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Abstract

Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges (the edge-
coloring is not necessarily proper). A rainbow spanning tree is a spanning tree of G where each edge has
a different color. Brualdi and Hollingsworth [4] conjectured that every properly edge-colored Kn (n ≥ 6
and even) using exactly n−1 colors has n/2 edge-disjoint rainbow spanning trees, and they proved there
are at least two edge-disjoint rainbow spanning trees. Kaneko, Kano, and Suzuki [13] strengthened the
conjecture to include any proper edge-coloring of Kn, and they proved there are at least three edge-
disjoint rainbow spanning trees. Akbari and Alipouri [1] showed that each Kn that is edge-colored such
that no color appears more than n/2 times contains at least two rainbow spanning trees.

We prove that if n ≥ 1, 000, 000 then an edge-colored Kn, where each color appears on at most n/2
edges, contains at least bn/(1000 logn)c edge-disjoint rainbow spanning trees.

Keywords: rainbow spanning trees
AMS classification: Primary: 05C15; Secondary: 05C05, 05C70

1 Introduction

Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges (the edge-coloring is
not necessarily proper). A rainbow spanning tree is a spanning tree of G such that each edge has a different
color. Brualdi and Hollingsworth [4] conjectured that every properly edge-colored Kn (n ≥ 6 and even)
where each color class is a perfect matching has a decomposition of the edges of Kn into n/2 edge-disjoint
rainbow spanning trees. They proved there are at least two edge-disjoint rainbow spanning trees in such an
edge-colored Kn. Kaneko, Kano, and Suzuki [13] strengthened the conjecture to say that for any proper
edge-coloring of Kn (n ≥ 6) contains at least bn/2c edge-disjoint rainbow spanning trees, and they proved
there are at least three edge-disjoint rainbow spanning trees. Akbari and Alipour [1] showed that each
Kn that is an edge-colored such that no color appears more than n/2 times contains at least two rainbow
spanning trees.

Our main result is

Theorem 1. Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges and
n ≥ 1, 000, 000. The graph G contains at least bn/(1000 logn)c edge-disjoint rainbow spanning trees.

The strategy of the proof of Theorem 1 is to randomly construct bn/(1000 logn)c edge-disjoint subgraphs
of G such that with high probability each subgraph has a rainbow spanning tree. This result is the best
known for the conjecture by Kaneko, Kano, and Suzuki. Horn [12] has shown that if the edge-coloring is a
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proper coloring where each color class is a perfect matching then there are at least εn rainbow spanning trees
for some positive constant ε, which is the best known result for the conjecture by Brualdi and Hollingsworth.

There have been many results in finding rainbow subgraphs in edge-colored graphs; Kano and Li [14]
surveyed results and conjecture on monochromatic and rainbow (also called heterochromatic) subgraphs of
an edge-colored graph. Related work includes Brualdi and Hollingsworth [5] finding rainbow spanning trees
and forests in edge-colored complete bipartite graphs, and Constantine [8] showing that for certain values
of n there exists a proper coloring of Kn such that the edges of Kn decompose into isomorphic rainbow
spanning trees.

The existence of rainbow cycles has also been studied. Albert, Frieze, and Reed [2] showed that for an
edge-colored Kn where each color appears at most dcne times then there is a rainbow hamiltonian cycle if
c < 1/64 (Rue (see [11]) provided a correction to the constant). Frieze and Krivelevich [11] proved that there
exists a c such that if each color appears at most dcne times then there are rainbow cycles of all lengths.

This paper is organized as follows. Section 2 includes definitions and results used throughout the paper.
Sections 3, 4, and 5 contain lemmas describing properties of the random subgraphs we generate. The final
section provides the proof of our main result.

2 Definitions

First we establish some notation that we will use throughout the paper. Let G be a graph and S ⊆ V (G).
Let G[S] denote the induced subgraph of G on the vertex set S. Let [S, S]G be the set of edges between S

and S in G. For natural numbers q and k, [q] represents the set {1, . . . , q}, and
(

[q]
k

)
is the collection of all

k-subsets of [q]. Throughout the paper the logarithm function used has base e. One inequality that we will
use often is the union sum bound which states that for events A1, . . . , Ar

P

[
r⋃
i=1

Ai

]
≤

r∑
i=1

P [Ai] .

Throughout the rest of the paper let G be an edge-colored copy of Kn, where the set of edges of each color
has size at most n/2, and n ≥ 1, 000, 000. We assume G is colored with q colors, where n−1 ≤ q ≤

(
n
2

)
. Let Cj

be the set of edges of color j in G. Define cj = |Cj |, and without loss of generality assume c1 ≥ c2 ≥ · · · ≥ cq.
Note that 1 ≤ cj ≤ n/2 for all j.

Let t = bn/(C log n)c where C = 1000. Note that we have not optimized the constant C, and it can be
slightly improved at the cost of more calculation. Since n

C logn − 1 ≤ t ≤ n
C logn we have

−1

t
≤ −C log n

n
and

C log n

n
≤ 1

t
≤
(

n

n− C log n

)
C log n

n
. (∗)

We will frequently use these bounds on t.

We construct edge-disjoint subgraphs G1, . . . , Gt of G in the following way: independently and uniformly
select each edge of G to be in Gi with probability 1/t. Each Gi (considered as an uncolored graph) is
distributed as an Erdős-Rényi random graph G(n, 1/t). Note that the subgraphs are not independent. We
will show that with high probability each of the subgraphs G1, . . . , Gt simultaneously contain a rainbow
spanning tree.

To prove that a graph has a rainbow spanning tree we will use Theorem 2 below that gives necessary
and sufficient conditions for the existence of a rainbow spanning tree. Broersma and Li [3] showed that
determining the largest rainbow spanning forest of H can be solved by applying the Matroid Intersection
Theorem [10] (see Schrijver [16, p. 700]), to the graphic matroid and the partition matroid on the edge
set of H defined by the color classes. Schrijver [16] translated the conditions of the Matroid Intersection
Theorem into necessary and sufficient conditions for the existence of a rainbow spanning tree. Suzuki [17]
and Carraher and Hartke [6] gave graph-theoretical proofs of this same theorem.
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Theorem 2. A graph G has a rainbow spanning tree if and only if, for every partition π of V (G), at least
s− 1 different colors are represented between the parts of π, where s is the number of parts of π.

We show that for every partition π of V (G) into s parts there are at least s− 1 colors between the parts
for each Gi. Sections 3, 4 and 5 describe properties of the subgraphs G1, . . . , Gt for certain partitions π
of V (G) into s parts. Many of our proofs use the following variant of Chernoff’s inequality [7], frequently
attributed to Bernstein (see [9]).

Lemma 3 (Bernstein’s Inequality). Suppose Xi are independently identically distributed Bernoulli random
variables, and X =

∑
Xi. Then

P [X ≥ E[X] + λ] ≤ exp

(
− λ2

2(E[X] + λ/3)

)
and

P [X ≤ E[X]− λ] ≤ exp

(
− λ2

2E[X]

)
.

In several places in the paper we use Jensen’s inequality.

Lemma 4 (Jensen’s Inequality (see [18])). Let f(x) be a real-valued convex function defined on an interval
I = [a, b]. If x1, . . . , xn ∈ I and λ1, . . . , λn ≥ 0 with

∑n
i=1 λi = 1, then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

We also make use of the following upper bound for binomial coefficients
(
n
k

)
≤ nk.

3 Partitions with n or n− 1 parts

In this section we show that a partition π of V (G) into n or n − 1 parts has enough colors between the
parts. Since color classes can have small size, there might not be any edges of a given color in a subgraph Gi.
Therefore, we group small color classes together to form larger pseudocolor classes. Recall that cj is the size
of the color class Cj , and c1 ≥ c2 ≥ · · · ≥ cq. Define the pseudocolor classes D1, . . . , Dn−1 of G recursively
as follows:

Dk =

⋃̀
j=1

Cj

 \(k−1⋃
i=1

Di

)
,

where ` is the smallest integer such that
∣∣∣(⋃`j=1 Cj

)
\
(⋃k−1

i=1 Di

)∣∣∣ ≥ n/4. Note that the n− 1 pseudocolor

classes might not contain all the edges of G.

Lemma 5. Each of the n− 1 pseudocolor classes D1, . . . , Dn−1 have size at least n/4 and at most n/2.

Proof. We prove this statement by induction on k. Consider the pseudocolor class Dk, for 1 ≤ k ≤ n − 1.
Since each of the pseudocolor classes D1 . . . , Dk−1 has size at most n/2, there are at least n

2 (n − k) edges

not in
⋃k−1
i=1 Di. Therefore there exist `′ and ` such that Dk =

⋃`
i=`′ Ci, where |Dk| =

∑`
i=`′ ci ≥ n/4.

If `′ = ` then |Dk| = |C`| ≤ n/2. Otherwise, we know c` ≤ c`−1 ≤ c`′ ≤ n/4. So,

|Dk| =
`−1∑
i=`′

ci + c` ≤
n

4
+ c` ≤

n

4
+
n

4
=
n

2
,

which proves that the pseudocolor class Dk has size at most n
2 .
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Lemma 6. For a fixed subgraph Gi and pseudocolor class Dj,

P
[
|E(Gi) ∩Dj | ≤

|Dj |
t
−
√

3
n

t
log n

]
≤ 1

n3
.

As a consequence, with probability at least 1 − 1
n every subgraph Gi has at least one edge from each of the

pseudocolor classes D1, . . . , Dn−1.

Proof. Fix a subgraph Gi and a pseudocolor class Dj . The expected number of edges in Gi from the

pseudocolor class is
|Dj |
t . By Bernstein’s inequality where λ =

√
3nt log n, we have

P
[
|E(Gi) ∩Dj | ≤

|Dj |
t
−
√

3
n

t
log n

]
≤ exp

(
−3nt log n

2
|Dj |
t

)

≤ exp

(
−3n log n

2n2

)
=

1

n3
.

Since |Dj | ≥ n/4, n ≥ 1, 000, and C ≥ 50,

|Dj |
t
−
√

3
n

t
log n ≥ n

4t
−
√

3
n

t
log n ≥ 1.

The second statement follows from the previous inequalities by using the union sum bound for the n − 1
pseudocolor classes and t subgraphs and recalling that t < n.

Lemma 6 shows that if we consider a partition π of V (G) into s parts, where s = n there must be at
least n− 1 colors in Gi between the parts of π. In the case when the partition has s = n− 1 parts there is
at most one edge inside the parts of π, so there are at least n− 2 colors in Gi between the parts of π.

4 Partitions where
(
1− 14√

C

)
n ≤ s ≤ n− 2

In this section we consider partitions π of V (G) into s parts where
(

1− 14√
C

)
n ≤ s ≤ n − 2. First, we

introduce a new function that will help with our calculations. The function f will be used to bound the
probability that q − (s− 2) colors do not appear between the parts of π in Gi.

Lemma 7. For an integer ` and real numbers c1, . . . , cq, define

f(c1, . . . , cq; `) =
∑

I∈( [q]
q−`)

exp

−1

t

∑
j∈I

cj

 .

If 1 ≤ cj ≤ n
2 for each j,

∑q
i=1 cj =

(
n
2

)
, and n

2 ≤ ` ≤ n− 4, then

f(c1, . . . , cq; `) ≤ exp

(
−49C

200
(n− `) log n

)
.

Proof. For convenience we define w(I) =
∑
j∈I cj for a subset I ⊆ [q].

Claim 1.
f(c1, . . . , cq; `) ≤ f( 1, 1, . . . , 1︸ ︷︷ ︸

k − 1 times

, x∗,
n

2
, . . . ,

n

2︸ ︷︷ ︸
q − k times

; `),

where 1 ≤ x∗ < n
2 , and where k and x∗ are so that (k − 1) + (q − k)n2 + x∗ =

(
n
2

)
.
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Proof of Claim 1. Since f(c1, . . . , cq; `) is a symmetric function in the cj ’s, it suffices to show that when
c2 ≥ c1,

f(c1, c2, . . . , cq; `) ≤ f(c1 − ε, c2 + ε, . . . , cq; `),

where ε = min{c1 − 1, n2 − c2}.

f(c1, c2, . . . , cq; `) =
∑

I∈([q]\{1,2}
q−` )

exp

(
−w(I)

t

)
+

∑
I∈([q]\{1,2}

q−`−2 )

exp

(
−c1
t
− c2

t
− w(I)

t

)

+
∑

I∈([q]\{1,2}
q−`−1 )

(
exp

(
−c1
t
− w(I)

t

)
+ exp

(
−c2
t
− w(I)

t

))

The first two summations are unchanged in f(c1 − ε, c2 + ε, . . . , cq; `), and hence it suffices to show that for

every I ∈
(

[q]\{1,2}
`−1

)
,

exp

(
−c1
t
− w(I)

t

)
+ exp

(
−c2
t
− w(I)

t

)
≤ exp

(
− (c1 − ε)

t
− w(I)

t

)
+ exp

(
− (c2 + ε)

t
− w(I)

t

)
.

This follows immediately by Jensen’s inequality and the convexity of exp(αx+ β) as a function in x.

Claim 2.
f( 1, 1, . . . , 1︸ ︷︷ ︸
k − 1 times

, x∗,
n

2
, . . . ,

n

2︸ ︷︷ ︸
q − k times

; `) ≤ f(1, . . . , 1︸ ︷︷ ︸
k times

,
n

2
, . . . ,

n

2︸ ︷︷ ︸
q − k times

; `),

where n(n−2)
2 ≤ k + (q − k)n2 ≤

(
n
2

)
.

Note that since
(
n
2

)
= k − 1 + x∗ + (q − k)n2 , x∗ < n

2 and so x∗ − 1 < n
2 , we have k + (q − k)n2 =(

n
2

)
− (x∗ − 1) > n(n−1)

2 − n
2 = n(n−2)

2 .

Proof of Claim 2. The function f is decreasing in each cj , and in particular ck.

Next we consider
∑
I∈( [q]

q−`)
exp

(
− 1
tw(I)

)
and sum up subsets by intersection of the number of ones that

appear. Let r be the number of ones. So we have

f(1, . . . , 1︸ ︷︷ ︸
k times

,
n

2
, . . . ,

n

2︸ ︷︷ ︸
q − k times

; `) =
∑

I∈( [q]
q−`)

exp

(
−1

t
w(I)

)

≤
min{`,k}∑

r=max{0,`−(q−k)}

(
k

r

)(
q − k
`− r

)
exp

(
−1

t

(
n(n− 2)

2
− (`− r)n

2
− r
))

≤
min{`,k}∑

r=max{0,`−(q−k)}

kr(q − k)(q−k)−(`−r) exp

(
−1

t

(n
2

(n− (`− r)− 2)− r
))

≤
min{`,k}∑

r=max{0,`−(q−k)}

exp

(
(q − k − `+ 2r) log n− 1

t

(n
2

(n− `+ r − 2)− r
))
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≤
min{`,k}∑

r=max{0,`−(q−k)}

exp

(
log n

(
q − k − `+ 2r − C

2
(n− `+ r − 2) +

Cr

n

))
by (∗)

≤ n exp

(
log n

(
(n− `)

(
1− C

2

)
+ r

(
2− C

2
+
C

n

)
+ C

))
≤ exp

(
log n

(
(n− `)

(
1− C

2

)
+ C + 1

))
.

Since n− ` ≥ 4 and C ≥ 250, we have

1 +
1

n− `
≤ C

200
≤ C

(
1

2
− 1

n− `
− 49

200

)
.

Thus the sum above is bounded by

exp

(
−49C

200
(n− `) log n

)
.

Lemma 8. Let Π be the set of partitions of V (G) into s parts, where
(

1− 14√
C

)
n ≤ s ≤ n − 2. For a

partition π ∈ Π, let Bπ,i be the event that there are less than s− 1 colors between the parts of π in Gi. Then

P

[
t⋃
i=1

⋃
π∈Π

Bπ,i

]
≤ 1

n
.

Proof. Fix a subgraph Gi and a partition π ∈ Π. Recall that C1, . . . , Cq are the color classes of G with sizes
c1, . . . , cq, respectively. Let Iπ,i be the set of colors that do not appear on edges of Gi between the parts of
π.

The total number of edges in G that have a color indexed by Iπ,i is
∑
j∈Iπ,i cj . By convexity of

(
x
2

)
, there

are at most
(
n−s+1

2

)
edges inside the parts of π. Note that when event Bπ,i happens that |Iπ,i| ≥ q− (s− 2)

and if Iπ,i does not have size q − (s − 2), then it contains a set I ′ ⊆ Iπ,i of size q − (s − 2), and the event
that no edges of Gi between the parts of π have colors in Iπ,i is contained in the event that no edges of Gi
between the parts have colors in I ′. Thus,

P [Bπ,i] ≤
∑

I∈( [q]
q−(s−2))

(
1− 1

t

)∑
j∈I cj−(n−s+1

2 )

≤ f(c1, c2, . . . , cq; s− 2)

(
1− 1

t

)−(n−s+1
2 )

≤ f(c1, c2, . . . , cq; s− 2) exp

(
1

t

(
n− s+ 1

2

))
since

(
1− 1

t

)
≤ e− 1

t

≤ exp

(
−49C

200
(n− (s− 2)) log n+

(n− s+ 1)2

2t

)
by Lemma 7.

Since s ≥
(

1− 14√
C

)
n, we know n− s+ 1 ≤ 14n√

C
+ 1. Thus we can bound the previous line by

≤ exp

(
(n− s+ 1)

(
−49C

200
log n+

1

2t

(
14√
C
n+ 1

)))
≤ exp

(
(n− s+ 1) log n

(
−49C

200
+

n

n− C log n

(
14
√
C

2
+
C

2n

)))
by (∗).
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We now perform a union bound over all partitions π ∈ Π. The number of partitions of V (G) into s
nonempty parts is at most(

n

s

)
sn−s ≤

(
n

n− s

)
nn−s ≤ n2(n−s) = exp(2(n− s) log n) ≤ exp(2(n− s+ 1) log n).

Therefore,

P

 ⋃
π∈Π

with s parts

Bπ,i

 ≤ exp

(
(n− s+ 1) log n

(
2− 49C

200
+

n

n− C log n

(
14
√
C

2
+
C

2n

)))
.

Since C = 1000 and n ≥ 1, 000, 000, we have

2− 49C

200
+

n

n− C log n

(
14
√
C

2
+
C

2n

)
≤ −1,

and since (n− s+ 1) ≥ 3,

P

 ⋃
π∈Π

with s parts

Bπ,i

 ≤ exp (−3 log n) =
1

n3
.

This gives a bound on the probability for a fixed partition size s. Using the union sum bound over all

partition sizes s, where
(

1− 14√
C

)
n ≤ s ≤ n− 2, and over all t subgraphs completes the proof.

This proves when s is large there are enough colors between the parts.

5 Partitions where 2 ≤ s ≤
(
1− 14√

C

)
n

Next, we prove several results that will be used to show there are enough colors in Gi between the parts of
the partition when the number of parts is small. Our goal is to show that for a partition π of V (G) into
s parts, the number of edges between the parts in Gi is so large that there must be at least s − 1 colors
between the parts.

Lemma 9. For a fixed subgraph Gi and color j,

P
[
|E(Gi) ∩ Cj | ≥

n

2t
+ 4

√
n

t
log n

]
≤ 1

n4
.

As a consequence, with probability at least 1− 1
n , every color appears at most n

2t + 4
√

n
t log n times in every

Gi.

Proof. Fix a color j and a subgraph Gi. Order the edges of Cj as e1, . . . , ecj . For 1 ≤ k ≤ cj , let Xk be
the indicator random variable for the event ek ∈ E(Gi). For a color class with size less than n

2 we introduce
dummy random variables, so we can apply Bernstein’s inequality. For cj + 1 ≤ k ≤ n/2, let Xk be a random
variable distributed independently as a Bernoulli random variable with probability 1/t.
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By construction, |E(Gi) ∩ Cj | ≤ X =
∑n/2
k=1Xk and E[X] = n

2t . By Bernstein’s Inequality where

λ = 4
√

n
t log n, we have

P
[
|E(Gi) ∩ Cj | ≥

n

2t
+ 4

√
n

t
log n

]
≤ P

[
X ≥ n

2t
+ 4

√
n

t
log n

]
≤ exp

(
− 16n

t log n

2
(
n
2t + 4

3

√
n
t log n

))

= exp

 −16 log n

1 + 8
3

√
t
n log n


≤ exp

(
−16

1 + 8
3
√
C

log n

)
since t ≤ n

C log n
,

≤ exp

(
−16

11
3

log n

)
≤
(

1

n

)48/11

≤ 1

n4
since C ≥ 1,

which proves the first statement.

The second statement follows from the previous inequality by using the union sum bound for the q color
classes and t subgraphs, and recalling that q < n2 and t < n.

Lemma 10. Fix S ⊆ V (G). Let BS,i be the event

∣∣∣[S, S ]
Gi

∣∣∣ ≤ |S|(n− |S|)
t

−
√

6|S|(n− |S|)
t

min{|S|, n− |S|} log n.

Then

P

 t⋃
i=1

⋃
S⊆V (G)

BS,i

 ≤ 4

n
.

Proof. Fix a subgraph Gi and a set of vertices S ⊆ V (G). Let r = |S|. The expected number of edges in Gi

between S and S is r(n− r)/t. By Bernstein’s inequality with λ =
√

6 r(n−r)t min{r, n− r} log n, we have

P [BS,i] ≤ exp

(
−6 r(n−r)t min{r, n− r} log n

2 r(n−r)t

)
= n−3 min{r,n−r}.

So

P

 ⋃
S⊆V (G)

BS,i

 ≤ n/2∑
r=1

(
n

r

)
n−3r +

n∑
r=n/2

(
n

n− r

)
n−3(n−r) = 2

n/2∑
r=1

(
n

r

)
n−3r

≤ 2

n/2∑
r=1

n−2r ≤ 2n−2 + 2

n/2∑
r=2

n−4

 ≤ 2

n2
+

2

n3
≤ 4

n2
.

Applying the union sum bound for the t subgraphs gives the final statement of the lemma.

The previous lemma gives a lower bound on the number of edges between S and S. We use this lemma
to find a lower bound on the number of edges between the parts for a partition π = {P1, . . . , Ps} of V (G).
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Definition 11. For x ∈ [0, n], let

f(x) =
x(n− x)

t
−
√

6x(n− x)

t
min{x, n− x} log n.

If none of the bad events BS,i from Lemma 10 occur, then the sum 1
2

∑
π={P1,...,Ps} f(|Pi|), where∑s

i=1 |Pi| = n, is a lower bound on the number of edges between the parts of the partition π. We bound this
sum for all partitions. If −f(x) was convex then we could immediately find a lower bound by using Jensen’s
inequality in Lemma 4. Since −f(x) is not convex, we bound it with a function that is convex.

Let h(x) be a function with domain [a, b]. We say a function h is concave if for x, y ∈ [a, b] and λ ∈ [0, 1],
then h(λx+ (1− λ)y) ≥ λh(x) + (1− λ)h(y). First, we present two basic results about concave functions.

Lemma 12. Let h(x) be a differentiable function with domain [a, b]. Suppose that h is concave on [z, b],
where z ∈ (a, b). Let `(x) be the line tangent to h at the point (z, h(z)). Then the function

h1(x) =

{
`(x) if a ≤ x ≤ z,
h(x) if z < x ≤ b

is concave.

It is well known (see Proposition 3.10 [15]) that a differentiable function f(x) on an interval [a, b] is
concave if and only if f ′(x) is weakly decreasing. The function h1(x) is defined in a way such that h1(x)
is differentiable and the derivative is initially constant and then weakly decreasing and hence this result
applies.

Lemma 13. If h1 and h2 are concave functions, then h(x) = min{h1(x), h2(x)} is concave.

The proof for Lemma 13 can be found as Example 2.15 in Peypouquet [15].

We next define several functions that will lead to a concave lower bound for the function f . Define on
[0, n] the functions

f1(x) =
x(n− x)

t
− x
√

6(n− x)

t
log n,

f2(x) =
x(n− x)

t
− (n− x)

√
6x

t
log n.

Note that

f(x) =

{
f1(x) 0 ≤ x ≤ n/2,
f2(x) n/2 < x ≤ n.

Let `(x) = f ′2(x)(x−n/2) + f2(n/2) be the tangent line of f2(x) at the point
(
n
2 ,

n2

4t −
n
2

√
3n
t log n

)
. Let

c be the point such that f1(x) achieves its maximum value on the interval [0, n]. Define

f3(x) =

{
`(x) 0 ≤ x ≤ n/2,
f2(x) n/2 < x ≤ n

and

f4(x) =

{
f1(x) 0 ≤ x ≤ c,
f1(c) c < x ≤ n.

By Lemma 12 the functions f3 and f4 are concave.

On the interval [0, n] define f5(x) = min{f3(x), f4(x)}. The function f5(x) is concave by Lemma 13,
where f(x) ≥ f5(x) for all x ∈ [0, n]. Figure 1 shows the functions f(x) and `(x) used to create f5(x).

9



0 n/2 n

c

`(x)
f(x)

Figure 1: The function f(x), along with the line `(x).

Lemma 14. The sum
∑s
i=1 f(xi), where

∑s
i=1 xi = n and xi ≥ 1 for all i, is bounded below by

s∑
i=1

f(xi) ≥ (s− 1)f(1) + f(n− s+ 1).

Proof. The proof is broken up into two cases based on whether s ≤ n/2 + 1, or s > n/2 + 1.

When s ≤ n/2 + 1 the function f(x) ≥ f5(x), so
∑s
i=1 f(xi) ≥

∑s
i=1 f5(xi). Since the function f5(x) is

concave the sum
∑s
i=1 f5(x) is minimized when there is one part of size n− s+ 1 and all the other parts are

of size 1. Since n− s+ 1 ≥ n/2, we have f5(n− s+ 1) = f(n− s+ 1). Note that `(1) ≥ f1(1), which implies
f5(1) = f(1). Thus

s∑
i=1

f(xi) ≥
s∑
i=1

f5(xi) ≥ (s− 1)f5(1) + f5(n− s+ 1) = (s− 1)f(1) + f(n− s+ 1).

When s > n/2 + 1, we have xi ≤ n/2 for all i. Therefore f(xi) = f1(xi) for all i. Since f1(x) is concave
the sum is minimized when one part has size n− s+ 1 and the rest have size 1.

Lemma 15. Let π be a partition of the vertices of G into s parts. Suppose none of the events BS,i from
Lemma 10 hold for all S ⊆ V (G) and 1 ≤ i ≤ t. Then in each of the subgraphs G1, . . . , Gt, the number of
edges between the parts of π is at least

1

2

(
(s− 1)

(
n− 1

t
−
√

6(n− 1)
log n

t

)
+

(n− s+ 1)(s− 1)

t
− (s− 1)

√
6(n− s+ 1)

log n

t

)
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when s ≤ n/2 + 1, and

1

2

(
(s− 1)

(
n− 1

t
−
√

6(n− 1)
log n

t

)
+

(n− s+ 1)(s− 1)

t
− (n− s+ 1)

√
6(s− 1)

log n

t

)

when s > n/2 + 1.

Proof. If none of the events BS,i hold then the sum 1
2

∑
π={P1,...,Ps} f(x) where

∑s
i=1 |Pi| = n is a lower

bound on the number of edges between the parts of π. By Lemma 14 we know this sum is bounded below
by 1

2 ((s− 1)f(1) + f(n− s+ 1)).

Lemma 16. Let π be a partition of the vertices of G into s parts, where 2 ≤ s ≤
(

1− 14√
C

)
n. Suppose none

of the events BS,i from Lemma 10 hold for all S ⊆ V (G) and 1 ≤ i ≤ t, and every color appears in each Gi
at most n

2t + 4
√

n
t log n times (as in Lemma 9). Then in each of the subgraphs G1, . . . , Gt, the number of

colors between the parts of π is at least s− 1.

Proof. Suppose there exists a subgraph Gi and a partition π into s parts where there are at most s−2 colors
between the parts in Gi. Then by assumption there are at most

(s− 2)

(
n

2t
+ 4

√
n

t
log n

)
edges in Gi between the parts of π. We will show that the number of edges between the parts of π cannot
be this small, giving a contradiction.

Suppose n
2 + 1 < s ≤

(
1− 14√

C

)
n. By Lemma 15 there are at least

1

2

(
(s− 1)

(
n− 1

t
−
√

6(n− 1)
log n

t

)
+

(n− s+ 1)(s− 1)

t
− (n− s+ 1)

√
6(s− 1)

log n

t

)

edges in Gi between the parts of π. If π has at most s− 2 colors in Gi between the parts, then

(s− 2)

(
n

2t
+ 4

√
n

t
log n

)
≥ s− 1

2

(
n− 1

t
−
√

6(n− 1)
log n

t
+

(n− s+ 1)

t
− (n− s+ 1)

√
6 log n

(s− 1)t

)
.

Rearranging we have

s− 2

s− 1

(
n

t
+ 8

√
n

t
log n

)
+

1

t
+

√
6(n− 1)

log n

t
+ (n− s+ 1)

√
6 log n

(s− 1)t
≥ n

t
+

(n− s+ 1)

t
.

We will give an upper bound to the left side and a lower bound to the right side that give a contradiction.

Since s is an integer and n/2 + 1 < s, we have

(n− s+ 1)

√
6

n(s− 1)
≤ n

2

√
12

n2
=
√

3. (†)

Therefore

s− 2

s− 1

(
n

t
+ 8

√
n

t
log n

)
+

1

t
+

√
6(n− 1)

log n

t
+ (n− s+ 1)

√
6 log n

(s− 1)t

≤
√
C log n

(
n

n− C log n

)(√
C +

√
C

n
+

√
n− C log n

n

(
8 +

√
6(n− 1)

n
+ (n− s+ 1)

√
6

n(s− 1)

))
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≤
√
C log n

(
n

n− C log n

)(√
C +

√
C

n
+

√
n− C log n

n

(
8 +
√

6 +
√

3
))

by (†).

Since C = 1000 and n ≥ 1, 000, 000, n
n−C logn ≤ 1.02 and

√
n

n−C logn ≤ 1.01. Thus the term above is

bounded by

√
C log n

(
1.02
√
C +

1.02
√
C

n
+ 1.01(8 +

√
6 +
√

3)

)
≤
√
C log n

(
1.02
√
C + 12.31

)
.

We next bound the right side. By (∗) we have 1
t ≥

C logn
n , and since s ≤

(
1− 14√

C

)
n, so

n

t
+

(n− s+ 1)

t
≥ C log n+ C log n

n− s+ 1

n
≥ C log n+ C log n

14√
C

=
√
C log n(

√
C + 14).

When C = 1000 we have
√
C + 14 > 1.02

√
C + 12.31, which gives a contradiction. So, there must be at

least s− 1 colors in Gi between the parts of π when n
2 + 1 < s ≤

(
1− 14√

C

)
n.

Suppose 2 ≤ s ≤ n
2 + 1. By Lemma 15 there are at least

1

2

(
(s− 1)

(
n− 1

t
−
√

6(n− 1)
log n

t

)
+

(n− s+ 1)(s− 1)

t
− (s− 1)

√
6(n− s+ 1)

log n

t

)
edges in Gi between the parts of π. If π has at most s− 2 colors in Gi between the parts then

(s− 2)

(
n

2t
+ 4

√
n

t
log n

)
≥ (s− 1)

2

(
n− 1

t
−
√

6(n− 1)
log n

t
+

(n− s+ 1)

t
−
√

6(n− s+ 1)
log n

t

)
.

Rearranging we have

s− 2

s− 1

(
n

t
+ 8

√
n

t
log n

)
+

1

t
+

√
6(n− 1)

log n

t
+

√
6(n− s+ 1)

log n

t
≥ n

t
+

(n− s+ 1)

t
.

Using 1
t ≤

C logn
n−C logn from (∗), we have

s− 2

s− 1

(
n

t
+ 8

√
n

t
log n

)
+

1

t
+

√
6(n− 1)

log n

t
+

√
6(n− s+ 1)

log n

t

≤
√
C log n

(
n

n− C log n

)(√
C +

√
C

n
+

√
n− C log n

n

(
8 +

√
6(n− 1)

n
+

√
6(n− s+ 1)

n

))
.

Since C = 1000 and n ≥ 1, 000, 000, n
n−C logn ≤ 1.02 and

√
n

n−C logn ≤ 1.01. Thus the term above is

bounded above by

√
C log n

(
1.02
√
C +

1.02
√
C

n
+ 1.01

(
8 + 2

√
6
))
≤
√
C log n

(
1.02
√
C + 13.1

)
.

Bounding the right side using 1
t ≥

C logn
n from (∗), and s ≤ n

2 + 1, we have

n

t
+

(n− s+ 1)

t
≥ C log n+ C log n

(n− s+ 1)

n
≥ C log n+ C log n

n
2

n
=
√
C log n

(
3
√
C

2

)
.

Again, when C = 1000 and n ≥ 1, 000, 000 we have 3
√
C

2 > 1.02
√
C+ 13.1 which leads to a contradiction.

Thus, there must be at least s− 1 colors in Gi between the parts of π when 2 ≤ s ≤ n
2 + 1.

12



The careful reader will note that, in the proof of Lemma 16, the value of C cannot be taken too large,
as well as too small, and this seems counterintuitive - the larger the value of C is the smaller the number
of spanning trees we ask for. The essential reason for this is simply the fact that, in the proof, we need to
control 1

t = 1
bn/(C logn)c in comparison to C log n/n and this can run awry if n/(C log n) is too small. This

leads to an interplay between C and n. Taking larger C is allowed within the scope of the proof so long as
n is taken to be sufficiently large as well, but we have made some attempt to optimize so that C and n are
relatively small.

6 Main Result

Theorem 1. Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges and
n ≥ 1, 000, 000. The graph G contains at least bn/(1000 log n)c edge-disjoint rainbow spanning trees.

Proof. Recall that t = bn/(C log n)c where C = 1000. We perform the random experiment of decomposing
the edges of G into t edge-disjoint subgraphs Gi by independently and uniformly selecting each edge of G
to be in the subgraph Gi with probability 1/t. With probability at least 1− 7

n none of the bad events from
Lemmas 6, 8, 9, and 10 occur in any of the subgraphs Gi. Henceforth let G1, . . . , Gt be fixed subgraphs
where none of these bad events occur.

We want to show that each Gi has a rainbow spanning tree. By Theorem 2 it is enough to show that for
every partition π of V (G) into s parts, there are at least s− 1 different colors appearing on the edges of Gi
between the parts of π.

By Lemma 6, every Gi has at least one edge from each of the n − 1 pseudocolor classes. When s = n
there must be at least n− 1 colors in Gi between the parts of π. When s = n− 1 there is at most one edge
inside the parts of π, so there are at least n− 2 colors in Gi between the parts of π.

If
(

1− 14√
C

)
n ≤ s ≤ n − 2, then by Lemma 8 every partition π of V (G) into s parts has at least s − 1

colors in Gi between the parts, for every subgraph G1, . . . , Gt.

Finally, we assume that s ≤
(

1− 14√
C

)
n. When s = 1 there are zero colors between the parts, so the

condition is vacuously true. So suppose 2 ≤ s ≤
(

1− 14√
C

)
n. Since Lemmas 9 and 10 hold, by Lemma 16

the number of colors between the parts of π is at least s− 1 for every subgraph G1, . . . , Gt.

Therefore all of the subgraphs G1, . . . , Gt contain a rainbow spanning tree, and so G contains at least
t = bn/(1000 log n)c edge-disjoint rainbow spanning trees.
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