
Edge Disjoint Paths in Moderately Connected

Graphs

Satish Rao⋆1 and Shuheng Zhou⋆⋆2

1 University of California, Berkeley, CA 94720, USA,
satishr@cs.berkeley.edu

2 Carnegie Mellon University, Pittsburgh, PA 15213, USA,
szhou@cs.cmu.edu

Abstract. We study the Edge Disjoint Paths (EDP) problem in undi-
rected graphs: Given a graph G with n nodes and a set T of pairs of
terminals, connect as many terminal pairs as possible using paths that
are mutually edge disjoint. This leads to a variety of classic NP-complete
problems, for which approximability is not well understood. We show a
polylogarithmic approximation algorithm for the undirected EDP prob-
lem in general graphs with a moderate restriction on graph connectivity;
we require the global minimum cut of G to be Ω(log5 n). Previously, con-
stant or polylogarithmic approximation algorithms were known for trees
with parallel edges, expanders, grids and grid-like graphs, and most re-
cently, even-degree planar graphs. These graphs either have special struc-
ture (e.g., they exclude minors) or there are large numbers of short dis-
joint paths. Our algorithm extends previous techniques in that it applies
to graphs with high diameters and asymptotically large minors.

1 Introduction

In this paper, we explore approximation for the edge disjoint paths (EDP) prob-
lem: Given a graph with n nodes and a set of terminal pairs, connect as many of
the specified pairs as possible using paths that are mutually edge disjoint. EDP
has a multitude of applications in areas such as VLSI design, routing and ad-
mission control in large-scale, high-speed and optical networks. Moreover, EDP
and its variants have also been prominent topics in combinatorics and theoret-
ical computer science for decades. For example, the celebrated theory of graph
minors of Robertson and Seymour [31] gives a polynomial time algorithm for
routing all the pairs given a constant number of pairs. However, varying the
number of terminal pairs leads to a variety of classic NP-complete problems, for
which approximability is an interesting problem. In a recent breakthrough [3],

Andrews and Zhang showed an Ω(log
1
3
−ǫ n) lower bound on the hardness of

approximation for undirected EDP.

⋆ Supported in part by NSF Award CCF-0515304.
⋆⋆ This material is based on research sponsored in part by the Army Research Office,

under agreement number DAAD19–02–1–0389 and NSF grant CNF–0435382. This
work was done while the author was visiting UC Berkeley.

In this work, we show a polylogarithmic approximation algorithm for the
undirected EDP problem in general graphs with a moderate restriction on graph
connectivity; we require that there are Ω(log5 n) edge disjoint paths between ev-
ery pair of vertices, i.e., the global min cut is of size Ω(log5 n). If this moderately
connected case holds, we can route Ω(OPT/ polylogn) pairs using disjoint paths
with congestion 1, where OPT is the maximum number of pairs that one can
route edge disjointly for the given EDP instance. Previously, constant or poly-
logarithmic approximation algorithms were known for trees with parallel edges,
expanders, grids and grid-like graphs, and most recently, even-degree planar
graphs [22]. The results rely either on excluding a minor (or other structural
properties), or the fact that very short paths exist. Our algorithm extends pre-
vious techniques; for example, our graphs can have high diameter and contain
very large minors. We are hopeful that this constraint on the global minimum
cut can be removed if congestion on each edge is allowed to be O(log logn).
Formally, we have the following result.

Theorem 1. There is a polylogn-approximation algorithm for the edge disjoint
path problem in a general graph G with minimum cut and node degree Ω(log5 n).

1.1 The Approach

We begin with a fractional relaxation of the problem, where each terminal pair
can route a real-valued amount of flow between 0 and 1, and this flow can be
split fractionally across a set of distinct paths. This can be expressed as an LP
and can be solved efficiently. We denote the value of an optimal fractional LP
solution as OPT∗. Our algorithm routes a polylogarithmic fraction of this value
using integral edge-disjoint paths.

The algorithm proceeds by decomposing the graph into well-connected sub-
graphs, based on OPT∗, so that a subset of the terminal pairs, that remain
within each subgraph are “well-connected”, following a decomposition procedure
of Chekuri, Khanna, and Shepherd (CKS05) [11]. Then, for each well connected
subgraph G, we construct an expander graph that can be embedded into G us-
ing its terminal set. We use a result by Khandekar, Rao and Vazirani in [21],
where they show that one can build an expander graph H on a set of nodes V by
constructing O(log2 n) perfect matchings M1, . . . ,MO(log2 n) between O(log2 n)
sets of equal partitions of V in an iterative manner.

Our contribution along this line is to route each perfect matching Mt, ∀t, on
one of the O(log2 n) (edge-disjoint) subgraphs of G. The “splitting procedure”,
motivated by Karger’s theorem [19], simply assigns edges of G uniformly at ran-
dom into O(log2 n) subgraphs. Using Karger’s arguments, we show that all cuts
in each subgraph have approximately the correct size with high probability. Here
we crucially use the polylogarithmic lower bound on the min-cut. We then route
each matching Mt on a unique split subgraph using a max-flow computation
with unit capacities. Thus, we can route all O(log2 n) matchings edge disjointly
in G and embed an expander graph H integrally with congestion 1 on G.

After we construct such an expander graph H for each G, we route terminal
pairs in H greedily via short paths. This is effective since there are plenty of short

disjoint paths in an expander graph[7, 23]. Since a node in H maps to a cluster of
nodes in G that is connected by a spanning tree, we put a capacity constraint on
V (H): we allow only a single path to go through each node. We greedily connect
a pair of terminals from G via a path in H while taking both nodes and edges
along the chosen path away from H , until no short paths remain between any
unrouted terminal pair. For the pairs we indeed route, we know the congestion
is 1 in the original graph G, since we use each edge and node in H only once,
and edges and nodes of H correspond to disjoint paths of G. We use a lemma
in [16] to show that such a greedy method ensures that we route a sufficiently
large number of such pairs; We note that this method was proposed but analyzed
somewhat differently by Kleinberg and Rubinfeld [23]. Our analysis is more like
that of Obata [29], and yields somewhat stronger bounds. Our approximation
factor is O(log10 n). (A breakdown of this factor is described in Theorem 4.)

1.2 Related Work

Much of recent work on EDP has focused on understanding the polynomial-time
approximability of the problem. Previously, constant or polylogarithmic approx-
imation algorithms were known for trees with parallel edges [16], expanders [23,
28], grids and grid-like graphs [5, 6, 24, 25], and even-degree planar graphs [22].
For general graphs, the best approximation ratio for EDP in directed graphs is
O(min(n2/3,

√
m)) [8, 26, 27, 32, 33], where m denotes number of edges in the

input graph. This is matched by the Ω(m
1
2
−ǫ)-hardness of approximation result

by Guruswami et al [18]. For undirected and directed acyclic graphs, the up-
per bound has been improved to O(

√
n) [13]. For even-degree planar graphs, an

O(log2 n)-approximation [22] is obtained recently.
A variant is the EDP with Congestion (EDPwC) problem, where the goal

is to route as many terminals as possible, such that at most ω demands can
go through any edge in the graph. For EDPwC on planar graphs, for ω = 2
and 4, O(log n) [10, 11] and constant [12] approximations have been obtained

respectively. For undirected graphs, the hardness results [1] are Ω(log1/2−ǫ n)

for EDP and Ω(log(1−ǫ)/(ω+1) n) for EDPwC.
A closely related problem is the congestion minimization problem: Given a

graph and a set of terminal pairs, connect all pairs with integral paths while
minimizing the maximum number of paths through any edge. Raghavan and
Thompson [30] show that by applying a randomized rounding to a linear relax-
ation of the problem one obtains an O(log n/ log logn) approximation for both
directed and undirected graphs. For hardness of approximation, Andrews and
Zhang [2] show a result of Ω((log log1−ǫm)) for undirected and an almost-tight
result [4] of Ω(log1−ǫm) for directed graphs, improving that of Ω(log logm) by
Chuzhoy and Naor [15]. Finally, the All-or-Nothing Flow (ANF) problem [9, 11]
is to choose a subset of terminal pairs such that for each chosen pair, one can
fractionally route a unit of flow for all the chosen pairs. The hardness result for
ANF and ANF with Congestion is the same as that of EDP and EDPwC [1].
Currently, there exists an O(log2 n) [11] approximation for ANF. Indeed, we
build on the techniques developed in this approximation algorithm for ANF.

2 Definitions and Preliminaries

We work with graphG = (V,E) with unit-capacity edges, where we allow parallel
edges, unless we specify a capacity function for edges explicitly. For a capacitated
graph G = (V,E, c), where c is an integer capacity function on edges, one can
replace each edge e ∈ E with c(e) parallel edges. For a cut (S, S̄ = V \ S) in G,
let δG(S), or simply δ(S) when it is clear, denote the set of edges with exactly
one endpoint in S in G. Let cap(S, S̄) = |δG(S)| denote the total capacity of
edges in the cut. The edge expansion of a cut (S, S̄), where |S| ≤ |V | /2, is

φ(S) = cap(S,S̄)
|S| . The expansion of a graph G is the minimum expansion over all

cuts in G. We call a graph G an expander if its expansion is at least a constant.
An instance of a routing problem consists of a graph G = (V,E) and a set of

terminals pairs T = {(s1, t1), (s2, t2), . . . , (sk, tk)}. Nodes in T are referred to as
terminals. Given an EDP instance (G, T) with k pairs of terminals, we will use
the following LP relaxation as specified in (2.1), to obtain an optimal fractional
solution. Let Pi, ∀i, denote the set of paths joining si and ti in G.

max

k
∑

i=1

xi s.t. (2.1)

xi −
∑

p∈Pi

f(p) = 0, ∀1 ≤ i ≤ k (2.2)

∑

p:e∈p

f(p) ≤ 1, ∀e ∈ E (2.3)

xi, f(p) ∈ [0, 1], ∀1 ≤ i ≤ k, ∀p (2.4)

We let OPT∗(G, T) be the value of this linear program for the optimal solution
f̄ of the LP. In the text, where we always refer to a single instance, we primarily
use OPT∗.

Given a non-negative weight function π : X → R
+ on a set of nodes X in G,

we use following definitions from [11].

Definition 1. ([11]) X is π-cut-linked in G if ∀S such that π(S∩X) =
∑

x∈S∩X π(x) ≤
π(X)/2, |δ(S)| ≥ π(S ∩X); We also refer to (G,X) as a π-cut-linked instance.

Definition 2. ([11]) A set X is π-flow-linked in G if there is a feasible multi-
commodity flow for the problem with demand dem(u, v) = π(u)π(v)/π(X) be-
tween every unordered pair of terminals u, v ∈ X.

Remark 1. Note this is a product flow with dem(u, v) = w(u)w(v), where w(u) =
π(u)/

√

π(X).

We have the following proposition immediately from the definitions above.

Proposition 1. ([11]) If a set X is π-flow-linked in G, then it is π/2-cut-
linked. If X is π-cut-linked in G, then it is π/β(G)-flow-linked, where β(G) is
the worst-case mincut-maxflow gap on product multicommodity flow instances
on G.

Definition 3. ([11]) A set of nodes X is well-linked in G if ∀S such that |S ∩
X | ≤ |X |/2, |δ(S)| ≥ |S ∩X |.

3 Decomposition and an Outline of Routing Procedure

In this section, we first present Theorem 2 regarding a preprocessing phase of our
algorithm that decomposes and processes (G, T) into a collection of cut-linked
instances with a min-cut Ω(log3 n) in each subgraph. We then state our main
theorem with a breakdown of the polylogn approximation factor. Finally, we give
an outline on how we route terminal pairs in each cut-linked instance (G, T);
Note that we use G to refer to a subgraph that we obtain through Theorem 2
starting from Section 3.1 till the end of the paper, while G refers to the original
input graph. We first specify the following parameters.

– Parameters related to original EDP instance (G, T)

• ω log2 n is the number of matchings as in Figure 3.1;

• min-cut κ = Ω(log3 n) = 12(ln n)(ω log2 n+1)
ǫ2 , where ǫ < 1;

• β(G) = O(log n): the worst-case mincut-maxflow gap on product com-
modity flow instances on G;

• λ(n) = 10β(G) log OPT∗(G, T) = O(log2 n): as introduced in [11].

Theorem 2. There is a polynomial time decomposition algorithm, that given an
EDP instance (G, T), where G has a min-cut of size Ω(κ log2 n), and a solution
f̄ to the fractional EDP problem, with xi, ∀i, being specified as in (2.1), produces
a disjoint set of subgraphs and a weight function π : V (G) → R

+ on V (G) where

1. there are α1, . . . , αk such that ∀u in a subgraph H, π(u) =
∑

i:si=u,ti∈H αixi,
(note that this implies ∀siti ∈ T , xi contributes the same amount of weight
to π(si) and π(ti));

2. the set of nodes V (H) in each subgraph H is π-cut-linked in H;

3. each subgraph H has min-cut κ = Ω(log3 n);

4. ∀u in a subgraph H s.t. π(H) ≥ Ω(log3 n), π(u) ≤∑i:si=u,ti∈H
xi

β(G)λ(n) ;

5. and π(G) = Ω(OPT∗/β(G)λ(n)).

The decomposition essentially says that summing across all subgraphs G, a
fair fraction of terminal pairs in T remain (condition 4, 5); indeed, we lose only
a constant fraction of the terminal pairs (by assigning a zero weight to those lost
terminals) of T . In addition, each subgraph G is well connected with respect to
X , the set of induced terminals of T in G, in the sense of (G,X) being a π-cut-
linked instance. This decomposition is essentially the same as that of Chekuri,
Khanna, and Shepherd [11]. We need to do some additional work to ensure that
the min-cut condition (condition 3) holds. We prove a dual (flow-based) version
of the result is in Section 8.

0. Given graph G with min-cut Ω(log3 n) and a weight function π : V (G) → R
+

1. {G1, . . . , GZ} = Split(G, Z, π)
2. {X , C} = Clustering(GZ, π), where X = {X1, . . . , Xr} and C = {C1, . . . , Cr}
3. Given a set of superterminals X of size r
4. Let X map to vertex set V (H) of Expander H
5. For t = 1 to ω log2 n
6. (S, S̄ = X \ S) = KRV-FindCut(X , {Mk : k < t}) s. t. |S| =

˛

˛S̄
˛

˛ = r/2
7. Matching Mt = FindMatch(S, S̄, Gt) s.t. Mt is routable in Gt

8. Combine M1, . . . , Mω log2 n to form the edge set F on vertices V (H)
9. ExpanderRoute(H,T, X)
10. End

Fig. 3.1. Procedure EmbedAndRoute(G,T, π)

3.1 Overall Routing Algorithm in Each Decomposed Subgraph G

We assume that we have the π-cut-linked subgraphs given by Theorem 2. We will
treat each subgraph and its induced subproblem (G, T) independently. We use
π(G) to denote π(V (G)) in the following sections. Let X be the set of terminals
of T that is assigned with a positive weight by function π in instance G. We
further assume that π(G) = Ω(log7 n). If not, we just route an arbitrary pair
of terminals in T ; otherwise, we use Procedure EmbedAndRoute(G, T,π)
in Figure 3.1 to route. We first specify a few more parameters and conditions
related to (G, T); We then state Theorem 3, which we prove through the rest of
the paper. Combining Theorem 3 and Theorem 2 proves Theorem 4.

– Parameters and conditions related to an induced subproblem (G, T)
• sampling probability p = 12(lnn)/ǫ2κ = 1/(ω log2 n+ 1)
• number of split subgraphs Z = 1/p = ω log2 n+ 1
• W = (ω log2 n+ 1)/(1 − ǫ), for some ǫ < 1;
• r ≥ max{1, (π(G)− (W −1))/(2W −1)}, such that ∀i ∈ [1, . . . , r], 2W −

1 ≥ π(Xi) =
∑

v∈Xi
π(v) ≥ W and π(X) ≥ π(G) − (W − 1): i.e., at

most W − 1 unit of weight is not counted in X .

Theorem 3. Given an induced instance (G, T) with min-cut of G being Ω(log3 n)
and a weight function π : V (G) → R

+ such that X is π-cut-linked in G and
π(G) = Ω(log7 n), EmbedAndRoute routes at least max{1, Ω(π(G)/ log7 n)}
pairs of T in G edge disjointly.

Theorem 4. Given an EDP instance (G, T), where G has a min-cut Ω(λ(n)κ),
we can route Ω(OPT∗(G, T)/f) terminal pairs edge disjointly in G, where the
approximation factor f is O(λ(n)β(G)W log5 n).

4 Obtaining Z Split Subgraphs of G

In this section, we analyze a procedure that splits a graph G, with min-cut κ =
Ω(log3 n), into Z subgraphs by extending a uniform sampling scheme from [19].

We thus obtain a set of cut-linked instances as in Lemma 1, which immediately
follows from Theorem 5.

Procedure Split(G,Z,π): Given a graph G = (V,E) with min-cut κ =
Ω(log3 n), a weight function π : V (G) → R

+, a set of terminals X in G such
that (G,X) is a π-cut-linked instance, and probability p = 1/Z.
Output: A set of randomized split subgraphs G1, . . . , GZ of G.
Each split subgraph Gj , ∀j = 1, . . . , Z inherits the same set of vertices of G;
Edges of G are placed independently and uniformly at random into the Z sub-
graphs; each e = (u, v) ∈ E is placed between the same endpoints u, v in the
chosen subgraph. We retain the same weight function π for all nodes in V in
each split subgraph Gj , ∀j.

Lemma 1. With high probability, X is (1−ǫ)π
Z -cut-linked in Gj , ∀j, for some

ǫ < 1.

Proof. Since X is π-cut-linked in G hence |δ(S)| ≥ π(S ∩ X), ∀S such that
π(S∩X) ≤ π(X)/2 in G. Let δj(S) denote the size of cut (S, V \S) in Gj . With
probability 1−O(log2 n/n2), we have |δj(S)| ≥ (1−ǫ)p |δ(S)| ≥ (1−ǫ)pπ(S∩X)),
for all S such that π(S ∩X) ≤ π(X)/2 and all j as shown in Theorem 5. Hence
X is (1 − ǫ)π/Z-cut-linked in Gj , ∀j.

Theorem 5 says that all cuts can be preserved in all split graphs G1, . . . , GZ

of G we thus obtain. Recall for S ∈ V , |δG(S)| denote the size of (S, V \ S) in
G. For the same cut (S, V \S), we have E[|δGj (S)|] = p |δG(S)| in Gj , ∀j, where
p is the probability that an edge e ∈ E is placed in Gj , ∀j.
Theorem 5. Let G = (V,E) be any graph with unit-weight edges and min cut
κ. Let ǫ =

√

3(d+ 2)(lnn)/pκ. If ǫ ≤ 1, then with probability 1 −O(log2 n/nd),
every cut (S, V \ S) in every subgraph G1, G2, . . . , GZ of G has value between
(1 − ǫ) and (1 + ǫ) times its expected value p |δG(S)|.

We give an overview of our proof by introducing a definition by [19], regard-
ing a uniform random sampling scheme on an unweighted graph G = (V,E);
Lemma 2 immediately follows from this definition. We then state Karger’s the-
orem regarding preserving all cuts of G in a sampled subgraph, under a certain
min-cut condition. Finally, we show the details of our proof to Theorem 5. For
the sake of completeness, we also give Karger’s proof to Theorem 6.

Definition 4. ([20]) A p-skeleton of G is a random subgraph G(p) constructed
on the same vertices of G by placing each edge e ∈ E in G(p) independently with
probability p.

Lemma 2. Every randomized subgraph Gj , ∀j, is a p-skeleton of G.

Proof. Recall the construction of a random subgraph Gj , ∀j, of G: on the same
set of vertices as G, each edge e ∈ E of the original graph G is placed in
Gj independently with probability p. Hence, Gj , ∀j, is a p-skeleton of G by
Definition4.

Theorem 6. ([20]) Let G be a graph with unit-weight edges and min-cut κ. Let
p = 3(d+ 2)(lnn)/ǫ2κ. With probability 1 − O(1/nd), every cut in a p-skeleton
of G has value between (1 − ǫ) and (1 + ǫ) times its expected value.

Proof of Theorem 5: Define an indicator variable Xj
e , ∀j, ∀e ∈ E, such that

Xj
e = 1 when e is placed in Gj , and 0 otherwise; hence Xj

e is a Bernoulli random
variable with success probability p, ∀j, ∀e. Note that random variables Xj

e , ∀j =

1, . . . , 1/p, are not independent; in fact,
∑1/p

j=1X
j
e = 1 for all e.

Consider a cut (S, S̄) of size c in G. Let Xj
1 , X

j
2 , . . . , X

j
c be the indicator vari-

ables that signal whether edges e1, e2, . . . , ec of cut (S, S̄) appear in Gj . Define
Xj(S, S̄) =

∑c
y=1X

j
y as the size of the cut in a random subgraph Gj of G. Given

that Xj
1 , X

j
2 , . . . , X

j
c are i.i.d. random variables whose common distribution is

the Bernoulli distribution with parameter p, we can apply Chernoff bound to
obtain the following lemma.

Lemma 3. Consider a cut (S, V \ S) of size c in unweighted graph G = (V,E).
Let Xj(S, S̄) be the size of the corresponding cut in a randomized split graph Gj.
Then ∀S, ∀j, we have

Pr[|Xj(S, V \ S) − pc| ≥ ǫpc] ≤ 2e−ǫ2pc/3. (4.5)

Lemma 4. ([14]) Let X be a sum of independent Bernoulli random variables
with success probability p1, . . . , pm and expected value µ =

∑

pi. Then for ǫ ≤ 1

Pr[|X − µ| ≥ ǫµ] ≤ 2e−ǫ2µ/3.

Let r = 2n − 2 be the number of cuts in graph G, and hence G1, . . . , GZ ,
and let c1, . . . , cr be the expected values of the r cuts in a p-skeleton listed in
nondecreasing order so that pκ = c1 ≤ c2, . . . ,≤ cr. Given a split graph Gj , ∀j,
let Ej

k, ∀j, ∀k be the event that the value of a cut Xj(S, V/S) in Gj diverges

from its expectation ck by more than ǫck. First we have Pr
[

Ej
k

]

≤ 2e−ǫ2ck/3 by

Lemma 3. We then apply a union bound to sum up (4.5) for all r cuts in Gj , ∀j.
Given that every random split subgraph Gj , ∀j, is a p-skeleton of G by

Lemma 2, we apply Karger’s statement as in the form below, to all subgraphs Gj

with the following parameters: p = 12(lnn)/ǫ2κ and κ = 12(lnn)(ω log2 n+1)/ǫ2

for a given ǫ; following Karger’s proof to Theorem 6, we have:

Lemma 5. ([20]) ∀Gj,
∑r

k=1 Pr
[

Ej
k

]

≤ O(1/nd).

We can then use a union bound to sum up probabilities of bad events across
all split subgraphs G1, . . . , GZ of G, which yields following:

Z
∑

j=1

r
∑

k=1

Pr
[

Ej
k

]

≤ O(log2 n/nd) (4.6)

Note that Ej
k, ∀j = 1, . . . , Z, are not independent, since the indicator random

variables that contribute to value ofXj(S, V/S) are not at all independent across
all subgraphs. However, we only use a union bound that does not assume any-
thing about dependency among events.

Proof of Theorem 6: ([20]) We give a sketch of Karger’s proof as shown in [20]
here for the sake of completeness. To prove Theorem 6, Karger uses a union
bound to show that the sum of probabilities of all bad events in a p-skeleton of
G is O(1/nd), where a bad event refers to some cut in a p-skeleton of G diverges
from its expected value k by more than ǫk. The proof of this claim follows by
using two lemmas:

Lemma 6. ([20]) In an undirected graph, the number of α-minimum cuts is less
than n2α.

The “expected value” graph Ḡ of Gj , ∀j, is a weighted graph with all vertices
and edges of the original unweighted graph G = (V,E), and with edge weight p
assigned to edge e, ∀e ∈ E. Note that the minimum cut of Ḡ is pκ, where κ is the
minimum cut of G. Lemma 6 applied to Ḡ, the “expected value” graph of a p-
skeleton of G, states that the number of cuts within α factor of the minimum pκ
increases exponentially with α. On the other hand, the Chernoff bound says that
one such cut diverges too far from its expected value decreases exponentially with
α as shown in (4.5). Combining these two lemmas and balancing the exponential
rates proves Theorem 6 using a union bound.

5 Forming Superterminals that are Well-Linked

The procedure in this section constructs superterminals as follows. It finds con-
nected subgraphs C in GZ , where π(C) = Ω(log2 n), each connecting a subset
of terminals. Roughly, the idea is that these clustered terminals are better con-
nected than individual terminals. They are well linked in the sense that any cut
that splits off K superterminals as one entity contains at least K edges in Gj , ∀j
This allows us to compute congestion-free maximum flows in Section 6.1.

Given split subgraphs G1, . . . , GZ of G, each with the same weight func-
tion π on its vertex set V (Gj) = V, ∀j, that we obtain through Procedure

Split(G,Z,π), we aim to find a set X = {X1, . . . , Xr} of node-disjoint “supert-
erminals”, where each superterminal Xi ∈ X consists of a subset of terminals in
X and each Xi gathers a weight between W and 2W −1. In addition, we want to
find an edge-disjoint set of clusters C = {C1, . . . , Cr}, where Ci = (Vi, Ei), such
that Xi ⊆ Vi and Ci is a connected component, and hence all nodes in Xi are
connected through Ei. W.l.o.g., we pick GZ for forming such clusters Ci, ∀i; note
that GZ is a connected graph with a min-cut of Ω(logn), whp, by Theorem 5.

Procedure Clustering(GZ ,π): Given a split subgraph GZ and a weight func-
tion π : V (GZ) → R

+ and π(V (GZ)) = π(G) ≥W .

Output: X = {X1, . . . , Xr} and C = {C1, . . . , Cr} as specified in Lemma 7.

We group subsets of vertices of V in an edge-disjoint manner, following a proce-
dure from [9], by choosing an arbitrary rooted spanning tree of GZ and greedily
partitioning the tree into a set C of edge-disjoint subgraphs of GZ .

Lemma 7. ([9]) Let GZ be a connected graph with a weight function π : V (GZ) →
[0,W] such that π(V (GZ)) ≥ W . We can find r ≥ max{1, (π(G) − (W −
1))/(2W−1)} edge-disjoint connected subgraphs, C1 = (V1, E1), . . . , Cr = (Vr , Er),
such that there exist vertex-disjoint subsets X1, . . . , Xr and for each i: (a) Xi ⊆
Vi and (b) 2W − 1 ≥∑v∈Xi

π(v) ≥W .

Result. To get an intuition of the purpose of forming such clusters, consider a
cut (U, V \ U) in a split subgraph Gj , ∀j. Let U be a subset of V (G) such that
π(U) =

∑

x∈U∩X π(x) ≤ π(X)/2. Let K be the number of superterminals that
are contained in U . We have the following lemma, which captures the notion of
superterminals being “well-linked”, with a hint of Definition 3.

Lemma 8. ∀ split subgraphs G1, . . . , GZ , where Z = ω log2 n + 1, and ∀U ⊂
V (G) s.t. π(U) ≤ π(X)/2, |δGj (U)| ≥ K, where K = |{Xi ∈ X : Xi ⊆ U}|.

Proof. With high probability,X is (1−ǫ)π
(ω log2 n+1)

-cut-linked inG1, . . . , GZ , as shown

in Lemma 1. Recall that in our clustering scheme, total weight of all terminals

in one cluster is at least W = (ω log2 n+1)
1−ǫ , then ∀j,

|δGj (U)| ≥
∑

x∈U

(1 − ǫ)π(x)

(ω log2 n+ 1)

≥ (1 − ǫ)

(ω log2 n+ 1)

∑

i:Xi⊆U

∑

x∈Xi

π(x)

≥ (1 − ǫ)KW

(ω log2 n+ 1)

≥ K

6 Construct and Embed an Expander H in G

In this section, we use the superterminals from the previous section as nodes in
an expander H that we embed in G. The edges of H are defined using a tech-
nique in [21] that builds an expander using O(log2 n) matchings. We embed this
expander in G by routing each matching in one of the split graphs using a max-
imum flow computation. This allows us to embed H into G with no congestion.
The following procedure restates this outline. Theorem 7 is a main technical
contribution of this paper.

Procedure EmbedExpander(G1, . . . , Gω log2 n,X):
Output: An expander H = (V ′, F) routable in G s.t. |V ′| = r and ∀i ∈ V ′,
π(i) = π(Xi) and π(H) = π(X); F consists of M1, . . . ,Mω log2 n.

0. Given a set of points V (H) of size k
1. for t = 1 to ω log2 n
2. (S, S̄ = V (H) \ S) = KRV-FindCut(V (H), {Mk : k < t}) s.t. |S| =

˛

˛S̄
˛

˛ = k/2
3. Mt = FindMatch(S, S̄) s.t. Mt is a matching between S and S̄
4. Combine M1, . . . , Mω log2 n to form the edge set F on vertices V (H)
5. End

Fig. 6.2. KRV-Procedure Constructing an α-Expander H.

We use Step (3) to (8) of Procedure EmbedAndRoute in Figure 3.1, where
we substitute Procedure FindMatch with Figure 6.3 while relying on an ex-
isting Procedure KRV-FindCut [21]. At each round t, we use KRV-FindCut

to generate an equal-sized partition (S,X \ S = S̄); we then find a match-
ing Mt between S and S̄ by computing a single-commodity max-flow using
FindMatch(S, S̄, Gt) in Gt, that we add to F as edges.

Theorem 7. (a) EmbedExpander constructs a 1/4-expander H = (V ′, F);
(b) in addition, H is embedded into G as follows. Each node i of H corresponds
to a superterminal Xi in X in G such that all superterminals are mutually node
disjoint and each superterminal is connected by a spanning tree, Ti, in G. Each
edge (i, j) in H corresponds to a path, Pij from a node in Xi to a node in Xj.
All paths Pij and trees Ti are mutually edge disjoint in G.

Proof. The expander property (a) follows from a result of Khandekar, Rao and
Vazirani [21]; they show the procedure in Figure 6.2 produces an expander H .

Theorem 8. ([21]) Given a set of nodes V (H) of size k, ∃ a KRV-FindCut

procedure s.t. given any FindMatch procedure, the KRV-procedure as in
Figure 6.2. produces an α-expander graph H, for α ≥ 1/4.

Each edge e = (i, j) in the matching Mt maps to an integral flow path that
connects Xi and Xj in Gt; all such flow paths can be simultaneously routed in Gt

edge disjointly due to the max-flow computation as we show in Lemma 9. Since
each matching M t is on a unique split subgraph Gt, the entire set of edges in
M1, . . . ,Mω log2 n, that comprise the edge set F of H , correspond to edge disjoint

paths in G1, . . . , GZ−1, where Z = ω log2 n+1. Finally, all spanning trees Ti, ∀i,
are constructed using disjoint set of edges in GZ as in Lemma 7.

6.1 Finding a Matching through a Max-flow Construction

In this section, we show that given an arbitrary equal partition (S, S̄) of the set
X = {X1, . . . , Xr}, that we obtain through Procedure Clustering(GZ ,π),
we can use the following procedure to route a max-flow of size r/2, such that the
integral flow paths that we obtain through flow decomposition induce a perfect
matching between S and S̄. Let S = {Xi1 , . . . , Xir/2

} and S̄ = {Xj1 , . . . , Xjr/2
}.

0. Given an equal partition (S, S̄) of X , we form a flow graph G′ from Gt

by adding auxiliary nodes and directed unit-capacity edges:
1. Add a special source and sink nodes s0 and t0;
2. Add nodes s1, . . . , sr/2 and an edge from s0 to sk,∀k = 1, . . . , r/2;
3. Add nodes t1, . . . , tr/2; from each tk,∀k = 1, . . . , r/2, add an edge to t0
4. From each sk,∀k, add an edge to each terminal x ∈ Xik s.t. Xik ∈ S
5. To each node tk, add an edge from each terminal x ∈ Xjk s.t. Xjk ∈ S̄
6. Route a max-flow from s0 to t0
7. Decompose the flow to obtain a matching between S and S̄
8. End

Fig. 6.3. Procedure FindMatch(S, S̄, Gt)

Lemma 9. In each sampled graph Gt, FindMatch produces a perfect matching
Mt between an equal partition (S, S̄) of X such that for each edge in e = (i, j) ∈
Mt, there is an integral unit-flow path Pij from a terminal in Xi ∈ S to a
terminal in Xj ∈ S̄. All paths Pij , s.t.(i, j) ∈Mt are edge disjoint in Gt.

We first prove the following lemma.

Lemma 10. Every s0 − t0 cut has size at least r/2 in the flow graph G′.

Proof. Let (U, Ū) be a cut in the flow graph that separates s0 from t0; w.l.o.g.,
let U be subset such that π(U ∩X) ≤ π(X)/2, and let s0 ∈ U (otherwise, we
can just rename all the auxiliary nodes and the two subsets S and S̄).

Consider any superterminal X ∈ X that we obtained through lemma 7; if X
is contained either in U or Ū , we call such a superterminal X uncut; otherwise,
we say X is cut by (U, Ū).

1. Let Ks
c =

∣

∣{X ∈ S : X ∩ U,X ∩ Ū 6= ∅}
∣

∣ denote the number of supertermi-
nals in S that is cut by (U, Ū).

2. Let Ks
uc =

∣

∣{X ∈ S : X ⊆ Ū}
∣

∣ be the number of superterminals in S that is
contained in Ū ;

3. Let Ks
uc = |{X ∈ S : X ⊆ U}| denote the number of superterminals in S

that is contained in U ; hence Ks
uc +Ks

uc +Ks
c = r/2, where r = |X |.

4. Let Kt
c =

∣

∣{X ∈ S̄ : X ∩ U,X ∩ Ū 6= ∅}
∣

∣ denote the number of supertermi-
nals in S̄ that is cut.

5. Let Kt
uc =

∣

∣{X ∈ S̄ : X ⊆ Ū}
∣

∣ denote the number of superterminals in S̄
that is contained in U .

Given that G is π-cut-linked, we know that the sampled graph Gj is (1 −
ǫ)π/(ω log2 n + 1)-cut-linked whp by Lemma 1. Recall that in our clustering
scheme, total weight of all terminals in one superterminal is at least W =
(ω log2 n+1)

1−ǫ . Note that there is at least one directed auxiliary edge crossing the

cut for all superterminals except those in S that is contained in U or those in S̄
that is contained in Ū .

Thus we know

|δG′(U)| ≥ |δGt(U)| +Kt
uc +Ks

uc +Ks
c +Kt

c

≥ (1 − ǫ)
∑

x∈U π(x)

ω log2 n+ 1
+Kt

uc +Ks
uc +Ks

c +Kt
c

≥ (1 − ǫ)(Ks
uc +Kt

uc)W

ω log2 n+ 1
+Kt

uc +Ks
uc +Ks

c +Kt
c

≥ Ks
uc +Ks

uc +Ks
c

≥ r/2.

Hence we have shown that the size of every cut (U, Ū) in the flow graph G′ has
size at least r/2.

Proof of Lemma 9: By Lemma 10, and the fact that there ∃ a s0 − t0 cut of size
r/2, (e.g., ({s0}, V (G′)\{s0})) we know the s0− t0 min-cut is r/2. Hence by the
max-flow min-cut theorem, we know that there ∃ a max-flow of size r/2 from
s0 to t0. We next decompose the max-flow into r/2 integer flow paths, which
induce a perfect matching Mt between S and S̄ as follows. Consider an integral
flow path Pk, ∀k = 1, . . . , r/2. Let directed path Pk start with s0 and go through
sk, x ∈ Xik

∈ S for some x; and let Pk end with y ∈ Xjk′
∈ S̄, tk′ , t0 for some k′ ∈

[1, . . . , r/2] and some terminal y. No other path in the max-flow can go through
the same pair of superterminals Xik

, Xjk′
due to the capacity constraints on

edges (s0, sk) and (tk′ , t0). Hence Mt = {(ik, jk′), ∀k ∈ [1, . . . , r/2], where k′ ∈
[1, . . . , r/2]} is a perfect matching between S and S̄.

7 Routing on an Expander H Node Disjointly

In this section, we show that the following greedy algorithm routes Ω(K/ log5 n)
pairs of terminals, where K = |V (H)| = Ω(π(G)/W), in H .

Procedure ExpanderRoute(H,T,X): Given an uncapacitated expander H
with at least 512 log5 n nodes, with node degree ω log2 n. While there is a pair
(s, t) in T ⊆ T whose path length is less than D in H = (V,E), where D =
a3ω log3 n and a3 = 32 is a constant; Remove both nodes and edges from H ,
along a path through which we connect a pair of terminals in T .

Since we take away both nodes and edges as we route a path across the
expander H due to the node capacity constraints on V (H), routing the set P
of pairs via integral paths on H induces no congestion in G by Theorem 7. We
now argue that |P | is large to finish our proof. Let H ′ be the remaining graph of
expander H = (V,E), after we take away nodes and edges along the paths used
to route P . Note that all remaining pairs T ′ ⊆ T in H ′ must have distance at
least D. This is the main condition that allows us to prove the following theorem.

Theorem 9. The procedure above routes Ω(K/ log5 n) pairs, node disjointly, in
degree-(ω log2 n) expander H = (V,E) with K ≥ 512 log5 n nodes.

We first prove the following lemma regarding a multicut L in H ′.

Lemma 11. ∃ a multicut of size at most K/2a3 in the remaining graph H ′ of
H.

Proof. Let us first state the following lemma which follows from arguments of
[17].

Lemma 12. If all remaining terminal pairs in T ′ ⊆ T have distances at least
D in H ′, then there exists a multicut L in H ′ = (V ′, E′) of size |E′| logn/D in
H ′ that separates every source and sink pair siti ∈ T ′.

Applying Lemma 12 to H ′, we have that there exists a multicut of size at most
Kω log3 n/2D = K/2a3 given that |E′| ≤ |E| = Kω log2 n/2 in the remaining
graph H ′.

We prove Theorem 9, by noting that condition 1 of Theorem 2 implies that
any multicut of the terminals in H ′ ensures that no piece in H ′ separated by
L contains more than half the weight of all terminals in H . We use this fact
to show that the multicut L can be rearranged to find a “weight-balanced” cut
in H ′, which corresponds to a node-balanced cut in H . Any node-balanced cut,
however, in H must have at least Ω(K) edges. Using a proper choice of a3, we
force this balanced cut to contain at most half as many edges in H ′ as in H .
Thus, we show Ω(K) edges have been removed when routing P . Since routing
each such pair removes at most Dω log2 n(O(log5 n) edges. We conclude |P | must
be Ω(K/ log5 n).
Proof of Theorem 9: Recall that initially π(H) = π(X) ≥ π(G)−(W −1), since
at most W − 1 of π(G) is not assigned to any node in H , and each node in H
has weight between W and 2W − 1 as in shown in proof of Lemma 7. Hence the
total weight taken away from routing P terminal pairs of distance at most D is
at most DP (2W − 1).

To facilitate our analysis, we first alter π slightly to generate a new function
π

′(i), ∀i ∈ V (H ′),

Procedure Alter(π, π
′): For a pair of terminals uv ∈ T such that u takes

away a certain amount of weight, we remove the same amount (as specified in
condition 1 of Theorem 2) from π(v) if v remains in H ′ and define this updated
weight of H ′ as π

′(H ′). Thus we have π
′(H ′) ≥ π(G)−(W −1)−2DP (2W−1).

It is easy to see that only remaining pairs uv ∈ T ′ contribute a positive weight
to π

′(H ′) according to their flow in f̄ like that of condition 1 in Theorem 2; hence
each connected component in H ′, separated by multicut L, has a weight of at
most π

′(H ′)/2.
Let L be the multicut that separates all remaining terminals pairs T ′ ∈ T

in H ′. L cuts the graph H ′ and hence group nodes in V (H ′) into clusters,
such that weight of each cluster according to π

′ is less than half of the total
remaining weight π

′(H ′) of H ′, since each pair of terminals that contribute the
same amount of weight to π

′(H ′) must belong to different multicut clusters.

We then use L to find a weight-balanced cut (U ′, V ′ \ U ′) in H ′ such that
each side has weight at least π

′(H ′)/4, where π
′(H ′) ≥ π(G)−(W−1)−2(2W−

1)D |P |. It is straightforward to verify that any partition (U, V (H) \ U) in H ,
such that U ′ ⊆ U and (V ′ \ U ′) ⊆ (V (H) \ U), is node-balanced in H as shown
in Lemma 13 and Lemma 14.

We build a (1/4, 3/4)-weight-balanced partition of H ′ in the following way:
start two empty sidesA andB, and start adding the connected components (after
removing the multicut L) of H ′ to the smaller side repeatedly. Each component
contains at most π

′(H ′)/2 due to condition 1 of Theorem 2 and Procedure

Alter; in the end neither side can contain more than 3π
′(H ′)/4 of weight;

indeed, consider the step where, w.l.o.g, side A were put over 3/4 of π
′(H ′) by

adding a component d: in that step, d could not have been added to A, since
π

′(A) ≥ π
′(H ′)/4 ≥ π

′(B) before d were added, given that d ≤ π
′(H ′)/2.

Lemma 13. Let (U ′, V (H ′) \ U ′) be a (1/4, 3/4)-weight-balanced cut in H ′.
Consider any cut (U, V (H) \ U) in H, such that U ′ ⊆ U and (V (H ′) \ U ′) ⊆
(V (H) \ U) before we route any of the P paths:

min (|U | , |V \ U |) ≥ π(G) − (W − 1)

4(2W − 1)
−DP/2

Proof. Indeed, if U is the smaller side, |U | ≥ |U ′|; otherwise, we have |V (H) \ U | ≥
|V (H ′) \ U ′|. For both U ′ and V (H ′) \ U ′, we have

|U ′| ≥ π
′(H ′)/4(2W − 1)

|V (H ′) \ U ′| ≥ π
′(H ′)/4(2W − 1)

≥ (π(G) − (W − 1) − 2DP (2W − 1))

4(2W − 1)

since each node in V (H ′) has weight at most 2W − 1 despite alterations on
terminal weights and π

′(H ′) ≥ π(G) − (W − 1) − 2DP (2W − 1). Therefore

min (|U | , |V \ U |) ≥ π(G) − (W − 1)

4(2W − 1)
−DP/2

Lemma 14. |δH(U)| ≥ φ(H)
(

K
8 −DP/2

)

, for any (U, V (H) \U) as defined in
Lemma 13.

Proof. By the edge expansion property of expander H , we get the lower bound
on the size of the cut (U, V \ U):

|δH(U)| ≥ φ(H)min (|U | , |V \ U |)

≥ φ(H)

(

π(G) − (W − 1)

4(2W − 1)
−DP/2

)

≥ φ(H)

(

π(G)/8W + π(G)/16W 2 − 1

8
−DP/2

)

≥ φ(H)

(

K

8
−DP/2

)

since K ≤ π(G)/W , given that every cluster must have weight at least W in H
and π(G)/16W 2 = Ω(log3 n) ≥ 1/8.

On the other hand, by Lemma 12, we know that the current size of the
balanced cut in H ′ is at most the size of the multicut L given the construction
of (U ′, V (H ′) \ U ′):

|δH′(U ′)| ≤ |E| logn/D =
Kω log2 n logn

2D
=
Kω

2a3
(7.7)

The edge loss from the balanced cut cap(U, V (H) \ U) in H is caused by
routing the P paths, which can take away at most DPω log2 n number of edges.
Thus we have:

|δH′(U ′)| +DPω log2 n ≥ |δH(U)|
ωK

2a3
+DPω log2 n ≥ φ(H)

(

K

8
−DP/2

)

DP (ω log2 n+ φ(H)/2) ≥ φ(H)
K

8
− Kω

2a3

P ≥

(

φ(H)K
8 − Kω

2a3

)

a3 log3 n(ω log2 n+ φ(H)/2)

By taking φ(H) = 1/4, a3 = 32ω, we have D = 32ω log3 n and P ≥
K/2048ω2 log5 n, for a constant ω.

8 An Outline of the Decomposition Procedure

In this section, we first sketch a proof to Theorem 11, which states a more
refined and stronger version of Theorem 2. Actual proof of Theorem 11 is shown
in Section 10.

8.1 The CKS Flow-Linked Decomposition Theorem

We first transform (G, T) to a set of flow-linked instances by following a decom-
position procedure in [11], the outcome of which is summarized in the following
theorem.

Theorem 10. (CKS2005 [11]) Let OPT∗(G, T) be a solution to the LP for a
given instance (G, T) of EDP in an input graph G. One can efficiently compute
a partition of G into node-disjoint induced subgraphs G1, G2, . . . , Gℓ, and weight
functions π : V (Gi) → R

+ with the following properties. Let Ti be the induced
pairs of T in Gi and let Xi be the set of terminals of Ti.

1. πi(u) = πi(v) for uv ∈ Ti.
2. Xi is πi-flow-linked in Gi.

3.
∑ℓ

i=1 πi(Xi) = Ω(OPT∗(G, T)/λ(n)), where λ(n) = 10β(G) log OPT∗(G, T).

Remark 2. Although the statement of condition 1 in the CKS decomposition
theorem assumes that each node u belongs to only a single terminal pair in T ,
their actual proof does not depend on such an assumption.

The proof of the theorem appears in [11]. They use this procedure as the
first step in a two-step transformation from the optimal multicommodity flow
solutions f̄ to obtain sets of well-linked terminal sets, that eventually leads to
an O(log2K)-approximation for the ANF problem described in Section 1, where
K = |T |. We place details regarding this decomposition in the Section 10. From
now on, we refer to both (Gi, Ti) and (Gi, Xi) as a πi-flow-linked instance with-
out differentiation.

8.2 Processing Subgraphs to Maintain Mincut Condition

We treat the induced subproblems (Gi, Ti), ∀i independently. Given (Gi, Xi) such
that Xi is πi-flow-linked in Gi, there are two post-processing stages.

1. Min-cut processing stage. Formally, let V (Gi) be the current set of ver-
tices of Gi. We keep cutting off the smaller side S of a minimum cut, in terms
of weight πi, from Gi when cap(S, V (Gi) \ S) is less than ĉ, until every cut
in Gi is at least ĉ, where we set ĉ = Ω(log3 n).
By cutting off, we remove both nodes in S and edges that are adjacent to
S in current Gi; this includes the cases when we get rid of any single node
whose degree fall below ĉ from its original degree of Ω(log5 n). We call such
a stage a min-cut processing stage.

2. Sparsest-cut processing stage. In order to guarantee that we have an
instance X ′

i that is π
′
i-flow-linked in Gi for a new weight function π

′
i, we

need to further “mute” some terminals with a positive weight under π by
setting their weight to zero under π

′
i. This way, we can guarantee that every

cut in Gi is good with respect to a product multicommodity flow demand
that is defined based on the new weight function π

′
i. We emphasize that

we do not remove any nodes or edges in this stage; hence the min-cuts are
guaranteed to be Ω(log3 n).

8.3 A Modified Flow-Linked Decomposition Theorem

Therefore, we have the following theorem about the instances that we have by
the end of this post-processing stage. The proof of this theorem is in Section 10.

Theorem 11. Given a graph G with min-cut value C0 ≥ (4a0λ(n)+a0+2)ĉ, for
some a0 ≥ 2. By the end of the sparsest-cut processing, we obtain a set of node-
disjoint induced subgraphs Ĝ1, . . . , Ĝℓ, all with min-cut ĉ, and the corresponding
disjoint subsets T ′

1 , . . . , T ′
ℓ of T , such that terminals pairs in T ′

i belong to Ĝi

and there exist a set of weight functions π
′
i : V (Ĝi) → R

+ with the following
properties. Let X ′

i be the set of terminals of T ′
i .

1. there are α1, . . . , αk such that ∀u in a subgraph Ĝi, π(u) =
∑

i:si=u,ti∈Ĝi
αixi,

(note that this implies ∀siti ∈ T ′
i , xi contributes the same amount of weight

to π
′
i(si) and π

′
i(ti));

2. X ′
i is π

′
i-flow-linked in G′

i;

3. ∀u in a subgraph Ĝi s.t. π
′
i(X

′
i) ≥ Ω(log3 n), π

′
i(u) ≤

∑

i:si=u,ti∈Ĝi

xi

β(G)λ(n) ;

4.
∑ℓ

i=1 π
′
i(X

′
i) = Ω

(

OPT
∗(G,T)

λ(n)β(G)

)

, where λ(n) = β(G) log OPT∗(G, T) and β(G)

is the worst-case mincut-maxflow gap on product multicommodity flow in-
stances on G.

Finally, we define a weight function on V (G) as follows: (a) ∀i, ∀u ∈ Ĝi, where
Ĝi is a subgraph of G, we assign π(u) = π

′
i(u)/2; and (b) assign π(u) = 0,

for nodes of V (G) not in any Ĝi. We thus have defined the weight function
π : V (G) → R

+ on the entire set of nodes of G as required by Theorem 2 with
the same decomposition as we obtain for Theorem 11.

9 Details Regarding CKS Flow-linked Decompositions

The following notation appears in proof of Theorem 10 as in [11]. We will
inherit these in our proofs in Section 10. Let H = (V (H), E(H)) be a node
induced subgraph of G = (V,E).

– γ(G) = OPT∗(G, T).

– γ(H) =
∑

P∈P:P∈H f̄(P): the total flow induced in H by the original flow
f̄ ; it counts flow only on flows paths f̄(P) from the the original flow path
decomposition that are completely contained in H . P refers to the entire set
of paths from the original flow decomposition.

– γ(u,H): the flow in H for u, hence γ(H) = 1/2
∑

u∈V (H) γ(u,H).

Recall the following results from their decomposition procedure. LetG1, G2, . . . , Gℓ

be the subgraphs produced by the decomposition.

1. If γ(Gi) ≤ λ(n)/10, assign πi(u) = πi(v) = 1 for some pair uv ∈ Ti with
positive flow in Gi; and πi(y) = 0 for y 6= u, v. Hence one can just route
a unit flow between the chosen pair uv ∈ Ti along an integral path; such a
path exists since Gi is a connected component.

2. Else, for γ(Gi) > λ(n)/10, Xi is πi-flow-linked in Gi, where πi is defined as
follows for Gi; Recall λ(n) = 10β(G) log OPT∗(G, T).

(a) πi(u) = γ(u,Gi)
λ(n) , ∀u ∈ Xi

(b) πi(u) = γ(u,Gi) = 0 for u 6∈ Xi

Remark 3. For both cases, the CKS weight function on V (Gi) satisfy πi(Gi) =

Ω
(

γ(Gi)
λ(n)

)

, given that πi(Gi) =
∑

x∈Xi
πi(x) =

∑

x∈V (Gi)
γ(x,Gi)

λ(n) = 2γ(Gi)
λ(n) ; And

the flow that one route in Gi satisfies the following two equivalent conditions.

1. Define ∀uv ∈ V (Gi),

demω(u, v) =
γ(u,Gi)γ(v,Gi)

γ(Gi)
, (9.8)

as demands for the multicommodity product flow problem based on origi-
nal induced flow values at each node u ∈ V (Gi) of f̄ in Gi; in Gi, ∀i, the
concurrent max-flow value f for product flow demω(u, v), satisfy

f ≥ f0 =
1

2λ(n)
. (9.9)

Thus f0demω(u, v) units of demands can be simultaneously routed ∀uv in
Gi with congestion 1.

2. For a scaled-down product flow problem demπi(u, v), such that each demand
is f0 of the original, ∀uv ∈ V (Gi),

demπi(u, v) =
πi(u)πi(v)

πi(Xi)
=
γ(u,Gi)γ(v,Gi)

2λ(n)γ(Gi)
=

demω(u, v)

2λ(n)
= f0demω(u, v),

there is is a feasible flow in Gi since the concurrent max-flow value is at least
1.

Depending on the context, we may prefer to use the original product flow
demω(u, v) than the feasible product flow demπi(u, v), or the other way around.

10 An Analysis on Postprocessing to Maintain Cut

Conditions

The analysis of this section will lead to the proof of Theorem 11 eventually.
Throughout this section, we keep reducing the set of terminals pairs of Ti that
are relevant, in the sense that these pairs will remain to be candidate pairs
that we eventually route edge disjointly in G. Therefore, we keep track of the
following set of parameters in each subgraph Gi that we obtain through flow
decomposition:

– Ti: the induced pairs of T in Gi that we still consider to route edge disjointly.
– A weight function πi defined on the V (Gi), with positive values only on

terminals Xi of Ti.

Finally, we use remaining-flow to keep track of the total remaining flows of f̄
between terminal pairs in Ti, across all i; note that remaining-flow is the lower
bound on

∑

i |Ti|.
By the end of the CKS flow decomposition, Ti is the induced pairs of T in

Gi. There exists at least one flow path between a pair of terminals uv ∈ Ti, with
a positive amount of flow, from original flow path decomposition of f̄ that is
entirely contained in Gi. We lose at most half of f̄ , where

∣

∣f̄
∣

∣ = OPT∗(G, T),

because the number of edges that were cut during flow decomposition is at most
OPT∗/2 = γ(G)/2; hence

remaining-flow ≥
ℓ
∑

i=1

γ(Gi) ≥ OPT∗(G, T)/2 = γ(G)/2, (10.10)

and the total amount of the weights across all clusters is at least:

ℓ
∑

i=1

πi(Xi) =

ℓ
∑

i=1

2γ(Gi)/λ(n) = Ω(OPT∗(G, T)/λ(n)). (10.11)

We are going to keep computing the original flows of f̄ that we lose during
the post-processing stages.

We specify the following parameters that are related to minimum cuts:

1. ĉ: the smallest minimum cut value that we allow in Gi, ∀i, which is θ(log3 n).
2. C0: the minimum cut value in original graph G, which is Ω(log5 n).
3. ℓ(S) = cap(S, V \ S): size of a cut (S, V \ S) in original graph G = (V,E).
4. LOSS ≤ OPT∗(G, T)/2: number of edges that are cut during the CKS flow-

decomposition process.

We analyze the minimum cut processing stage in the next two sections.
Formally, let V (Gi) be the current set of vertices of Gi. We keep cutting off
the smaller side S of a minimum cut, in terms of weight πi, from Gi when
cap(S, V (Gi)\S) is less than ĉ, until every cut in Gi is at least ĉ. By cutting off,
we remove both nodes in S and edges that are adjacent to S in current Gi.

Let S1
i , S

2
i , . . . , S

xi

i be the sets of vertices that we take away from Gi and in
that order. We define the following notation to track this process of updating
Gi.

– G0
i = (V 0

i , E
0
i): the subgraph Gi before any of St

i , t = 1, . . . , xi have been
take out.

– X0
i : the set of terminals of G0

i right after flow decomposition, such that X0
i

is πi-flow-linked in G0
i as guaranteed by CKS decomposition.

– Gt
i = (V t

i , E
t
i), ∀t = 1, . . . , xi: the remaining subgraph of G0

i after removing

S1
i , . . . , S

t
i and their adjacent edges; hence V t

i = V 0
i \ ∪j=1,...,tS

j
i .

– Ĝi = (V̂i, Êi) = Gxi

i = (V xi

i , Exi

i) be the remaining subgraph of G0
i by the

end of the min-cut processing stage.

10.1 Bound Edges Lost Due to Min-Cut Processing

Denote the number of edges that we take away from G0
i due to the min-cut

processing by edge-lossi, ∀i.
Definition 5. edge-lossi is the sum of capacities of the minimum cuts that have
caused S1

i , . . . , S
xi

i to be cut off from Gi, ∀i. Denote the sum of edge-lossi across
all i with edge-loss,

edge-loss =
∑

i=1,2,...

edge-lossi =
∑

i=1,2,...

∑

t=1,...,xi

cap(St
i , V

t
i).

Remark 4. Note that the number of edges that we take away from the final set
of nodes V (Gi) = V xi

i = V 0
i \ ∪j=1,...,xiS

j
i during the min-cut processing stage

is upper bounded, and in fact may be smaller than edge-lossi, ∀i.

We prove the following lemma in this section.

Lemma 15. The total number of edges that we take away from decomposed
subgraphs G0

i , G
1
i , . . . is at most

edge-loss =
∑

i=1,2,...

edge-lossi ≤
2LOSS · ĉ
C0 − 2ĉ

. (10.12)

Proof. We use a potential function ψ(Gi) to count the number of edges we lose
from nodes currently in Gi, as compared to the original graph G = (V,E),
while Gi keeps shrinking due to its min-cut processing. The counting process is
as follows. We start with a component Gi such that ψ0

i = LOSSi denotes the
number of edges that we initially lose from nodes in G0

i right after the CKS flow
decomposition procedure. Hence

ψ0
i = ψ(G0

i) = LOSSi ≥ 0, (10.13)

and
∑

i=1,2,...

LOSSi = 2LOSS. (10.14)

When a subset S is cut off, it claims away some credit from the current ψ(Gi),
since S is cut off because cap(S, V \ S) has decreased from above C0 to its
current size in Gi, cap(S, V (Gi) \ S) ≤ ĉ due to edges lost from nodes in S
during CKS flow decomposition. That is, the amount of edge loss from nodes in
S has contributed to the current value of ψ(Gi).

Let ψt
i be value of ψ(Gi) after taking t sets of vertices S1

i , . . . , S
t
i and their

adjacent edges away from Gi. Let (St+1
i , V t

i \ St+1
i) be the minimum cut in Gt

i,

and hence St+1
i be the (t+ 1)st set of vertices that we cut off from Gi because

cap(St+1
i , V t

i \ St+1
i) is less than ĉ. The amount of credit St+1

i takes away from
ψ(Gi) is (cap(St+1

i , V \St+1
i)− cap(St+1

i , V t
i \St+1

i)) and the credit it puts back
is cap(St+1

i , V t
i \ St+1

i), since we remove edges in (St+1
i , V t

i \ St+1
i) from Gt

i, in
addition to the subgraph induced by St+1

i in Gt
i.

Let us denote the size of the original cut (St+1
i , V \ St+1

i) in G with

ℓt+1
i = ℓ(St+1

i) = cap(St+1
i , V \ St+1

i) ≥ C0. (10.15)

Hence, we update ψ(Gi) as follows,

ψt+1
i = ψt

i − (cap(St+1
i , V \ St+1

i) − cap(St+1
i , V t

i \ St+1
i)) + cap(St+1

i , V t
i \ St+1

i)

= ψt
i − (ℓt+1

i − cap(St+1
i , V t+1

i)) + cap(St+1
i , V t+1

i).

Since cap(St+1
i , V t+1

i) ≤ ĉ, we have ψt+1
i ≤ ψt

i − (ℓt+1
i − ĉ) + ĉ.

Since the credit that a cut puts back is much less than the credit that it
spent, there is only finite number xi of such small cuts in Gi, ∀i. By the end of
xi rounds, there must be a non-negative credit in ψ(Gi), since nodes in current
Gi can never gain any edges. Hence

0 ≤ ψ(Gi) = ψx
i ≤ LOSSi − (ℓ1i − ĉ) + ĉ− (ℓ2i − ĉ) + ĉ− . . .− (ℓxi

i − ĉ) + ĉ.

Summing the above inequalities over all i,
∑

i=1,2,...

xi · C0 ≤
∑

i=1,2,...

∑

j=1,2,...,xi

ℓji ≤ 2 · LOSS + 2
∑

i=1,2,...

xi · ĉ.

Hence the total number of minimum cuts across all Gi that we process is

∑

i=1,2,...

xi ≤
2LOSS

C0 − 2ĉ
. (10.16)

Denote the sum of edge-lossi across all i with edge-loss and thus

edge-loss =
∑

i=1,2,...

edge-lossi =
∑

i=1,2,...

∑

t=1,...,xi

cap(St
i , V

t
i) (10.17)

≤
∑

i=1,2,...

xi · ĉ ≤
2LOSS · ĉ
C0 − 2ĉ

. (10.18)

10.2 Bound the Flow Lost Due to Min-Cut Processing

Lemma 16. The total flow of f̄ that we lose from min-cut processing is

flow-loss1 ≤ 2LOSS · ĉ
C0 − 2ĉ

(2λ(n) + 1/2). (10.19)

Proof. For a set of nodes St
i ∈ V 0

i , ∀t = 1, . . . , xi, in G0
i = (V 0

i , E
0
i), we denote

the size of cut (St
i , V

0
i \St

i) with Bt
i = cap(St

i , V
0
i \St

i). Bt
i determines the amount

of flow of f̄ that we take away from γ(Gi) as we remove St
i from Gi as the smaller

side of a min-cut (St
i , V

t
i) in Gt−1.

A closer examination of the above cutting process shows that
∑

t=1,2,...,xi

Bt
i ≤ 2edge-lossi, (10.20)

and
∑

i=1,2,...

∑

t=1,2,...,xi

Bt
i ≤ 2edge-loss, (10.21)

since the edges in Bt
i come either from previous min-cuts: {(Sj

i , V
j
i), ∀j < t}, or

from new edges that contribute to {(St
i , V

t
i)}; in addition, each edge e counted

in edge-lossi can be used at most twice toward
∑xi

t=1 Bt
i , once for each of the two

neighboring sets in {St
i , t = 1, . . . , xi} that share e ∈ G0

i .
Hence fix Bt

i for some t. We now calculate the amount of flows of f̄ that we
lose by cutting off St

i . The flow that we lose falls into one of the four types:

1. flow whose paths are entirely contained in the subgraph of Gi induced by
St

i ;
2. flow that has to go through edges that are counted in Bt

i , but not counted
in (St

i , V
t
i);

3. flow that has to cross (St
i , V

t
i) with at least one endpoint in St

i ;
4. flow with both endpoints u′v′ ∈ V t

i such that the flow path intersects the
min-cut (St

i , V
t
i) at least twice.

Flow of type 1 is counted in
∑

u∈St
i
γ(u,Gi) twice. Flow of type 2 has been

counted before when Sj
i were cut off for some j < t. Flow of type 3 contributes

its flow amount once to
∑

u∈St
i
γ(u,Gi) and once to the usage of cap(St

i , V
t
i).

Flow of type 4 are counted twice in the usage of cap(St
i , V

t
i).

Note that flow that crosses cut (St
i , V

t
i) either has been counted in

∑

u∈St
i
γ(u,Gi)

at least once or it crosses (St
i , V

t
i) at least twice. Hence 1/2(

∑

u∈St
i
γ(u,Gi) +

cap(St
i , V

t
i)) upper bounds the amount of flow that we lose from f̄ , that has not

been counted earlier, due to cutting off induced subgraph of St
i from Gt−1

i :

1

2

∑

u∈St
i

γ(u,Gi) +
1

2
cap(St

i , V
t
i) ≤ 1

2
πi(S

t
i ∩X0

i)λ(n) +
1

2
cap(St

i , V
t
i)

≤ cap(St
i , V

0
i \ St

i)λ(n) +
1

2
cap(St

i , V
t
i)

≤ Bt
iλ(n) +

1

2
cap(St

i , V
t
i),

where second inequality is due to the fact that X0
i is πi-flow-linked and Propo-

sition 1, which implies that X0
i is πi/2-cut-linked in G0

i .
Sum over all St

i , ∀t, we obtain the total flow lost:

flow-loss1 =
∑

i=1,2,...

∑

t=1,...,xi

(Bt
iλ(n) +

1

2
cap(St

i , V
t
i)) (10.22)

≤ 2edge-loss · λ(n) +
1

2
edge-loss (10.23)

≤ 2LOSS · ĉ
C0 − 2ĉ

(2λ(n) + 1/2). (10.24)

Let 1/a0 denote the ratio of amount of flow of f̄ that we lose during min-cut
processing with respect to LOSS in CKS flow decomposition:

flow-loss1

LOSS
≤ 1

a0
. (10.25)

Thus we require

flow-loss1

LOSS
≤ (2λ(n) + 1/2) · 2ĉ

C0 − 2ĉ
=

(4λ(n) + 1) · ĉ
C0 − 2ĉ

≤ 1

a0
. (10.26)

Given an a0, in order to satisfy (10.26), we require

C0 ≥ (4a0λ(n) + a0 + 2) · ĉ. (10.27)

Plugging (10.27) in (10.17), we obtain the following bound on edge loss due to
post-processing of Gi:

edge-loss ≤ 2LOSS · ĉ
C0 − 2ĉ

≤ 2LOSS · ĉ
a0(4λ(n) + 1) · ĉ =

LOSS

a0(2λ(n) + 1
2)
. (10.28)

10.3 Obtain the Final Set of Terminals

Recall that G0
i = (V 0

i , E
0
i) denote the subgraph Gi we obtain through CKS flow

decomposition before any subset of nodes have been removed; Ĝi = (V̂i, Êi), ∀i
are the remaining subgraphs of Gi, ∀i at the end of the min-cut processing stage.
By (10.26), the total flow of f̄ that remains is the sum of flow of f̄ induced in
Ĝi, across all i,

remaining-flow =
∑

i=1,2,...

γ(Ĝi) ≥
OPT∗(G, T)

2
− flow-loss1 (10.29)

≥ 1

2
OPT∗(G, T)(1 − 1

a0
), (10.30)

where flow-loss1 = LOSS/a0 and LOSS ≤ OPT∗(G, T)/2.
In the sparsest-cut processing, we remove P 1

i , P
2
i , . . . , P

yi

i from the graph

Ĝi that do not meet a certain sparsest cut condition. In the end, we have a
subgraph G′

i that does meet the sparsest cut condition on the demands in the
remaining subgraph. Now we assign a zero weight to all vertices in the removed
regions to zero out demands on these regions and put P 1

i , P
2
i , . . . , P

yi

i all back in.

This graph Ĝi is only more connected with regard to the non removed demand
induced by f̄ inside G′

i, ∀i. Hence we emphasize that Ĝi, ∀i = 1, . . . , ℓ are the
set of subgraphs that we pass on to the next stage. We give an algorithm for
computing the final disjoint subsets T ′

1 , . . . , T ′
ℓ of T such that terminal pairs in

T ′
i belong to G′

i, and hence Ĝi, ∀i, and assigning a positive weight to the set of
terminals in T ′

i , ∀i.
In the rest of this section, we prove Theorem 11.

Proof of Theorem 11: Given a subgraph Ĝi = (V̂i, Êi), we use the procedure as
in Figure 10.3 to update Ĝi recursively by muting regions that do not satisfy
the sparsest cut condition; by “muting” a region P , we treat nodes in P and
their adjacent edges as if they were removed from Ĝi during the sparsest-cut
processing stage, although in the end, we retain these regions entirely in Ĝi.
We define the following parameters given a remaining subgraph Ĝt

i of Gi after
muting some regions, P 1

i , . . . , P
t−1
i .

1. Ĝt
i = (V̂ t

i , Ê
t
i): the remaining subgraph of Ĝi after muting nodes in P 1

i , . . . , P
t
i

and their adjacent edges. V̂ t
i = V̂i\∪j=1,...,tP

j
i is the remaining set of vertices

in Ĝi at stage t.

0. Given a subgraph Ĝi.

1. If γ(Ĝi) ≤ (a1/4)βλ(n), π
′
i(u) = π

′
i(v) = 1 for some pair uv ∈ T ′

i

with positive flow in Ĝi; and π
′
i(y) = 0 for y 6= u, v.

Hence we can just route a unit flow between the chosen pair uv ∈ T ′
i

along an integral path; such a path exists since Ĝi is a connected component.

2. Suppose that γ(Ĝi) > (a1/4)βλ(n). For dem(u, v) = γ(u, Ĝi)γ(v, Ĝi)/γ(Ĝi),
let f ′ be the maximum concurrent flow for this instance.

(a) if f ′ ≥ f1, set π
′
i(u) = γ(u,Ĝi)

(a1/2)βλ(n)
∀u ∈ V̂i and stop.

(b) else f ′ < f1, find an approximate sparsest cut such that cap(S,V̂i\S)

dem(S,V̂i\S)
≤ βf ′.

set π
′
i(u) = 0, ∀u ∈ S, and

shut off edges in δ0(S) = (S, V̂i \ S)

so that we recurse on Ĝi[V (Ĝi) \ S].
3. End

Fig. 10.4. Algorithm finding sparsest cuts

2. δt(S) = cap(S, V̂ t
i \ S) denotes the size of cut (S, V̂ t

i \ S) in subgraph Ĝt
i.

3. ∆(S) = cap(S, V 0
i \ S) denotes the size of cut (S, V 0

i \ S) in subgraph G0
i .

Given Ĝt
i, we try to route the following multicommodity product flow between

any unordered pair of vertices u, v:

demt(u, v) =
γ(u, Ĝt

i)γ(v, Ĝ
t
i)

γ(Ĝt
i)

, (10.31)

where γ(u, Ĝt
i) is the flow of f̄ at node u ∈ V̂ t

i that is induced in Ĝt
i.

We define f1 = 1
a1β(G)λ(n) , where a1 > 8, as the minimum concurrent flow

value that one needs to obtain for demt(u, v) in order for subgraph Ĝt
i to satisfy

the flow-linked property. When the actual flow value f ′ < f1, we can find a set
P t+1

i such that δt(P t+1
i) ≤ demt(P t+1

i , V̂ t
i \ P t+1

i)βf ′. We say P t+1
i does not

meet the sparsest cut condition for the demands demt(u, v) in subgraph Ĝt
i, and

we mute P t+1
i in Ĝt

i and recurse on Ĝi[V̂
t
i \ P t+1

i] = Ĝt+1
i . When the flow value

f ′ ≥ f1, we stop the recursion, and assign π
′
i(u) =

γ(u,Ĝt
i)

(a1/2)βλ(n) for all u ∈ V̂ t
i .

Let G′
i = Ĝyi

i = (V̂ yi

i , Êyi

i) be the remaining subgraph of Ĝi by end of
sparsest-cut processing after muting nodes in P 1

i , . . . , P
yi

i and their adjacent
edges. Let the set of terminal pairs T ′

i be the subset of Ti that are contained in
subgraph G′

i and let X ′
i be the set of terminals of T ′

i .

If γ(G′
i) ≤ (a1/4)βλ(n) when the algorithm terminates, we have obtained a

terminal pair T ′
i to route in G′

i and a weight assignment that satisfy all three
conditions in the theorem. And we are done with this subgraph.

When γ(G′
i) > (a1/4)βλ(n), a product flow based on the flow of f̄ induced

in G′
i is routable with throughput at least f1 = 1

a1β(G)λ(n) in G′
i, where a1 > 8.

Hence by assigning a new weight

π
′
i(u) =

γ(u,G′
i)

(a1/2)βλ(n)
, (10.32)

for all u ∈ V (G′
i), and π

′
i(u) = 0 for all other nodes u ∈ V̂i in Ĝi, we can

define a multicommodity flow problem, where for any unordered pair of vertices

u, v ∈ V (G′
i), demπ

′

i(u, v) = π
′
i(u)π

′
i(v)/π

′
i(X

′
i), that is feasible in both G′ and

Ĝi. Hence X ′
i is π

′
i-flow-linked in Ĝi, ∀i. Finally, we put P t

i , ∀t back in Ĝi with
zero node weight, while retaining the same weight assignment for nodes in G′

i.
Hence the sum of the total weight is:

π
′
i(Ĝi) = π

′
i(G

′
i) =

∑

u∈G′

i

γ(u,G′
i)

(a1/2)βλ(n)
=

γ(G′
i)

(a1/4)βλ(n)
. (10.33)

Hence for both terminating conditions of the algorithm, we have π
′
i(G

′
i) ≥

γ(G′

i)
(a1/4)βλ(n) , and thus

ℓ
∑

i=1

π
′
i(X

′
i) ≥

ℓ
∑

i=1

γ(G′
i)

(a1/4)βλ(n)
≥ OPT∗(G, T)

16βλ(n)
,

where
∑ℓ

i=1 γ(G
′
i) ≥ OPT∗(G, T)/4 by taking a0 = 4 and a1 = 16 in Lemma 17

and requiring that C0 > 16λ(n)ĉ. Hence by the end of
sparsest-cut processing, we get a new instance X ′

i on Ĝi = (V̂i, Êi) with min-cut

at least ĉ = Ω(log3 n), such that X ′
i is π

′
i-flow-linked in Ĝi, which can be only

more connected than G′
i. We tune two parameters: a0 and a1, to balance the the

initial node degree requirement and the amount of flow of f̄ that we retain by
the end of min-cut and sparsest-cut processing.

Lemma 17. Given a graph G with min-cut value C0 ≥ (4a0λ(n) + a0 + 2)ĉ,
where a0 ≥ 2. By the end of sparsest-cut processing, the total amount of flow of
f̄ that we will pass on to next stage of the algorithm for finding EDP in G is the
sum of flow of f̄ induced in G′

i, across all i,

∑

i=1,2,...

γ(G′
i) ≥

1

2
OPT∗(G, T)

(

1 − 1

a0
− 1

2a0(1 − 8/a1)

)

, (10.34)

where a1 > 8.

Proof. In the beginning of the sparsest-cut processing stage, we have

remaining-flow =
∑

i=1,2,...

γ(Ĝi) ≥
1

2
OPT∗(G, T)(1 − 1

a0
). (10.35)

Combine this initial condition with Lemma 18, we have

remaining-flow =
∑

i=1,2,...

γ(G′
i) ≥

1

2
OPT∗(G, T)

(

1 − 1

a0
− 1

2a0(1 − 8/a1)

)

,

(10.36)

where LOSS ≤ OPT∗(G, T)/2.

Lemma 18. The amount of flow that we lose from
∑

i=1,2,... γ(Ĝi) due to sparsest-

cut processing is flow-loss2 ≤ LOSS

2a0(1−8/a1) , where a1 > 8.

Proof. To analyze the amount of flow that we lose from sparsest-cut processing,
we use a potential function ϕ(Ĝi) to keep track of the edges of G0

i = (V 0
i , E

0
i)

that we take away from nodes currently in Ĝi, after min-cut and during sparsest-
cut processing. Note that those lost edges connect to other nodes in V 0

i from

nodes internal to Ĝt
i at stage t. The counting process is the following. We start

with a component Gi such that some nodes in Ĝi have lost some of their edges
right after min-cut processing and

ϕ0
i = edge-lossi ≥ 0.

Let ϕt
i be value of ϕ(Ĝi) after removing t sets of vertices P 1

i , . . . , P
t
i and their

adjacent edges from Ĝi. Let P t+1
i be the (t+ 1)

st
set of vertices that we shut off

from Ĝi because internal boundary capacity of P t+1
i has decreased from∆(P t+1

i)

to δt(P t+1
i) ≤ demt(P t+1

i , V̂ t
i \ P t+1

i)βf ′.
We update ϕ(Gi) as the following,

ϕt+1
i = ϕt

i − (∆(P t+1
i) − δt(P t+1

i)) + δt(P t+1
i).

Since the credit that a cut puts back is less than the credit that it spent, there is
a only finite number yi of such small cuts. By the end of yi rounds, there must
be non-negative credit in ϕ(Ĝi), since nodes in current Ĝi can never gain any
internal edges:

ϕ(Ĝi) = ϕyi

i

= edge-lossi − (∆(P 1
i) − δ0(P 1

i)) + δ0(P 1
i) − (∆(P 2

i) − δ1(P 2
i)) + δ1(P 2

i)

− . . .− (∆(P yi

i) − δyi−1(P yi

i)) + δyi−1(P yi

i)

≥ 0.

Hence by summing above inequalities over all i,

∑

i=1,2,...

∑

j=1,2,...,yi

(∆(P j
i) − 2δj−1(P j

i)) ≤
∑

i=1,2,...

edge-lossi (10.37)

= edge-loss ≤ LOSS

a0(2λ(n) + 1
2)
.(10.38)

Fix P t+1
i for some i, t ∈ [0, . . . , yi − 1], we have the following two lemmas on

∆(P t+1
i) and δ(P t+1

i).

Lemma 19. For all i and all t ∈ [0, . . . , yi − 1],

∆(P t+1
i) = cap(P t+1

i , V 0
i \ P t+1

i) ≥
∑

u∈P t+1

i

γ(u, Ĝt+1
i)/2λ(n).

Lemma 20. For all i and all t ∈ [0, . . . , yi − 1],

δt(P t+1
i) ≤ 4

a1
∆(P t+1

i). (10.39)

Plugging (10.39) in (10.37), we get

∑

i=1,2,...

∑

t=1,2,...,yi

∆(P j
i)(1 − 8

a1
) ≤

∑

i=1,2,...

∑

t=1,2,...,yi

∆(P j
i) − 2δt−1(P t

i))

≤ LOSS

a0(2λ(n) + 1
2)
.

Hence

∑

i=1,2,...

∑

t=1,2,...,yi

∆(P j
i) =

LOSS

a0(2λ(n) + 1
2)(1 − 8/a1)

. (10.40)

Fix Ĝt
i = (V̂ t

i , Ê
t
i) for some t ∈ [1, . . . , yi]. We now calculate the amount of flows

of f̄ that we lose from
∑

i=1,2,... γ(Ĝi) by shutting off P t+1
i in Ĝi. The flow that

we lose falls into one of the four types:

1. its path are entirely contained in the subgraph of Ĝi induced by nodes in
P t+1

i ;
2. its path contains edges counted in ∆(P t+1

i) but not those in δt(P t+1
i);

3. its path contains edges counted in δt(P t+1
i), but with at least one endpoint

in P t+1
i ;

4. those flow with both endpoints u′v′ ∈ V̂ t+1
i , such that its path intersects

edges counted in δt(P t+1
i) for at least twice.

Flow of type 1 contributes to the sum
∑

u∈P t+1

i
γ(u, Ĝt

i) twice. Flow of type 3

contribute its flow value to
∑

u∈P t+1

i
γ(u, Ĝt

i) once and to the usage of δt(P t+1
i) =

cap(P t+1
i , V̂ t+1

i) at least once. Flow of type 4 contribute its flow amount at least

twice to the usage of cap(P t+1
i , V̂ t+1

i). Flow of type 2 has been counted before

when P j
i were mute for some j ≤ t from Ĝi. Note that those flow that crosses

(P t+1
i , V t+1

i) either has been counted in
∑

u∈P t+1

i
γ(u,Gi) at least once or it goes

through the cut (P t+1
i , V t+1

i) in Ĝt
i at least twice.

Hence the total amount of flow of f̄ that we lose from γ(Ĝi), that has not
been counted in earlier stages than t, by muting the induced subgraph of P t+1

i

and its adjacent edges in Ĝt
i:

1

2
(
∑

u∈P t+1

i

γ(u,Gi) + cap(P t+1
i , V t+1

i)) =
1

2

∑

u∈P t+1

i

γ(u,Gi) +
1

2
δt(P t+1

i)

≤ ∆(P t+1
i)λ(n) +

1

2
δt(P t+1

i)

≤ ∆(P t+1
i)(λ(n) + 2/a1),

where the last two inequalities are due to Lemma 19 and 20.
Summing over all P t

i , ∀t, ∀i, given that a1 ≥ 8, the total flow lost in sparsest-
cut processing stage is

flow-loss2 =
∑

i=1,2,...

∑

t=1,...,yi

∆(P t
i)λ(n) +

1

2
δt−1(P t

i)

≤
∑

i=1,2,...

∑

t=1,...,yi

∆(P t
i)(λ(n) + 2/a1)

≤ (λ(n) + 2/a1)LOSS

2a0(λ(n) + 1/4)(1 − 8/a1)

≤ LOSS

2a0(1 − 8/a1)
.

Proof of Lemma 19: Given that

∑

u∈P t+1

i

γ(u, Ĝt
i) ≤

∑

v∈V̂ t+1

i

γ(v, Ĝt
i)

and
∑

u∈P t+1

i
γ(u, Ĝt

i) +
∑

v∈V̂ t+1

i
γ(v, Ĝt

i) =
∑

u∈V̂ t
i
γ(u, Ĝt

i), we have

∑

u∈P t+1

i

γ(u, Ĝt
i) ≤

1

2

∑

u∈V̂ t
i

γ(u, Ĝt
i). (10.41)

Next let us define a2 as the additional flow of f̄ for node u in G0
i as compared

to that in subgraph Ĝt
i,

∑

u∈P t+1

i

γ(u,G0
i) =

∑

u∈P t+1

i

γ(u, Ĝt
i) + a2. (10.42)

Since each unit of flow of a2 uses at least one unit capacity from edges that
connect two set of vertices P t+1

i and V 0
i \ V̂ t

i in G0
i , we have

a2 ≤ ∆(P t+1
i) − δt(P t+1

i). (10.43)

In addition, we know that

∑

u∈X0
i

γ(u,G0
i) ≥

∑

u∈V̂ t
i

γ(u,G0
i) ≥

∑

u∈V̂ t
i

γ(u, Ĝt
i) + a2. (10.44)

Thus we have

∑

u∈P t+1

i

γ(u,G0
i) =

∑

u∈P t+1

i

γ(u, Ĝt
i) + a2 ≤

∑

u∈V̂ t
i
γ(u, Ĝt

i) + a2

2
+
a2

2
(10.45)

≤
∑

u∈V̂ t
i

1

2
γ(u,G0

i)/2 +
a2

2
≤
∑

u∈X0
i

1

2
γ(u,G0

i)/2 +
a2

2
.(10.46)

Now if
∑

u∈P t+1

i

γ(u,G0
i) ≤

1

2

∑

u∈V 0
i

γ(u,G0
i) i.e.πi(P

t+1
i ∩X0

i) ≤ 1

2
πi(X

0
i),

we have

∆(P t+1
i) ≥ cap(P t+1

i , V 0
i \ P t+1

i) ≥ 1

2
πi(P

t+1
i ∩X0

i)

≥
∑

u∈P t+1

i
γ(u,G0

i)

2λ(n)
≥
∑

u∈P t+1

i
γ(u, Ĝt

i)

2λ(n)
.

Otherwise,
∑

u∈P t+1

i
γ(u,G0

i) ≥ 1
2

∑

u∈V 0
i
γ(u,G0

i). First we have

∑

u∈V 0
i \P t+1

i

γ(u,G0
i) ≥

∑

u∈V 0
i

γ(u,G0
i)/2 − a2/2 (10.47)

due to (10.46) and
∑

u∈P t+1

i
γ(u,G0

i)+
∑

u∈V 0
i \P t+1

i
γ(u,G0

i) =
∑

u∈V 0
i
γ(u,G0

i).

Therefore,

∆(P t+1
i) = cap(P t+1

i , V 0
i \ P t+1

i) ≥ 1

2
πi((V

0
i \ P t+1

i) ∩X0
i) =

∑

u∈V 0
i \P t+1

i
γ(u,G0

i)

2λ(n)

≥
(
∑

u∈V 0
i
γ(u,G0

i)/2 − a2/2

2λ(n)
≥
∑

u∈P t+1

i
γ(u,G0

i) − a2

2λ(n)
=

∑

u∈P t+1

i
γ(u, Ĝt

i)

2λ(n)
,

where the last three (in)equalities are due to (10.47), (10.46), and (10.42), and
in this order.

Next, let us bound the size of δt(P t+1
i).

Proof of Lemma 20: Given that
∑

u∈P t+1

i

γ(u, Ĝt
i) ≤

∑

v∈V̂ t+1

i

γ(v, Ĝt
i)

and 2γ(Ĝt
i) =

∑

u∈P t+1

i
γ(u, Ĝt

i) +
∑

v∈V̂ t+1

i
γ(v, Ĝt

i), we have

∑

v∈V̂ t+1

i

γ(v, Ĝt
i) ≤ 2γ(Ĝt

i).

By terminating condition 2(b) in Figure 10.3, we have

δt(P t+1
i) ≤ demt(P t+1

i , V̂ t
i \ P t+1

i)βf1 ≤ demt(P t+1
i , V̂ t

i \ P t+1
i)

1

a1λ(n)

=

∑

u∈P t+1

i
γ(u, Ĝt

i) ·
∑

v∈V̂ t+1

i
γ(v, Ĝt

i)

a1λ(n) · γ(Ĝt
i)

≤
2
∑

u∈P t+1

i
γ(u, Ĝt

i)

a1λ(n)

≤ 4

a1

(∑

u∈P t+1

i
γ(u, Ĝt

i)

2λ(n)

)

≤ 4

a1
∆(P t+1

i),

where demt(P t+1
i , V̂ t

i \ P t+1
i) is defined in (10.31).

References

1. M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang. Hardness of the undirected
edge-disjoint paths problem with congestion. In Proceedings of the 46th IEEE

FOCS, 2005.

2. M. Andrews and L. Zhang. Hardness of the undirected congestion minimization
problem. In Proceedings of the 37th ACM STOC, 2005.

3. M. Andrews and L. Zhang. Hardness of the undirected edge-disjoint path problem.
In Proceedings of the 37th ACM STOC, 2005.

4. M. Andrews and L. Zhang. Logarithmic hardness of the directed congestion mini-
mization problem. In Proceedings of the 38th ACM STOC, 2006.

5. Y. Aumann and Y. Rabani. Improved bounds for all-optical routing. In Proceedings

of the 6th ACM-SIAM SODA, pages 567–576, 1995.

6. B. Awerbuch, R. Gawlick, F. T. Leighton, and Y. Rabani. On-line admission
control and circuit routing for high performance computing and communication.
In Proceedings of the 35th IEEE FOCS, pages 412–423, 1994.

7. A. Broder, A. Frieze, and E. Upfal. Existence and construction of edge-disjoint
paths on expander graphs. SIAM Journal of Computing, 23:976–989, 1994.

8. C. Chekuri and S. Khanna. Edge disjoint paths revisited. In Proceedings of the

14th ACM-SIAM SODA, 2003.

9. C. Chekuri, S. Khanna, and F. B. Shepherd. The all-or-nothing multicommodity
flow problem. In Proceedings of the 36th ACM STOC, 2004.

10. C. Chekuri, S. Khanna, and F. B. Shepherd. Edge-disjoint paths in planar graphs.
In Proceedings of the 45th IEEE FOCS, 2004.

11. C. Chekuri, S. Khanna, and F. B. Shepherd. Multicommodity flow, well-linked
terminals, and routing problems. In Proceedings of the 37th ACM STOC, 2005.

12. C. Chekuri, S. Khanna, and F. B. Shepherd. Edge-disjoint paths in planar graphs
with constant congestion. In Proceedings of the 38th ACM STOC, 2006.

13. C. Chekuri, S. Khanna, and F. B. Shepherd. An O(
√

n) approximation and inte-
grality gap for disjoint paths and unsplittable flow. Journal of Theory of Comput-

ing, 2:137–146, 2006.

14. H. Chernoff. A measure of asymptotic efficiency of tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

15. J. Chuzhoy and J. Naor. New hardness results for congestion minimization and
machine scheduling. In Proceedings of the 36th ACM STOC, pages 28–34, 2004.

16. N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algo-
rithms for integral flow and multicut in trees. In Proc. of the 20th ICALP, 1993.

17. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM J. of Computing, 25:235–251,
1996.

18. V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, and M. Yannakakis.
Near-optimal hardness results and approximation algorithms for edge-disjoint
paths and related problems. In Proceedings of the 31th ACM STOC, 1999.

19. D. R. Karger. Random sampling in cut, flow, and network design problems. In
Proceedings of the 26th ACM STOC, 1994.

20. D. R. Karger. Random sampling in cut, flow, and network design problems. Math-

ematics of Operations Research, 24(2):383–413, 1999.

21. R. Khandekar, S. Rao, and U. Vazirani. Graph partitioning using single commodity
flows. In Proceedings of the 38th ACM STOC, 2006.

22. J. Kleinberg. An approximation algorithm for the disjoint paths problem in even-
degree planar graphs. In Proceedings of the 46th IEEE FOCS, 2005.

23. J. Kleinberg and R. Rubinfeld. Short paths in expander graphs. In Proceedings of

the 37th IEEE FOCS, 1996.
24. J. Kleinberg and E. Tardos. Approximations for the disjoint paths problem in

high-diameter planar networks. In Proceedings of the 27th ACM STOC, 1995.
25. J. Kleinberg and E. Tardos. Disjoint paths in densely embedded graphs. In Pro-

ceedings of the 36th IEEE FOCS, pages 52–61, 1995.
26. J. M. Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD

thesis, MIT, Cambridge, MA, 1996.
27. S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using

greedy algorithms and packing integer programs. In Proceedings of IPCO, 1998.
28. P. Kolman and C. Scheideler. Simple on-line algorithms for the maximum disjoint

paths problem. In Proceedings of the 13th ACM SPAA, 2001.
29. K. Obata. Approximate max-integral-flow/min-multicut theorems. In Proceedings

of the 36th ACM STOC, 2004.
30. P. Raghavan and C. D. Thompson. Randomized roundings: a technique for prov-

ably good algorithms and algorithms proofs. Combinatorica, 7:365–374, 1987.
31. N. Robertson and P. D. Seymour. An outline of a disjoint paths algorithm. Paths,

Flows and VLSI-design, Algorithms and Combinatorics, 9:267–292, 1990.
32. A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable flow,

and related routing problems. In Proceedings of the 38th IEEE FOCS, 1997.
33. K. Varadarajan and G. Venkataraman. Graph decomposition and a greedy algo-

rithm for edge-disjoint paths. In Proceedings of the ACM-SIAM SODA, 2004.

