are distinct, then η(e), η(f) have no edges in common, although they may share
vertices.

If in addition we add the condition

• η(u) 6= η(v) for distinct u, v ∈ V (H)

then we call the relation weak immersion. If we also then add the condition

• if v ∈ V (H) and e ∈ E(H), and e is not incident with v in H, then η(v) is not a vertex of η(e)

we call the relation strong immersion.
In this paper we develop several algorithms related to infusion and immersion. First, consider

the following algorithmic problem. Let H be a fixed digraph.

H-infusion
Instance: A digraph G.
Question: Does there exist an infusion of H in G?

If in the question the word infusion is replaced by strong (respectively, weak) immersion, then we
refer to the problem as strong (resp. weak) H-immersion (we will often drop the strong/weak, and
in such cases everything we say holds for both versions). In [2], with Chudnovsky, we showed that
there exist digraphs H for which H-immersion is NP-complete. On the other hand, we showed that
in semi-complete digraphs, H-immersion is polynomial-time solvable for every fixed digraph H. The
proofs of both of these results trivially extend to H-infusion.

Next we consider a common generalization of H-infusion and k-EDP. We say that (G, v1, . . . , vh)
is a rooted digraph if G is a digraph and v1, . . . , vh ∈ V (G) (not necessarily distinct). If v1, . . . , vh are
distinct then we say that (G, v1, . . . , vh) is a distinctly-rooted digraph. Let G = (G, v1, . . . , vh) be a
rooted digraph and H = (H,u1, . . . , uh) be a distinctly-rooted digraph (where the number of roots is
the same). We say that η is an infusion of H in G if η is an infusion of H in G with η(ui) = vi for all
1 ≤ i ≤ h. Given a distinctly-rooted digraph H = (H,u1, . . . , uh), we have the following algorithmic
problem:

H-infusion
Instance: A rooted digraph G = (G, v1, . . . , vh).
Question: Does there exist an infusion of H in G?

The main results of this paper are polynomial-time algorithms to solve H-immersion and H-
infusion in digraphs with bounded independence number. Notice that H-immersion (where H is a
distinctly-rooted digraph), defined in the obvious way, is a close relative of these two problems, but
we do not know of a polynomial-time algorithm to solve H-immersion.

The paper is organized as follows. In Section 2 we present both algorithms for the special case of
supertournaments. In Sections 3 we prove some preliminary results that are necessary for describing
and proving the correctness of the algorithms for the general case, and in Section 4 we present the
algorithms for digraphs with bounded independence numbers. We note here that the algorithms
for supertournaments are fixed-parameter tractable (that is, the running time is f(H)nc for some
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function f and some constant c not depending on H or n, where n is the size of the input digraph)
whereas the ones for general bounded independence number are not (and have complexity O(nf(H))).

2 Supertournaments

In this section we describe polynomial-time algorithms to solve H-infusion and H-immersion in su-
pertournaments. Note that supertournaments are precisely the digraphs with independence number
at most one. Although the algorithms of this section are special cases of the algorithms presented in
Section 4, they are easier to describe and we believe that they provide a good stepping stone towards
understanding the more general algorithms. Also, as mentioned in the introduction, the algorithms
for supertournaments are fixed-parameter tractable, whereas the ones for digraphs with bounded
independence number are not.

We begin with some definitions. Let θ ≥ 0 be an integer. An enumeration (v1, . . . , vn) of the
vertex set of a digraph has cutwidth at most θ if for all j ∈ {2, . . . , n}, there are at most θ edges uv
such that u ∈ {v1, . . . , vj−1} and v ∈ {vj , . . . , vn}; and a digraph has cutwidth at most θ if there is
an enumeration of its vertex set with cutwidth at most θ.

Let P and Q be two directed paths of a digraph G such that P is from u to v and Q is from u′ to
v′. Then P and Q are internally-disjoint if V (P ) \ {u, v} is disjoint from V (Q) and V (Q) \ {u′, v′}
is disjoint from V (P ). If P is a three-edge directed path in G we call the second edge of P its body
and the other two edges its legs.

Let G be a digraph, let i ≥ 0 be an integer, let m ≥ 0 be real, and let u, v ∈ V (G) be distinct.
We say that (u, v) is an m-pair of type i if there are at least m internally-disjoint directed paths from
u to v in G, all with exactly i internal vertices (such a set of m paths is called an m-realization of
type i for (u, v)). We say that (u, v) is an m-useful pair if (u, v) is an m-pair of type 1 and (v, u) is
an m-pair of type 1 or 2.

Here are two results from [2] that relate the existence of m-useful pairs to the cutwidth of a
semi-complete digraph:

2.1 Let T be a semi-complete digraph and let m ≥ 0 be an integer. Suppose that no pair of vertices
of T is an m-useful pair. Then the cutwidth of T is at most 72m2 + 8m.

2.2 There is an algorithm with running time O(n4) which, given as input a semi-complete digraph T
with n vertices and an integer m ≥ 0, outputs an m-useful pair, if one exists, and otherwise outputs
an enumeration of V (T ) with cutwidth at most 72m2 + 8m.

Note that 2.2 takes only semi-complete digraphs as input. To apply it to supertournaments, we
need to introduce the following concept; for a digraph G, we say that a subdigraph S is the underlying
simple digraph of G if S is simple, V (G) = V (S), and there is an edge with tail u and head v in S
if and only if u 6= v and there is an edge with tail u and head v in G. Note that a digraph and its
underlying simple digraph have the same independence number. If G is a supertournament we say
that S is the underlying semi-complete digraph of G.

Until 2.10, H = (H,u1, . . . , uh) is a fixed distinctly-rooted digraph with |E(H)| = k; and the goal
of this section is to give a polynomial-time algorithm to test whether there is an H-infusion in an
input T = (T, s1, . . . , sh) where T is a supertournament. The idea is: given as input a rooted digraph

3



T = (T, s1, . . . , sh), where T is a supertournament, run the algorithm of 2.2 on its underlying semi-
complete digraph with m = 4k. If the output is an m-useful pair (u, v), identify u and v in T and
run the algorithm of 2.2 on the underlying semi-complete digraph of the resulting supertournament.
Repeat this process until 2.2 returns an enumeration of a semi-complete digraph S with cutwidth at
most 72m2 + 8m. Then S is the underlying semi-complete digraph of a supertournament T ′ which
can be obtained from T by successively identifying m-useful pairs. We can now use the outputted
enumeration of V (S) = V (T ′) to solve H-infusion using dynamic programming.

We need to show two things: that identifying the vertices of an m-useful pair (for sufficiently large
m) does not change the answer to the algorithmic question; and to explain the dynamic programming.
We begin with the first.

We say that rooted digraphs G = (G, s1, . . . , sh) and G′ = (G′, s1, . . . , sh) are H-infusion-
equivalent if G contains an infusion of H if and only if G′ does. We now prove some results regarding
when certain digraphs are H-infusion-equivalent.

Let G = (G, v1, . . . , vm) be a rooted digraph and let x, y ∈ V (G). We say that G′ = (G′, v′1, . . . , v
′
m)

is obtained from G by identifying x and y (into a new vertex z) if the following conditions hold:

• V (G′) = (V (G) \ {x, y}) ∪ {z}

• for all u, v ∈ V (G′) with u, v 6= z, EG′

uv = EG
uv

• for all u ∈ V (G′) with u 6= z, EG′

uz = EG
ux ∪ EG

uy and EG′

zu = EG
xu ∪ EG

yu

• Ezz = Exy ∪ Eyx ∪ Exx ∪ Eyy

• for 1 ≤ i ≤ h, if vi 6= x, y then v′i = vi and if vi = x or vi = y then v′i = z.

We will show the following:

2.3 Let G = (G, s1, . . . , sh) be a rooted digraph and let (u, v) be a 4k-useful pair in G. If G′ is
obtained from G by identifying the vertices u and v, then G and G′ are H-infusion-equivalent.

For the proof we need two lemmas. If η is an infusion of H in G, we define

Eη =
⋃

e∈E(H)

E(η(e)).

2.4 Let G = (G, s1, . . . , sh) be a rooted digraph and let (u, v) be a 2k-pair of type 1 in G. Let
G′ be obtained from G by adding some edges from u to v. Then G and G′ = (G′, s1, . . . , sh) are
H-infusion-equivalent.

Proof. Since G′ is obtained from G by adding edges, it follows immediately that if G contains an
infusion of H then so does G′.

For the converse, suppose that G′ contains an infusion of H and let η be an infusion of H in G′

such that Eη contains as few edges from u to v as possible. If Eη contains no edges from u to v then
we are done, so we may assume that for some e ∈ E(H) with e = xy, η(e) contains an edge f from u
to v. We want to show that there exists a route from η(x) to η(y) that does not use any edges from
u to v and is edge-disjoint from η(g) for all g ∈ E(H) \ {e}.
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Let A be a set of 2k vertices such that u is adjacent to every vertex in A and v is adjacent from
every vertex in A (such a set exists because (u, v) is a 2k-pair of type 1). Since a route can use
at most one edge with tail u and at most one edge with head v, it follows that there exists a ∈ A
such that none of the routes η(g), with g ∈ E(H) \ {e}, uses an edge of Eua ∪ Eav . Let η′(e) be
obtained from η(e) by replacing f with a path u-a-v (such a path exists because both Eua and Eav

are non-empty by the definition of A). Define η′(z) = η(z) for all z ∈ V (H) and η′(g) = η(g) for all
g ∈ E(H) \ {e}. Then η′ is an infusion of H in G′ and Eη′ contains fewer edges from u to v than
Eη, contrary to our choice of η. This proves 2.4.

The flavor of the following result is similar to that of 2.4, but the result is much stronger and the
proof is more involved.

2.5 Let G = (G, s1, . . . , sh) be a rooted digraph and let (u, v) be a 4k-useful pair in G. Let G′ be
obtained from G by adding some edges from u to v or some edges from v to u (possibly both). Then
G and G′ = (G′, s1, . . . , sh) are H-infusion-equivalent.

Proof. If both (u, v) and (v, u) are 2k-pairs of type 1, then the result follows immediately from 2.4.
So we may assume that (u, v) is a 4k-pair of type 1 and (v, u) is a 4k-pair of type 2. Furthermore,
by 2.4 we may assume that there are k edges from u to v in both G and G′. Once again, it is clear
that if G contains an infusion of H then so does G′, so we just need to prove the converse.

Let P be a 4k-realization for (v, u) of type 2, and let M be the set of bodies of the elements of
P. Suppose that G′ contains an infusion of H and let η be such an infusion such that Eη contains
as few edges from v to u as possible, and subject to that M ∩ Eη is minimal. Let

M ′ = {e = ab : e ∈ M and (Eva ∪ Ebu) ∩ Eη = ∅}.

Since a route can use at most one edge with tail v and at most one edge with head u, and since (v, u)
is a 4k-pair of type 2, it follows that |M ′| ≥ 2k.

(1) For all g ∈ E(H), the route η(g) uses at most two edges of M ′.

Suppose that for some g ∈ E(H) with g = rs, η(g) uses at least three edges of M ′. Let e1 =
a1b1, e2 = a2b2 and e3 = a3b3 be three edges of M ′ that are used by η(g) in the specified order. From
the definition of M ′ it follows that (Evai

∪ Ebiu) ∩ Eη = ∅ for 1 ≤ i ≤ 3. Since there are k edges
from u to v in G′, there exists f = uv such that f 6∈ Eη \ E(η(g)). Let W be obtained from η(g) by
replacing the part of the route from b1 to a3 by a path b1-u-v-a3 (where the middle edge of the path
is f and the other two are any members of Eb1u and Eva3

, respectively). Then W is a walk. Let Q
be a route from η(r) to η(s) contained in W . Then Q is disjoint from Eη \ E(η(g)). Define η′ as
follows. Let η′(z) = η(z) for all z ∈ V (H) and let η′(e) = η(e) for all e ∈ E(H) \ {g}; let η′(g) = Q.
Then M ∩ Eη′ ⊂ M ∩ Eη, contrary to our choice of η. This proves (1).

(2) For all g ∈ E(H), the route η(g) does not use any edges from v to u.

Suppose that for some e ∈ E(H) with e = xy, η(e) contains an edge f from v to u. Since |M ′| ≥ 2k,
it follows from (1) that there is an edge g = ab ∈ M ′ such that g 6∈ Eη \E(η(e)). Let W be obtained
from η(e) by replacing f by a path v-a-b-u (where the middle edge of the path is g and the two other
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edges are members of Eva and Ebu respectively). Then once again W is a walk; let P be a route
from η(x) to η(y) contained in W . Then P does not use any edges from v to u and is disjoint from
Eη \ E(η(e)). Define η′ as follows. Let η′(z) = η(z) for all z ∈ V (H); let η′(e) = P and η′(g) = η(g)
for all g ∈ E(H) \ {e}. Then η′ is an infusion of H in G′ and M ∩ Eη′ ⊂ M ∩ Eη, contrary to our
choice of η. This proves (2).

It follows from (2) that η is an infusion of H in G. Hence, G and G′ are H-infusion-equivalent,
as desired. This proves 2.5.

Proof of 2.3. First we show that if G contains an infusion of H then so does G′. Let η be an
infusion of H in G. Let w ∈ V (G′) be the vertex resulting from the identification of u and v. Define
η′ as follows. For x ∈ V (H), if η(x) 6= u or v, then η′(x) = η(x) and if η(x) ∈ {u, v} then η′(x) = w.
Next, for e ∈ E(H) with e = xy, η(e) naturally corresponds to a walk in G′ (since all edges of G
are edges of G′). This walk contains a route P from η′(x) to η′(y); we let η′(e) = P . Now η′ is an
infusion of H in G′.

Conversely, suppose that G′ contains an infusion of H. By 2.5, we may assume that there are
k edges from u to v and k edges from v to u in G. Let η′ be an infusion of H in G′. Define η as
follows. For 1 ≤ i ≤ h, η(ui) = si. For x ∈ V (H) \ {u1, . . . , uh}, if η′(x) 6= w, then η(x) = η′(x), and
if η′(x) = w then η(x) = u. For e ∈ E(H) with e = xy, η′(e) naturally corresponds to a route from
η′(x) to η′(y) in G (after possibly adding an unused uv or vu edge); let η(e) be that route. Now η
is an infusion of H in G. This proves 2.3.

Before we can explain the dynamic programming in more detail, we need the following two results.
The idea for them is due to Daniel Marx and greatly simplifies our dynamic programing as well as
making it fixed-parameter tractable.

2.6 Let T be a supertournament and let (v1, . . . , vn) be an enumeration of V (T ) with cutwidth ≤ θ.
Let i, j be integers such that 0 ≤ i < j ≤ n and j − i > 2θ + 2k; then (vj , vi) is a 2k-pair of type 1.

Proof. Let S = {vi+1, . . . , vj−1}; then |S| ≥ 2θ + 2k. Since the enumeration has cutwidth ≤ θ, it
follows that vi is adjacent to at most θ members of S and vj is adjacent from at most θ members
of S. So there are at least 2k members of S that are adjacent to vi and adjacent from vj and hence
(vj , vi) is a 2k-pair of type 1. This proves 2.6.

2.7 Let T be a supertournament and let (v1, . . . , vn) be an enumeration of V (T ) with cutwidth ≤ θ.
Let T ′ be a supertournament obtained from T by the following two operations:

• for 1 ≤ i, j ≤ n, if j − i > 2θ + 2k, then add or remove vjvi edges so that there are k of them

• for u, v ∈ V (T ), if there are more than k edges from u to v in T , remove uv edges so that there
are k of them.

Then T is H-infusion-equivalent to T ′ and the cutwidth of T ′ is ≤ θ.

Proof. This follows from 2.6 and the fact that for all u, v ∈ V (T ) a route of T can use at most one
edge from u to v.
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Let T, T ′ and (v1, . . . , vn) be as in the statement of 2.7. We say that T ′ is the k-smoothing of T
with respect to (v1, . . . , vn) and that T ′ is k-smoothed with respect to (v1, . . . , vn).

Throughout what follows θ ≥ 0 is a fixed integer. We will describe an algorithm to test whether
an input rooted supertournament T = (T, s1, . . . , sh), with an enumeration (v1, . . . , vn) of cutwidth
at most θ contains an infusion of H. From 2.7 we may assume that T is k-smoothed with respect to
(v1, . . . , vn). Let S = {s1, . . . , sh}.

Before we describe the algorithm, we need to prove a few preliminary results. They are mod-
ifications of some results found in [2]. Let b = 2θ + 2k. For b ≤ i ≤ n let Qi = {v1, . . . , vi−b},
Ri = {vi−b+1, . . . , vi}, and Ti = {vi+1, . . . , vn}.

Let J be a digraph (not necessarily a subdigraph of T ) such that

• Ri ∪ Ti ∪ S ⊆ V (J) ⊆ V (T )

• for all u, v ∈ V (J) with not both u, v ∈ Qi ∪Ri, the number of edges from u to v in J is equal
to the number of edges from u to v in T

• for all distinct u, v ∈ V (J)∩ (Qi ∪Ri), there are at most k edges of J from u to v, and for each
v ∈ V (J) ∩ (Qi ∪ Ri) there are at most k loops incident with v.

We say that the rooted digraph J = (J, s1, . . . , sh) is an i-extension (relative to T, s1, . . . , sh, and
the enumeration (v1, . . . , vn)). Let Cp,q

i denote the set of all pairs (J,X) such that

• J is an i-extension, |V (J) ∩ Qi| ≤ p, and J \ Ti has at most q edges

• X ⊆ V (J) ∩ Qi

• there is an infusion η of H in J such that X = η(V (H)) ∩ Qi, where η(V (H)) denotes {η(v) :
v ∈ V (H)}.

2.8 Let b ≤ i ≤ n and let T, S, θ,Qi, Ri, and Ti be as above. Let p ≥ |V (H)| + k + 2θ + h + 1, and
let J be an i-extension such that |V (J)∩Qi| ≤ p and J \Ti has at most q edges. Let X ⊆ V (J)∩Qi.
Then (J,X) ∈ Cp,q

i if and only if either

• (J,X) ∈ Cp−1,q
i , or

• there exists v ∈ V (J) ∩ (Qi \ (S ∪ X)) such that (J \ v,X) ∈ Cp−1,q
i , or

• there exists e ∈ E(J) with both ends in Qi ∪ Ri, such that (J \ e,X) ∈ Cp,q−1
i , or

• there exist vertices v ∈ Qi and u,w ∈ Qi ∪Ri, with u,w 6= v and v 6∈ X, and edges e = uv and
f = vw of J , such that (J′,X) ∈ Cp,q−1

i , where J′ = (J ′, s1, . . . , sh) and J ′ denotes the digraph
obtained from J by deleting e and f and adding a new edge from u to w.

Proof. The “if” part is clear, and holds for all p. For “only if”, suppose that J ∈ Cp,q
i , and let η be

an infusion of H in J such that X = η(V (H))∩Qi. Let K be the minimal subdigraph of J such that
η is an infusion of H in K = (K, s1, . . . , sh); thus, K is formed by the union of S and the vertices
η(v) (v ∈ V (H)) and all the subdigraphs η(e) (e ∈ E(H)). It follows that every vertex u ∈ K has
outdegree at most k in K, since each η(e)(e ∈ E(H)) uses at most one edge with tail u.
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Let F,F ′ ⊆ E(J) be the set of edges of J from Qi∪Ri to Ti, and from Ti to Qi ∪Ri, respectively.
For each edge e of H, η(e) is a route, and between any two members of F ′ in η(e) there is a member
of F , and consequently |E(η(e)) ∩ F ′| ≤ |E(η(e)) ∩ F | + 1. Since |F | ≤ θ, by summing over all
e ∈ E(H) we deduce that |E(K)∩F ′| ≤ θ + k. Consequently there are at most 2θ + k vertices in Qi

that are adjacent in K to or from a vertex in Ti. Moreover |η(V (H)) ∩ Qi| ≤ |V (H)|. Now we may
assume that |Qi ∩ V (J)| = p, for otherwise the first assertion of the theorem holds. Thus

|Qi ∩ V (J)| = p > |V (H)| + k + 2θ + h,

and it follows that there exists v ∈ (Qi ∩ V (J)) \ S such that v is not adjacent in K to or from any
member of V (Ti), and v 6∈ η(V (H)) ∪ S. Thus v 6∈ S ∪ X. Now we may assume that v ∈ V (K),
since otherwise the second assertion of the theorem holds. From the minimality of K it follows that
there is an edge g = ab ∈ E(H) such that v belongs to η(g); and v 6= η(a), η(b) from our choice of v.
Let u,w be the vertices of η(g) such that e = uv and f = vw are edges of η(g); then u,w ∈ Qi ∪ Ri,
since v is not adjacent in K to or from any member of V (Ti). Let J ′ be obtained from J by deleting
e, f and adding a new edge from u to w; then there is an infusion η′ of H in J′ = (J ′, s1, . . . , sh)
with X = η′(V (H)) ∩ Qi. If J′ is an i-extension then the fourth assertion of the theorem holds, so
we may assume not; and so there are more than k edges of J ′ from u to w. Consequently there are
more than k edges of J with tail u and head in Qi ∪ Ri (namely, at least k with head w, and one
with head v). Since u has outdegree at most k in K, as we saw earlier, it follows that there is an
edge of J with tail u and head in Qi ∪Ri that is not an edge of K. But then the third statement of
the theorem holds. This proves 2.8.

Let Cp
i be the union of the sets Cp,q

i over all q ∈ {0, 1, . . . , (p + b)2k}. (Note that if J is an i-
extension then J \Ti has at most (p+b)2k edges.) Two members (J,X), (J′,X ′) ∈ Cp

i are equivalent if
there is an isomorphism between J and J ′ taking X to X ′ and fixing each of vi−b+1, . . . , vn, s1, . . . , sh.

We claim that for every integer p, the number of equivalence classes of members of Cp
i is bounded

above by a function of p,H, and θ, independent of i. Let W0 be the set of vertices in Qi that are
adjacent in T to some vertex in Ri ∪ Ti. Let W = W0 ∪ Ri ∪ ({s1, . . . , sh} ∩ Qi). Since |W0| ≤ θ,
and |Ri| = b = 2θ + 2k, and ({s1, . . . , sh} ∩ Qi)| ≤ h, it follows that |W | ≤ 3θ + 2k + h. Now let
(J,X) ∈ Cp

i ; and take an enumeration µ of V (J) \ Ti. There are no edges of J from Qi \ W to Ti.
Moreover, since T is k-smoothed, 2.6 implies that every vertex in Qi \ W is joined by k edges of J
from every vertex of Ti. Consequently, to specify the equivalence class of (J,X), it suffices

• to specify the isomorphism type of the labelled digraph (J \ Ti, µ) (since J \ Ti has at most
p + b vertices and at most (p + b)2k edges, the number of possibilities here is bounded by a
function of p,H),

• to specify whether the jth term of µ is equal to w, for 1 ≤ j ≤ |V (J) \ Ti| and each w ∈ W
(there are at most (|W | + 1)p+b possibilities here), and

• to specify whether the jth term of µ belongs to X for 1 ≤ j ≤ |V (J) \ Ti| (2p+b possibilities).

This proves our claim that the number of equivalence classes of members of Cp
i is bounded above by

a function of p,H, and θ.
Since the set Cp

i is a union of some of these equivalence classes, we handle this set in the algorithms
that follow by listing its equivalence classes. For simplicity we speak of “a knowledge of Cp

i ” when

8



what we mean is “a knowledge of the equivalence classes of i-extensions that have union Cp
i ”, and so

on.

2.9 Let b ≤ i < n. Let p = |V (H)| + k + 2θ + h. Then Cp
i can be computed from a knowledge of

Cp
i+1 in time that depends only on θ and H.

Proof. Starting from a knowledge of Cp
i+1, we shall first compute Cp+1

i+1 , and then use this to compute
Cp

i , as follows.

To compute Cp+1
i+1 from a knowledge of Cp

i+1. From 2.8 we can compute Cp+1,0
i+1 from a knowledge

of Cp,0
i+1 and for q ≥ 1 we can compute Cp+1,q

i+1 from a knowledge of Cp
i+1 and of Cp+1,q−1

i+1 , all in time

that depends only on θ and H; and by repeating for q = 1, . . . , (b + p)2k we compute Cp+1
i+1 .

To compute Cp
i from a knowledge of Cp+1

i+1 . Let J = (J, s1, . . . , sh) be an i-extension such that
J \ (Ti ∪ Ri) has at most p vertices, and let X ⊆ V (J) \ (Ti ∪ Ri). We need to determine whether
(J,X) ∈ Cp

i . But J is an (i + 1)-extension, and therefore (J,X) ∈ Cp
i if and only if (J,X) ∈ Cp+1

i+1 or

(J,X ∪ {vi−b+1}) ∈ Cp+1
i+1 .

This proves 2.9.

We are now ready to give the algorithm.

2.10 For each distinctly-rooted digraph H = (H,u1, . . . , uh) with |E(H)| = k and each integer θ,
there is an algorithm with running time O(n) which, given as input a k-smoothed rooted supertour-
nament T = (T, s1, . . . , sh) with |V (T )| = n, and an enumeration (v1, . . . , vn) of V (T ) with cutwidth
at most θ, outputs whether there is an infusion η of H in T.

Proof. Let p = |V (H)|+k+2θ+h. Now Cp
n can be computed in constant time, since all n-extensions

have at most 2k + 2θ + p vertices and at most 2(p + b)2k edges, where b = 2k + 2θ (so we just check
them all, up to equivalence). By n applications of 2.9, we can determine Cp

0 in time O(n). But the
only 0-extension is T itself (because of the condition that V (J) ⊆ V (T ) for i-extensions), and so
there is an infusion η of H in T if and only if Cp

0 6= ∅. This proves 2.10.

Notice that this can easily be modified to do strong or weak immersion (just change infusion to
strong (or weak) immersion in the definition of Cp,q

i above); and it can do strong or weak infusion,
with the natural definitions. The algorithm can also be modified to output an infusion if one exists,
rather than just a yes/no answer (for each equivalence class in Cp,q

i , we store one member, and a
corresponding infusion of H). We omit these details.

Finally, as claimed at the start of this section, we have:

2.11 For every distinctly-rooted digraph H = (H,u1, . . . , uh) with |E(H)| = k, there is an algorithm
with running time O(n5) which, given a rooted supertournament T = (T, s1, . . . , sh) with |V (T )| = n,
outputs whether there is an infusion of H in T.

Proof. The algorithm consists of at most n steps, each of which takes time at most O(n4). Let
T0 = T .

At Step i: Let Qi be the underlying semi-complete digraph of Ti. Run 2.2 on Qi with m = 4k.

9



• If the output is a 4k-useful pair (u, v), obtain Ti+1 by identifying u and v in Ti (by 2.3, this
doesn’t change the outcome). Go to Step i + 1.

• If the output is an enumeration of V (Qi) with cutwidth at most 72m2 +8m, run the algorithm
of 2.10 on the k-smoothing of Ti with this enumeration.

Notice that an enumeration of V (Qi) with cutwidth ≤ θ is also an enumeration of the k-smoothing
of Ti (with respect to the same enumeration) with cutwidth ≤ kθ. This proves 2.11.

Once again, this can be modified to output the infusion if one exists.

The algorithm for solving H-immersion uses some of the same tools but is simpler as it has only
one step and does not require any identifications of vertices. First, we need the following.

2.12 Let H be a digraph with |V (H)| = t and let T be a supertournament. Let m = 2t(t+2) and
suppose that T has an m-useful pair. Then T contains a strong immersion of H.

An analogous result for semi-complete digraphs appears in [2] and the proof is identical. There-
fore, we omit it here. Now we are ready to give the algorithm.

2.13 For every digraph H, there is an algorithm with running time O(n4), which, with input a
supertournament T with n vertices, outputs whether there is a strong or weak immersion of H in T .

Proof. Let Q be the underlying semi-complete digraph of T . Run 2.2 on Q with m = 2t(t+2),
where t = |V (H)|. If the output is an m-useful pair of vertices, return yes, an immersion exists, by
2.12. Otherwise we obtain an enumeration of V (T ) = V (Q) with cutwidth at most 72m2 + 8m in Q.
Consequently this enumeration has cutwidth at most k(72m2 + 8m) in the k-smoothing of T . Run
the algorithm of 2.10 (with infusion replaced by immersion) on the k-smoothing of T with respect
to this enumeration. This proves 2.13.

As with infusion, this can be modified to output the immersion if one exists.

3 Useful sequences and cutwidth

The goal of the next two sections is to develop algorithms, analogous to those of Section 2, for
digraphs with bounded independence number. The main result of this section is a key lemma that
allows us to prove the correctness of our algorithms. Before its statement we need a few more
definitions.

First, we generalize the concept of m-useful pairs to that of m-useful sequences. Let T be a
digraph, let m ≥ 0 be real, let t ≥ 2 be an integer, and let u1, . . . , ut ∈ V (T ) be distinct. We say that
(u1, . . . , ut) is a partial m-useful sequence if (ui, ui+1) is an m-pair of type 1 or 2 for all 1 ≤ i ≤ t−1;
if in addition (ut, u1) is an m-pair of type 1 or 2 we say that (u1, . . . , ut) is an m-useful sequence. We
say that (u1, . . . , ut) is an almost m-useful sequence if (ui, ui+1) is an m-pair of type 1, 2, or 3 for
1 ≤ i ≤ t (where ut+1 = u1). In general, for all useful or almost-useful m-sequences, all subscripts
are to be read modulo the length of the sequence.
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If G is a digraph, we define λ(G) to be the maximum t such that some vertex of G belongs to
t directed cycles that are pairwise edge-disjoint, and µ(G) the maximum t such that some vertex
of G belongs to t directed cycles that are otherwise pairwise vertex-disjoint. Two vertices u, v are
k-edge-connected if there are k pairwise edge-disjoint directed paths from u to v, and k pairwise
edge-disjoint directed paths from v to u. We say u, v are strongly k-vertex-connected if there are k
directed paths from u to v, each with an internal vertex and pairwise vertex-disjoint except for u, v,
and there are k directed paths from v to u, each with an internal vertex and pairwise vertex-disjoint
except for u, v.

We are now ready to state the main result of this section.

3.1 For every set S of simple digraphs with independence number at most α, the following are
equivalent:

1. There exists m such that every member of S has cutwidth at most m.

2. There exists m such that λ(G) ≤ m for every G ∈ S.

3. There is a digraph H such that H cannot be infused in any member of S.

4. There exists m such that for each G ∈ S, no two vertices of G are m-edge-connected.

5. There exists m such that for each G ∈ S, there do not exist m vertices of G that are pairwise
m-edge-connected.

6. There is a digraph H such that H cannot be weakly immersed in any member of S.

7. There is a digraph H such that H cannot be strongly immersed in any member of S.

8. There exists m such that for each G ∈ S, G does not contain an m-useful sequence of length
at most 2α + 2.

9. There exists m such that for each G ∈ S, G does not contain an m-useful sequence.

In [2], we showed that for α = 1, the following two statements are equivalent to the statements
of 3.1:

• There exists m such that µ(G) ≤ m for every G ∈ S.

• There exists m such that for each G ∈ S, no two vertices of G are strongly m-vertex-connected.

However for larger values of α, these two statements are not equivalent to the statements of 3.1.
To see the non-equivalence, let T1, T2, T3 be transitive tournaments each with k vertices and let H
be obtained from T1 ∪T2∪T3 by adding three vertices v1, v2, v3 and for 1 ≤ i ≤ 3 making vi adjacent
to all of V (Ti) and adjacent from all of V (Ti−1) (where the subscript are modulo 3). Then λ(G) = k
(the vertices v1, v2, v3 all belong to k edge-disjoint directed cycles) but µ(G) = 1. Also, no two
vertices of G are strongly 2-vertex-connected.

This section is dedicated to the proof of 3.1. That 3.1.4 implies 3.1.5 is trivial, and so is that
3.1.6 implies 3.1.7. To see that 3.1.5 implies 3.1.6, take H to be the digraph obtained from a directed
cycle of length m by replacing each edge by m parallel edges. If H can be weakly immersed in G,
then the m images of the vertices of H are pairwise m-edge-connected.
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To see that 3.1.2 implies 3.1.3, let H be the digraph with one vertex and m loops; if H can
be infused in G then the image of the vertex of H belongs to m directed cycles that are pairwise
edge-disjoint. To see that 3.1.3 implies 3.1.2, note that if some digraph H cannot be infused in G,
then λ(G) < |E(H)|, because otherwise we could find an infusion by mapping every vertex of H to
the same vertex of G. Moreover, in [2] it was shown that 3.1.1 implies 3.1.2, and 3.1.2 implies 3.1.4.
Thus we have shown so far that each of the first six statements of 3.1 implies the next. It remains
to show that 3.1.7 implies 3.1.8, and 3.1.8 implies 3.1.9, and 3.1.9 imples 3.1.1.

We turn first to the proof that 3.1.7 implies 3.1.8, and for that we need one lemma. Let (v1, . . . , vt)
be an m-useful sequence and for 1 ≤ i ≤ t, let Pi be an m-realization for (vi, vi+1). Let

P =

t⋃

i=1

Pi.

We say that P is an m-realization for (v1, . . . , vt) and we say that P is clean if the elements of P are
pairwise internally-disjoint. The sequence (v1, . . . , vt) is a clean m-useful sequence if it has a clean
m-realization. The next result relates the existence of m-useful sequence to the existence of clean
m-useful sequences.

3.2 Let m, t be integers, let G be a digraph and let (v1, . . . , vt) be a t(2m + 1)-useful sequence in G.
Then (v1, . . . , vt) is a clean m-useful sequence in G.

Proof. Since (v1, . . . , vt) is a t(2m + 1)-useful sequence, it follows that for each i with 1 ≤ i ≤ t
there exists a set Pi of t(2m + 1) internally-disjoint directed paths from vi to vi+1, all with at most
two internal vertices. Each Pi contains at most t paths that use a vertex of {v1, . . . , vt} \ {vi, vi+1}.
Let Qi ⊆ Pi be a set of 2mt paths, none of which contains a vertex of {v1, . . . , vt} \ {vi, vi+1}. Next,
for 1 ≤ i ≤ t, we choose a subset Q′

i ⊆ Qi, with |Q′
i| = m, inductively, as follows. Suppose that we

have already chosen Q′
1, . . . ,Q

′
i. Let I be the set of interior vertices of the elements of Q′

1 ∪ · · · ∪Q′
i.

Then I ≤ 2mi. Since Qi+1 contains 2mt paths, we can choose a subset Q′
i+1 of m paths, all the

same length, such that no element of Q′
i+1 uses a vertex of I.

By construction, all the paths in
t⋃

i=1

Q′
i

are pairwise internally vertex disjoint. Hence, (v1, . . . , vt) is a clean m-useful sequence in G. This
proves 3.2.

3.3 For every digraph H and every integer α ≥ 0, there exists an integer m′ ≥ 0 such that there
is a strong immersion of H in every simple digraph G with α(G) ≤ α that contains an m′-useful
sequence of length at most 2α + 2. In particular, 3.1.7 implies 3.1.8.

Proof. Let H ′ be the digraph obtained by subdividing twice every edge of H (that is, replacing
each edge by a directed three-edge path joining the same pair of vertices, so that these paths have
pairwise disjoint interiors). Every digraph that admits a strong immersion of H ′ also admits a
strong immersion of H, and so it suffices to prove the result for H ′. Thus we may assume that H
is a subdigraph of a tournament; and indeed, by adding any missing edges, we may assume that H
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is a tournament. Let |V (H)| = r and let m be ian integer so large that every graph on m vertices
contains either an independent set of size α+1 or a clique of size 2r(r+2) (such a value of m exists by
Ramsey’s theorem [5]). Let m′ = (2m+1)(2α+2). We claim that this choice of m′ satisfies (1). For
let G be a digraph with α(G) ≤ α, and let (u1, . . . , ut) be an m′-useful sequence in G of length at
most 2α + 2. Then by 3.2, (u1, . . . , ut) is a clean m-useful sequence. Let P be a clean m-realization
for (u1, . . . , ut) and let {P1, . . . , Pm} ⊆ P be an m-realization for (u1, u2). Let X ⊆ V (G) be the set
of second vertices of the paths P1, . . . , Pm. Thus |X| = m.

From the definition of a clean m-useful sequence, it follows (since m ≥ 2r(r+2)) that there is a set
{Qe : e ∈ E(H)} of directed, pairwise edge-disjoint paths from u2 to u1. Now by Ramsey’s theorem
[5], the subdigraph of G induced on X (say G|X) contains a tournament of size at least 2r(r+2) (since
α(G|X) ≤ α). Also, every tournament with 2n vertices contains a transitive tournament with n
vertices. Thus we may assume that there exist x1, x2, . . . , xr2+2r ∈ X, such that xi is adjacent to xj

for 1 ≤ i < j ≤ r2 + 2r. Let V (H) = {h1, . . . , hr}, and for 1 ≤ i ≤ r define η(hi) = xi(r+1). For
each edge e = hihj of H, we define η(e) as follows. Let p = i(r + 1) and q = j(r + 1). Then (in the
obvious notation) η(e) is the directed path

η(hi) = xp-xp+j-Pp+j-u2-Qe-u1-xq−i-xq = η(hj).

It is easy to check that η is a strong immersion of H in G. This proves 3.3.

Now we turn to the proof that 3.1.9 implies 3.1.1. We need two lemmas, the following.

3.4 Let G be a simple digraph with n vertices and independence number α ≥ 1. Then there exists
a vertex in V (G) with outdegree at least n−α

2α
. Similarly, there exists a vertex in V (G) with indegree

at least n−α
2α

.

Proof. Let H be the underlying undirected graph of G. Then H has no clique of size α + 1 and so
by Turan’s theorem [7], H has at most 1

2n2(α−1
α

) edges. It follows that H has at least n2−nα
2α

edges,
and hence so does G. So the average outdegree of a vertex in G is at least n−α

2α
, and so there is a

vertex in V (G) with outdegree at least n−α
2α

. The proof for indegree is identical. This proves 3.4.

Let G be a digraph. For every enumeration (v1, . . . , vn) of the vertex set of G, we define the
converse-degree of this enumeration to be the maximum over all j ∈ {1, . . . , n} of the larger of

• the number of edges with head vj and tail in {v1, . . . , vj−1}

• the number of edges with tail vj and head in {vj+1, . . . , vn}.

We define the converse-degree of G to be the smallest k such that some enumeration of V (G) has
converse-degree k. Thus, the converse-degree of G is at most the cutwidth of G. We need:

3.5 Let G be a simple digraph with independence number at most α ≥ 1, and let m ≥ 0. If G has
no m-useful sequence then the converse-degree of G is at most α(2m + 1).
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Proof. Since G has no m-useful sequence, there is an enumeration (v1, . . . , vn) of V (G) such that
for all distinct i, j ∈ {1, . . . , n}, if (vi, vj) is an m-pair of type 1 or 2 then j < i. We claim this
enumeration has converse-degree at most α(2m + 1). For let 1 ≤ j ≤ n, and let

X = {vi : 1 ≤ i < j, vi is adjacent to vj}, Y = {vi : j < i ≤ n, vi is adjacent from vj}.

We claim that |X| < α(2m + 1). Thus we may assume that X 6= ∅, and so, since the independence

number of G is at most α, by 3.4 some vertex vi ∈ X is adjacent to at least |X|−α
2α

other members
of X. Since i < j (because vi ∈ X), it follows that (vi, vj) is not an m-pair of type 1 or 2, and so
|X|−α

2α
< m, that is |X| < α(2m + 1). Similarly, |Y | < α(2m + 1), and so G has converse-degree at

most α(2m + 1).

We deduce:

3.6 Let G be a simple digraph with independence number at most α ≥ 1 and let m ≥ 0 be an integer.
Suppose that G has no m-useful sequence. Then the cutwidth of G is at most 4α3(m + 1)(2m + 1).
In particular, 3.1.9 implies 3.1.1.

Proof. As in 3.5 we consider the enumeration (v1, . . . , vn) of V (G) such that for all distinct
i, j ∈ {1, . . . , n}, if (vi, vj) is an m-pair of type 1 or 2 then j < i. By 3.5, this enumeration
has converse-degree at most α(2m + 1). We claim that this enumeration has cutwidth at most
4α3(m + 1)(2m + 1). For let 2 ≤ j ≤ n; let A = {vj , vj+1, . . . , vn} and B = {v1, . . . , vj−1}. We must
show that there are at most 4α3(m+1)(2m+1) edges with tail in B and head in A. Let F be the set
of all such edges. Since the enumeration has converse-degree at most α(2m+1), we have immediately

(1) Every vertex of G is incident with at most α(2m + 1) edges in F .

Suppose that there are at least 4α3(m + 1)(2m + 1) edges in F . These edges form the edge set of
a bipartite graph (with bipartition (B,A)) with maximum degree at most α(2m + 1); and so every

set of vertices that meets every edge of this bipartite graph has cardinality at least 4α3(m+1)(2m+1)
α(2m+1) =

4α2(m+1). By König’s theorem it follows that this bipartite graph has a matching M of cardinality
4α2(m + 1); and so there exist distinct a1, . . . , a4α2(m+1) ∈ A and distinct b1, . . . , b4α2(m+1) ∈ B such
that bi is adjacent in G to ai for 1 ≤ i ≤ 4α2(m + 1).

Let A′ = {a1, . . . , a4α2(m+1)}. By 3.4, some vertex a ∈ A′ is adjacent from at least |A′|−α
2α

other

members of A′. Let A′′ ⊆ A′ be the set of in-neighbors of a in A′. Then |A′′| ≥ |A′|−α
2α

= 2α(m+1)− 1
2 .

Let B′′ = {bi : ai ∈ A′′}. Again by 3.4, some vertex b ∈ B′′ is adjacent to at least |B′′|−α
2α

other
members of B′′. Since (b, a) is not an m-pair of type 1 or 2 (because b ∈ B and a ∈ A), it follows

that |B′′|−α
2α

< m. Hence, since |B′′| = |A′′|,

m >
|B′′| − α

2α
≥

2α(m + 1) − 1 − α

2α
= (m + 1) −

α + 1

2α
≥ m,

a contradiction. We conclude that there are fewer than 4α3(m+1)(2m+1) edges in F , and therefore
the cutwidth of G is at most 4α3(m + 1)(2m + 1). This proves 3.6.
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Finally, we need to show that 3.1.8 implies 3.1.9. This needs several lemmas.

3.7 Let G be a simple digraph with n vertices and independence number α ≥ 1. Then there exists
a vertex in V (G) with outdegree and indegree at least n−2α

4α
.

Proof. Let V1 ∈ V (G) be the set of vertices with at least as many in-neighbors as out-neighbors
and let V2 ∈ V (G) be the set of vertices with at least as many out-neighbors as in-neighbors. Then
either |V1| ≥

n
2 or |V2| ≥

n
2 . Suppose that |V1| ≥

n
2 . Then by 3.4, there exists a vertex v ∈ V1 with

at least |V1|−α
2α

out-neighbors. It follows that v has outdegree and indegree at least n−2α
4α

. The case
where |V2| ≥

n
2 is analogous. This proves 3.7.

3.8 Let G be a digraph with independence number α and let u, v ∈ V (G). Suppose that there are
m internally-disjoint directed paths from u to v, all with exactly three internal vertices. Then there
exists a vertex w ∈ V (G) such that there are at least m−2α

4α
internally-disjoint directed paths from u

to w and at least m−2α
4α

internally-disjoint directed paths from w to v, all with exactly two internal
vertices.

Proof. Let P1, . . . , Pm be internally-disjoint directed paths from u to v, all with exactly three
internal vertices. Let xi be the middle vertex of the path Pi and let M = {xi : 1 ≤ i ≤ m}. By
3.7, applied to the underlying simple digraph induced on M , there exists a vertex w ∈ M that has
at least m−2α

4α
out-neighbors and at least m−2α

4α
in-neighbors. It is easy to see that w satisfies the

conditions of the conclusion of 3.8.

Let G be a digraph and let X,Y ⊆ V (G). A pairing from X to Y is a set of vertices and edges
{v1, . . . , vl, el+1, . . . , em} with ei = xiyi, such that v1, . . . , vl ∈ X ∩ Y , xi ∈ X \ Y and yi ∈ Y \X for
all i with l + 1 ≤ i ≤ m, and v1, . . . , vl, xl+1, . . . , xm, yl+1, . . . , ym are all distinct. We call

{v1, . . . , vl, xl+1, . . . , xm, yl+1, . . . , ym}

the support of the pairing. If X and Y are disjoint, then a pairing from X to Y is referred to as a
matching from X to Y .

3.9 Let G be a digraph with independence number at most α and let m ≥ 0 be an integer. Then
given X1, . . . ,Xα+1 ⊆ V (G) with |Xi| ≥ 2mα + 1 for 1 ≤ i ≤ α+ 1, there is a pairing of size m from
Xi to Xj for some i 6= j.

Proof. Suppose that for all i 6= j there is no pairing of size m from Xi to Xj . Then for all choices
of i 6= j, by König’s theorem [4], there is a set Rij of at most 2m vertices that hits all edges from Xi

to Xj and from Xj to Xi and such that Xi ∩ Xj ⊆ Rij ⊆ Xi ∪ Xj. Let

R =
⋃

i6=j

Rij .

Then for each i ∈ {1, . . . , α+1}, |Xi∩R| ≤ 2mα and so Xi \R 6= ∅. For 1 ≤ i ≤ α+1, let vi ∈ Xi \R
(notice that the vi’s are all distinct). Then {v1, . . . , vα+1} is an independent set of size α + 1 in G,
a contradiction. This proves 3.9.
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The next result relates the existence of almost m-useful sequences to the existence of m-useful
sequences.

3.10 Let G be a digraph with independence number at most α, let m ≥ 0 be an integer, and let
m′ = ⌈m−2α

4α
⌉. Suppose that G has an almost m-useful sequence of length t. Then G has a m′-useful

sequence of length ≤ 2t.

Proof. It follows immediately from 3.8 that G has a sequence (u1, . . . , ur) of length ≤ 2t, such that
(ui, ui+1) is an m′-pair of type 1 or 2 for all 1 ≤ i ≤ r (note however, that u1, . . . , ur might not be
distinct). The sequence (u1, . . . , ur) then has a subsequence of length at most r ≤ 2t such that all of
its terms are distinct and every pair of consecutive terms (modulo its length) is an m′-pair of type
1 or 2. Therefore, G has an m′-useful sequence of length ≤ 2t.

We need one more lemma:

3.11 Let h, α ≥ 1 be integers, and let m = 1 + 2αh. Let G be a digraph with independence number
at most α and let (u1, . . . , ut) be a partial m-useful sequence in G. Suppose that (ut, u1) is an h

3 -pair
of type 1, 2 or 3. Then there exists an m′-useful sequence in G of length at most 2α + 2, where
m′ ≥ m

24α2 − 1.

Proof. The proof is by induction on t. For 1 ≤ i ≤ t − 1, let Pi be an m-realization for (ui, ui+1)
and let Ai be the set of second vertices of the members of Pi. For 1 ≤ i, j ≤ t, we write i ⇒ j if
there is a pairing of size h from Ai to Aj .

(1) If 1 ≤ i, j ≤ t − 1 and j 6= i + 1, and j ⇒ i, then (uj , ui+1) is an h
3 -pair of type 1, 2, or

3.

If at least h/3 vertices in Aj are adjacent to ui+1, then (uj , ui+1) is a h
3 -pair of type 1, as re-

quired. So we may assume there is a pairing of size at least 2h/3 from Aj to Ai, such that no vertex
in its support belongs to Aj and is adjacent to ui+1. Consequently there are at least 2h/3 directed
paths from uj to ui+1, pairwise vertex-disjoint except for uj and ui+1, and each with three or four
edges. At least h/3 of these have the same length, and so (uj , ui+1) is an h

3 -pair of type 2 or 3. This
proves (1).

(2) We may assume that there do not exist i, j with 1 ≤ i, j ≤ t − 1 and j ≥ i + 1 such that
j ⇒ i.

For suppose that for some such i, j there is a pairing of size h from Aj to Ai. Suppose first that
j ≥ i + 2. By (2), (uj , ui+1) is an h

3 -pair of type 1, 2, or 3. Hence, (ui+1, . . . , uj) is a sequence that
satisfies the assumptions of 3.11 and is shorter than (u1, . . . , ut), and so we win by induction. Thus
we may assume that j = i + 1. Let A′ be the intersection of Ai with the support of this pairing.
Thus |A′| = h. Let m′ = h−2α

4α
. By 3.7, there exists v ∈ Ai such that v is adjacent to at least m′

members of A′ and adjacent from at least m′ members of A′. Consequently, (v, ui+1) is an m′-useful
sequence, and since m′ ≥ m

24α2 − 1, in this case the result holds. This proves (2).

For 1 ≤ i ≤ t − 1, we say that j is the follower of i if i < j ≤ t and i ⇒ j − 1, and subject to
these conditions j is as large as possible. (Note that i ⇒ i, and so i has a follower, for 1 ≤ i ≤ t− 1)
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. Let i1 = 1, and inductively if we have defined is and is 6= t, let is+1 be the follower of is. Since
is+1 > is for all s, there exists k such that ik = t.

(3) k ≤ α + 1.

If 1 ≤ r < s < k, then ir 6⇒ is by our choice of i1, . . . , ik; and is 6⇒ ir by (2). Hence, it fol-
lows that {Ai1 , . . . , Aik−1

} is a set of k − 1 sets, each of size m = 2hα + 1, such that there is no
pairing of size h between any two of them. Therefore, by 3.9, k ≤ α + 1. This proves (3).

By (1), (uij , uij+1
) is an h

3 -pair of type 1, 2 or 3, for 1 ≤ j < k. Also, by hypothesis, (uik , ui1) =

(t, 1) is an h
3 -pair of type 1, 2, or 3. Hence, (ui1 , . . . , uik) is an almost h

3 -useful sequence of length at
most α + 1 in G, and so by 3.10, G has an m′-useful sequence of length at most 2α + 2 with

m′ ≥
h
3 − 2α

4α
=

m−1
6α

− 2α

4α
≥

m

24α2
− 1.

This proves 3.11.

3.12 For all integers m′, α ≥ 0, there exists an integer m ≥ 0 such that every digraph G with
independence number at most α that contains an m-useful sequence contains an m′-useful sequence
of length at most 2α + 2. In particular, 3.1.8 implies 3.1.9.

Proof. Let G be a digraph with independence number at most α and let m′ ≥ 0 be an integer.
Let m = 24α2(m′ + 1) and let (u1, . . . , ut) be an m-useful sequence. Then (u1, . . . , ut) satisfies the
hypothesis of 3.11 and so G contains an m′-useful sequence of length at most 2α + 2. This proves
3.12.

This completes the proof of 3.1.

We can convert 3.6, 3.11, and 3.12 to an algorithm as follows:

3.13 There is an algorithm with running time O(n4), which, given as input a simple digraph G with
n vertices and integers m′, α ≥ 0, outputs one of the following:

• an m′-useful sequence of length ≤ 2α + 2 if one exists, or

• a true statement that α(G) > α, or

• an enumeration of V (G) with cutwidth at most 4α3(m + 1)(2m + 1), where m = 24α2(m′ + 1).

Proof. For every pair of distinct vertices u, v, we determine whether (u, v) is an m-pair of type
1 or 2 as follows. We find the set A of out-neighbors of u, and the set B of in-neighbors of v. If
|A ∩B| ≥ m we conclude that (u, v) is an m-pair of type 1. Otherwise, we run a bipartite matching
algorithm on the graph formed by the edges of G from A to B (note that such an edge might have
ends in A ∩B) and if we find a matching of size m then (u, v) is an m-pair of type 2; and otherwise
(u, v) is not an m-pair of type 1 or 2. For each pair this takes time O(n2) (since m is a constant)
and so the total time for all pairs is O(n4).
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Next, let H be the auxiliary digraph defined as follows: V (H) = V (G) and uv is an edge of H
if and only if (u, v) is an m-pair of type 1 or 2 in G. We determine whether H has a directed cycle
(this takes time O(n2)). If H does not have a directed cycle, we construct an acyclic ordering of H
(this takes time O(n2)). This enumeration has cutwidth at most 4α3(m + 1)(2m + 1) in G. We then
output this enumeration.

If H has a directed cycle, then define another auxiliary digraph H ′ as follows: V (H ′) = V (G) and
uv is an edge of H ′ if and only if (u, v) is an m′-pair of type 1 or 2 in G. We find the shortest directed
cycle in H ′ in time O(n3). This cycle corresponds to the shortest m′-useful sequence (u1, . . . , ut) in
G. If t ≤ 2α + 2, then we output the sequence (u1, . . . , ut). Otherwise, by 3.12, α(G) > α, and so
we output this fact. This proves 3.13.

4 The algorithms

As already mentioned earlier, the algorithm to solve H-infusion in digraphs with bounded indepen-
dence number is similar to the one for supertournaments. The idea is as follows: given as input a
digraph G with independence number at most α, run the algorithm of 3.13 on its underlying simple
digraph with some appropriate value of m. If the output is an m-useful sequence (u1, . . . , ut) of
length at most 2α + 2, then identify all the vertices of that sequence and run the algorithm of 3.13
on the underlying simple digraph of the resulting digraph. Repeat this process until 3.13 returns an
enumeration of the vertex set of a simple digraph S with bounded cutwidth. Finally, as with su-
pertournaments, we then use the outputted enumeration of V (S) to solve H-infusion using dynamic
programming.

There are two steps of the algorithm that need to be explained in more detail. First, we need to
show that identifying the vertices of an m-useful sequence of bounded length (for sufficiently large
m) does not affect the feasibility of the H-infusion problem. Second, we need to explain the dynamic
programming. We begin with a result that justifies the former.

4.1 Let H = (H,u1, . . . , uh) be a distinctly-rooted digraph with |E(H)| = k. Let G = (G, s1, . . . , sh)
be a rooted digraph and let (v1, . . . , vt) be an (8kt + t)-useful sequence in G. If G′ is obtained from G
by identifying v1, . . . , vt, then G′ = (G′, s1, . . . , sh) contains an infusion of H if and only if G does.

Proof. By 3.2, (v1, . . . , vt) is a clean 4k-useful sequence in G. Let P be a clean 4k-realization for
(v1, . . . , vt) and let Pi ⊆ P be a 4k-realization for (vi, vi+1).

First we show that if G contains an infusion of H then so does G′. Let η be an infusion of H in
G. Let w ∈ V (G′) be the vertex resulting from the identification of v1, . . . , vt. Define η′ as follows.
For x ∈ V (H), if η(x) 6∈ {v1, . . . , vt}, then η′(x) = η(x) and if η(x) ∈ {v1, . . . , vt} then η′(x) = w.
Next, for e ∈ E(H) with e = xy, η(e) naturally corresponds to a walk in G′ (since all edges of G
are edges of G′). This walk contains a route P from η′(x) to η′(y); we let η′(e) = P . Now η′ is an
infusion of H in G′.

It remains to prove the converse. Let L = {i : (vi, vi+1) is an m-pair of type 2}. For i ∈ L, let
Bi be the set of bodies of the elements of Pi and let B =

⋃
i∈L Bi. For an infusion η′ of H in G′ and

for i ∈ L, define Bη′

i ⊆ Bi as follows: b ∈ Bη′

i if b is the body of a path P ∈ Pi with legs a, c such
that a, c 6∈ Eη′ . Define

Bη′

=
⋃

i∈L

Bη′

i .
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Now suppose that there is an infusion of H in G′ and let η′ be such an infusion with Eη′ ∩ Bη′

minimal (this makes sense because E(G) = E(G′)).

(1) For all g ∈ E(H), the route η′(g) uses at most two edges of Bη′ .

Suppose that for some g ∈ E(H) with g = rs, η′(g) uses at least three edges of Bη′ . Let f1 =
a1b1, f2 = a2b2 and f3 = a3b3 be three edges of Bη′ that are used by η′(g) in the specified order.
From the definition of Bη′ , it follows that there exist edges f4 = b1w and f5 = wa3 such that
f4, f5 6∈ Eη′ . Let W be obtained from η′(g) by replacing the part of the route from b1 to a3 by a
path b1-w-a3 (where the two edges of the path are f4 and f5). Then W is a walk in G′. Let Q be a
route of G′ from η′(r) to η′(s) contained in W . Then Q is disjoint from Eη′ \ E(η′(g)). Define η as
follows. Let η(z) = η′(z) for all z ∈ V (H) and let η(e) = η′(e) for all e ∈ E(H) \ {g}; let η(g) = Q.
Then Bη ∩ Eη ⊂ Bη′ ∩ Eη′ , contrary to our choice of η′. This proves (1).

Now since all the edges of G′ are also edges of G, it follows that in G each η′(e) is either a route or
the disjoint union of two routes (each of which is a directed path). Our goal is to show that we can
modify η′ to obtain an infusion of H in G.

Let E(H) = {e1, . . . , ek}. We want to show that for each 1 ≤ i ≤ t there exist edge-disjoint
paths P 1

i , . . . , P k
i ∈ Pi such that P j

i is disjoint from Eη′ \ E(η′(ej)) for all 1 ≤ j ≤ k. If i 6∈ L, then
there exist 2k members of Pi that are disjoint from Eη′ , because for each e ∈ E(H), η′(e) meets
at most two members of Pi; so choose P 1

i , . . . , P k
i ∈ Pi from among those 2k. Suppose now that

i ∈ L. Since a route can use at most one edge with tail vi and at most one edge with head vi+1, and
since (vi, vi+1) is a 4k-pair of type 2, it follows that |Bi

η′ | ≥ 2k. Now by (1), we can choose disjoint

M1, . . . ,Mk ⊆ Bi
η′ such that |Mj | = 2 and η′(ej) is disjoint from Bi

η′ \Mj. For 1 ≤ j ≤ k, choose P j
i

such that its body is in Mj . Now for 1 ≤ j ≤ k, let

Cj =
t⋃

i=1

P j
i .

Then C1, . . . , Ck are edge-disjoint cycles of G such that for each j, {v1, . . . , vt} ⊆ V (Cj) and Cj is
disjoint from Eη′ \ E(η′(ej)).

We are now ready to construct an infusion η of H in G. For 1 ≤ l ≤ h, let η(ul) = sl. For
z ∈ V (H) \ {u1, . . . , uh}, if η′(z) 6= w, then let η(z) = η′(z), and if η′(z) = w then let η(z) = v1. For
ej ∈ E(H) with ej = xjyj, η′(ej)∪Cj contains a route from η′(xj) to η′(yj); let η(ej) be that route.
Now η is an infusion of H in G. This proves 4.1.

Next, we discuss the dynamic programming for general digraphs with bounded cutwidth. First
we set up and prove a result for all digraphs.

For a digraph G, a weak component is a component of the underlying undirected graph of G. Let
P be a route and let Q be a subdigraph of P , and let q be the number of weak components of Q
that have at least one edge. Define c(P,Q) as follows: if P is a directed cycle with end v and some
component of Q is a path with v in its interior, then c(P,Q) = q + 1, and otherwise c(P,Q) = q.

Let G be a digraph, and let (e1, . . . , em) be some enumeration of its edge set. For 0 ≤ i ≤ m,
let Gi be the digraph with V (Gi) = V (G) and E(Gi) = {ei+1, . . . , em}. If P1, . . . , Pk are pairwise
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edge-disjoint routes of G, we say that (P1, . . . , Pk) is t-cohesive (with respect to this enumeration) if

k∑

j=1

c(Pj , Pj ∩ Gi) ≤ t

for for 0 ≤ i ≤ m.
Let a1, b1, . . . , ak, bk be vertices of a digraph G (not necessarily distinct). We say that the sequence

of pairs ((a1, b1), . . . , (ak, bk)) is feasible in G if there exist edge-disjoint routes P1, . . . , Pk such that
for 1 ≤ i ≤ k, ai and bi are the first and last vertices of Pi, respectively. We say that the sequence of
pairs is t-cohesively feasible (with respect to a given enumeration of E(G)) if in addition (P1, . . . , Pk)
is t-cohesive. Note that if a list of pairs is t-cohesively feasible then it has at most t terms.

4.2 For all t there is an algorithm as follows:

• Input: A digraph G with |V (G)| = n, and an enumeration (e1, . . . , em) of its edge set.

• Output: The set of all sequences of pairs of vertices of G that are t-cohesively feasible in G
(with respect to the given enumeration).

• Running time: O(m2t+1).

Proof. Let Gi be defined as above; then (ei+1, . . . , em) is an enumeration of the edge set of Gi.
Let Ci be the set of all sequences of pairs of vertices of G that are t-cohesively feasible in Gi with
respect to the enumeration (ei+1, . . . , em). Thus Cm = {∅} since Gm has no edges, and C0 is the
desired output. Moreover, each Ci has at most 2n2t members. Some notation: if S is a sequence with
k terms and 1 ≤ j ≤ k, Sj denote the sequence obtained from S by omitting the jth term. Also,
if S = ((a1, b1), . . . , (ak, bk)) then S + (a, b) denotes the sequence ((a1, b1), . . . , (ak+1, bk+1)) where
(ak+1, bk+1) = (a, b).

We claim that for 1 ≤ i ≤ m, Ci−1 can be computed from a knowledge of Ci in time O(m2t).
To see this, let S = ((a1, b1), . . . , (ak, bk)) be a sequence of pairs of vertices of G with k ≤ t. Let us
show how to decide whether S ∈ Ci−1 (assuming we can test membership of Ci in constant time).
Let ei have tail u and head v. We claim that S ∈ Ci−1 if and only if either:

• S ∈ Ci, or

• there exists j with 1 ≤ j ≤ k such that aj = u and bj = v and Sj ∈ Ci, or

• there exists j with 1 ≤ j ≤ k such that aj = u and bj 6= v and Sj + (v, bj) ∈ Ci, or

• there exists j with 1 ≤ j ≤ k such that aj 6= u and bj = v and Sj + (aj, u) ∈ Ci, or

• k < t and there exists j with 1 ≤ j ≤ k such that aj 6= u and bj 6= v and (Sj +(aj , u))+(v, bj) ∈
Ci.

To see this, it is easy to check the “if” part; let us show “only if”. Suppose then that S ∈ Ci−1, and
let P1, . . . , Pk be the corresponding routes of Gi−1. If none of P1, . . . , Pk contain the edge ei, then
S ∈ Ci, so we may assume that Pj contains ei say. (This value of j is unique since P1, . . . , Pk are
edge-disjoint.) If ei is the first or last edge of Pj then the second, third or fourth bulleted statement
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holds; so we assume that aj 6= u and bj 6= v. It follows that c(Pj , Pj ∩Gi) = 2, and c(Ph, Ph∩Gi) = 1
for 1 ≤ h ≤ k with h 6= j (note that this is true even if aj = bj). Since (P1, . . . , Pk) is t-cohesive, it
follows that

t ≥
k∑

h=1

c(Ph, Ph ∩ Gi) = k + 1,

and so the fifth bulleted statement holds. This proves our claim.
All the bulleted statements can be checked in constant time, and so we can check whether

S ∈ Ci−1 in constant time, as claimed. Since there are at most m2t choices of S to check, we can
compute Ci−1 from Ci in time O(m2t). This has to be run for each of the m values of i, so the total
running time is O(m2t+1). This proves 4.2.

Let G be a digraph and let (v1, . . . , vn) be an enumeration of V (G). Let (e1, . . . , em) be an
enumeration of E(G) obtained as follows: first list all the edges with head v1, next all the edges with
head v2, etc. We say that (e1, . . . , em) is a head-first enumeration of E(G) derived from (v1, . . . , vn).

4.3 Let G be a digraph and let (v1, . . . , vn) be an enumeration of V (G) with cutwidth at most θ.
Let (e1, . . . , em) be a head-first enumeration of E(G) derived from (v1, . . . , vn), and let P1, . . . , Pk

be edge-disjoint routes in G. Then (P1, . . . , Pk) is (k + 2θ)-cohesive with respect to the enumeration
(e1, . . . , em).

Proof. Let Gi be the digraph with V (Gi) = V (G) and E(Gi) = {ei+1, . . . , em}. We need to show
that

k∑

j=1

c(Pj , Pj ∩ Gi) ≤ k + 2θ,

where c(Pj , Pj ∩ Gi) is the same as in the definition of t-cohesive.
Let vh be the head of ei+1. Let F be the set of edges with tail in {v1, . . . , vh−1} and head in

{vh, . . . , vn}, and let F ′ be the set of edges with tail in {v1, . . . , vh} and head in {vh+1, . . . , vn}. Fix
j with 1 ≤ j ≤ k for the moment.

(1) c(Pj , Pj ∩ Gi) ≤ 1 + |(F ∪ F ′) ∩ E(Pj)|.

If Pj is a subdigraph of Gi then this is clear, so we may assume that Pj is not a subdigraph of
Gi. Let Q1, . . . , Qq be the maximal weakly-connected subdigraphs of Pj ∩ Gi that have at least one
edge, numbered in their order in Pj if Pj is a path, and such that the end of Pj does not belong to
Q2, . . . , Qq if Pj is a cycle. It follows that each Qs is a directed path (since Pj is not a subdigraph of
Gi). We claim that for each s > 1, the first edge fs of Qs belongs to F ∪ F ′. For let es be the edge
of Pj with head the tail of fs; and let es, fs be uv, vw say. From the maximality of Qs, es /∈ E(Gi),
and so v = va for some a ≤ h. Let w = vb. Since fs ∈ E(Gi), it follows that b ≥ h. But v 6= w since
fs is not a loop, and so either a < h or b > h. Consequently fs ∈ F ∪ F ′. This proves our claim. It
follows that q− 1 ≤ |(F ∪F ′)∩E(Pj)|. If c(Pj , Pj ∩Gi) = q, then this proves (1), so we may assume
that Pj is a cycle and its end is an internal vertex of Q1, and c(Pj , Pj ∩ Gi) = q + 1. But then the
same argument shows that the first edge of Q1 is in F ∪ F ′, and so q ≤ |(F ∪ F ′) ∩ E(Pj)|; and so
again (1) follows. This proves (1).
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Since |F ∪ F ′| ≤ 2θ, by summing the inequality of (1) over all j, we deduce that

k∑

j=1

c(Pj ∩ Gi) ≤ k + 2θ.

It follows that (P1, . . . , Pk) is (k + 2θ)-cohesive with respect to the enumeration (e1, . . . , em). This
proves 4.3.

Let η be an infusion of H in G, and choose an enumeration {e1, . . . , ek} of E(H). For 1 ≤ i ≤ k,
let ai, bi be the first and last vertices of η(ei) respectively. The sequence ((a1, b1), . . . , (ak, bk)) is
called a frame of η. (Thus all frames of η can be obtained one from another by reordering the terms.)
We now use 4.2 and 4.3 for the following:

4.4 For each digraph H with |E(H)| = k and integer θ, there exists an algorithm as follows:

• Input: A digraph G and an enumeration of its vertex set (v1, . . . , vn) with cutwidth ≤ θ.

• Output: The set of all frames of infusions of H in G.

• Running time: O(|E(G)|2k+4θ+3).

Proof. Let (e1, . . . , e|E(G)|) be the head-first enumeration of E(G) derived from (v1, . . . , vn). Run
the algorithm of 4.2 with t = k + 2θ and input G and this enumeration. For each sequence of pairs
outputted by the algorithm we can determine whether it is the frame of an infusion of H in constant
time. Moreover, by 4.3, every frame of an infusion of H will arise in such a way. This proves 4.4.

Finally, we have the main result of this paper. If G is a digraph, its k-pruning is the maximal
subdigraph G′ of G such that every vertex of G′ is incident with at most k loops, and for all distinct
vertices u, v, there are at most k edges from u to v.

4.5 For every distinctly-rooted digraph H = (H,u1, . . . , uh) with |E(H)| = k, and every integer
α ≥ 0, there is an algorithm with running time O(n4k+8θ+6), where θ = 4α3(m + 1)(2m + 1),
m = 24α2(m′ + 1), and m′ = 8k(2α + 2) + (2α + 2), which, given as input a rooted digraph G =
(G, s1, . . . , sh) with |V (G)| = n outputs one of the following:

• a true statement that there exists an infusion of H in G, or

• a true statement that there does not exist an infusion of H in G, or

• a true statement that α(G) > α.

Proof. As mentioned earlier, the idea is very similar to the one for supertournaments. However, the
steps are slightly more involved. We may assume that H has no isolated vertices except for possibly
u1, . . . , uh. Let G0 = G and start at Step 1.

At Step i: Let Qi−1 be the underlying simple digraph of Gi−1. Run the algorithm of 3.13 on
Qi−1 with m′ = (8k + 1)(2α + 2).

22



• If the output is a m′-useful sequence (v1, . . . , vt) with t ≤ 2α + 2, obtain Gi by identifying v1

and v2 in Gi−1 (by 4.1, this does not change the outcome). Go to Step i + 1.

• If the output is an enumeration of V (Qi−1) with cutwidth at most θ = 4α3(m+1)(2m+1), where
m = 24α2(m′ + 1), run the algorithm of 4.4 on the k-pruning of Gi−1 with this enumeration.
For each frame φ of an infusion returned by 4.4 determine whether φ(ui) = si for all 1 ≤ i ≤ h,
and if such a frame is found, return that an infusion exists. Otherwise, return that an infusion
does not exist. This can be done in constant time for each frame. Hence, the running time for
this step is O((kn2)2k+4θ+3) = O(n4k+8θ+6).

• If the output is a true statement that α(Qi−1) > α, output this statement.

Notice that an enumeration of V (Qi) with cutwidth ≤ θ is also an enumeration of the k-pruning of
Gi with cutwidth ≤ kθ. The running time is dominated by the last step (the dynamic programming).
This proves 4.5.

Once again, this can be modified to output the infusion if one exists.
Next, we describe the algorithm to solve H-immersion. First, we note that 4.2 and 4.4 can be

modified to output all frames of immersions instead of infusions. For that, in 4.2 the pairs of edges
would come with sets of forbidden vertices that the paths are not allowed to go through. We omit
the details.

4.6 For every digraph H and every integer α ≥ 0, there exists an algorithm, with running time
O(nc) where c depends on H and α, which, given as input a digraph G with n vertices, outputs one
of the following:

• a true statement that there exists a strong (or weak) immersion of H in G, or

• a true statement that there does not exist a strong (or weak) immersion of H in G, or

• a true statement that α(G) > α.

Proof. Run the algorithm of 3.13 on the underlying simple digraph of G with m′ as in 3.3.

• If the output is an m′-useful sequence, return that the immersion exists (this is justified by
3.3).

• If the output is an enumeration of V (G) with cutwidth at most 4α3(m + 1)(2m + 1), where
m = 24α2(m′ + 1), run a version of the algorithm of 4.4 on the k-pruning of G with this
enumeration, modified to search for immersions of H in G instead of searching for infusions.

• If the output is a true statement that α(G) > α, output this statement.

Once again, the running time is dominated by the dynamic programming.

5 Acknowledgement

We would like to express our thanks to the referee for a very careful reading of the paper that resulted
in significant improvements.

23



References

[1] J. Bang-Jensen, “Edge-disjoint in- and out-branchings in tournaments and related path prob-
lems”, J. Combin. Theory Ser. B, 51 (1991), 1-23.

[2] M.Chudnovsky, A.O.Fradkin, and P.Seymour, “Tournament immersion and cutwidth”, J Com-
binatorial Theory, Ser. B, 102 (2012), 93–101.

[3] S.Fortune, J.Hopcroft, J.Wyllie, “The directed subgraph homeomorphism problem”, Theor.
Comp. Sci. 10 (1980), 111-121.
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