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Abstract. We analyze edge dominating set from a parameterized
perspective. More specifically, we prove that this problem is in FPT for
general (weighted) graphs. The corresponding algorithms rely on enu-
meration techniques. In particular, we show how the use of compact
representations may speed up the decision algorithm.

1 Introduction

Graphs and line graphs. It is a common observation that problems that are hard
for general graphs become easier when considered on line graphs, i.e., graphs
whose adjacency relation can be thought of as originating from the edge-to-
edge neighborhood of another graph. More specifically, if G = (V, E) is some
graph, then its line graph L(G) has E has the set of “vertices,” and there is
an “edge” (in L(G)) between e1, e2 ∈ E if e1 and e2 share a common endpoint
in G. For example, while vertex cover is NP-complete on general graphs, it
can be solved in polynomial time on line graphs, since this corresponds to the
edge cover problem. The same comment applies to the more general problem
weighted vertex cover. However, dominating set remains NP-complete
even when restricted to line graphs, see [23], even when restricted to planar
cubic graphs [15]. Does this mean that there is actually “no difference” between
general graphs and line graphs with respect to dominating set ? This is in
fact the case from a classical perspective, but the picture changes when one
considers two prominent approaches of how to deal with computationally hard
problems:

– while dominating set is hard to approximate on general graphs [7] (it
cannot be approximated better than lnn unless NP ⊆ DT IME(nln ln n)),
edge dominating set is constant-factor approximable (also in the weighted
case), see [3,13,18]; moreover, it is MAXSNP-hard and hence there is no
polynomial-time approximation scheme to be expected [3,23];

– while dominating set is W[2]-hard on general graphs, edge dominating

set is in FPT ; in this paper, we are going to show that edge dominating

set, when parameterized by the number of elements k in the dominating
set, can be solved in time O∗(2.62k).
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Fig. 1. The two thick-line edges form an edge dominating set

Problem statements. Let us formulate the problem dealt with in this paper
without reference to line graphs. An edge dominating set of a graph is a subset
D of edges such that each edge is either in D or incident to an edge in D. An
instance of edge dominating set (EDS) is given by a graph G = (V, E), and
the parameter, a positive integer k. The task is: Is there an edge dominating set
D ⊆ E with |D| ≤ k? Consider Fig. 1 for an illustration; the two thick edges form
an edge dominating set. We will also consider a weighted variant: An instance
of weighted edge dominating set (WEDS) is given by a graph G = (V, E)
with edge weights ω : E → R≥1, and a positive integer k (the parameter). We
ask: Is there an edge dominating set D ⊆ E with ω(D) ≤ k?

We will analyze these problems in the framework of parameterized complex-
ity [6]. A parameterized problem P is a subset of Σ∗ × N, where Σ is a fixed
alphabet and N is the set of all non-negative integers. Therefore, each instance
of the parameterized problem P is a pair (I, k), where the second component k
is called the parameter. The language L(P ) is the set of all YES-instances of P .
We say that the parameterized problem P is fixed-parameter tractable [6] if there
is an algorithm that decides whether an input (I, k) is a member of L(P ) in time
f(k)|I|c, where c is a fixed constant and f(k) is a function independent of the
overall input length |I|. The class of all fixed-parameter tractable problems is
denoted by FPT . We will make use of the O∗-notation that has now become
standard in exact algorithmics: in contrast to the better known O-notation, it
not only suppresses constants but also polynomial parts of the run time denoted
this way. We are dealing with (sometimes weighted) undirected (hyper-)graphs
throughout this paper and use according standard notations.

Results. In previous work, it was claimed that edge dominating set on bipar-
tite graph (this problem is also known as matrix domination set) belongs to
FPT . More precisely, this was posed as an exercise on the kernelization chapter
in [6]. Rather recently, Weston [22] exhibited how to obtain a kernel of exponen-
tial size. Moreover, he shows a (not quite convincing) enumeration-based (this
is our interpretation of the paper) search tree approach. E. Prieto in her PhD
thesis [21] obtained a kernel of quadratic size for minimum maximal match-

ing (i.e., independent dominating set in line graphs) on general graphs, a
problem that is basically the same as edge dominating set, see [3,17,23].
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The contributions of this paper are the following ones: (1) We generalize
the enumeration-based algorithm for matrix domination set to edge dom-

inating set. (2) We further show how these techniques may also apply to the
weighted case; notice that the close relation between minimum maximal match-

ing and edge dominating set is lost in the weighted case. (3) Incidentally, we
also present a search tree algorithm for weighted hitting set, parameterized
by the number of edges. (4) We show how enumeration-based algorithms that
are usually deemed to be quite inefficient can be sped up by exploiting that not
all minimal vertex covers (in our case) need to be “completely” enumerated.
Rather, certain non-determinism can be left to the following computation phase
in the leaves of the search tree. (5) We show that auxiliary vertex cover struc-
tures can be quite useful for other algorithmic problems. The speed-up technique
mentioned in (4) can then be formalized as compact representations of vertex
covers. This can be seen as extensions of ideas presented by Damaschke [4]. (6)
We also use the mentioned vertex cover structures to obtain quadratic kernels
for the considered problems.

2 Relating to vertex cover and to weighted hitting set

First, we observe that to every edge dominating set instance G = (V, E)
with a solution D ⊆ E of size at most k, there corresponds a vertex cover of size
at most 2k: take all vertices incident to the at most k edges: CD :=

⋃
e∈D e.1

This observation is also true for weighted edge dominating set: by our
problem definitions, a solution of weight at most k can contain at most k edges.
Conversely, any vertex cover C can be extended to some edge set D with C ⊆ CD

with |CD| ≤ 2|C|; since C is a vertex cover, D will be an edge dominating set.
This gives the following idea: (1) we cycle through all minimal vertex covers

C of size up to 2k of the given graph G = (V, E); (2) we use this additional
structure to solve the problem of finding an edge dominating set D of size at
most k (or weight at most k) that contains all vertices of C, i.e., C ⊆ CD.

As to step (1), it is known how to list all minimal vertex covers up to size 2k
in time O∗(4k), see [4]. To see that the second step works, consider the following
auxiliary hypergraph G′ = (V ′, E′): G′ contains the edges E of G as its vertices,
i.e., V ′ = E, and for every x contained in the cover C, we introduce a hyperedge
hx that contains all edges of G that are incident with x. Hence, |E′| ≤ |C| ≤ 2k.

Fomin, Kratsch and Woeginger [12] recently came up with an efficient para-
meterized algorithm for the following problem: An instance of minimum hitting

set, parameterized by # edges (HSE) is given by a hypergraph G = (V, E),
and the parameter, |E|. The task is: Find a minimum hitting set C ⊆ V !

We will generalize that algorithm in the following so that it can also cope with
weighted hitting set. The algorithm uses a technique known as dynamic
programming on subsets. To this end, given a hypergraph G = (V, E) with V =
{v1, . . . , vn}, the algorithm maintains a 2-dimensional array F that contains, for
1 This observation was also the basis of a first, simple factor-4 approximation algorithm

for minimum edge dominating set presented in [3].
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Algorithm 1. A dynamic programming algorithm for minimum hitting set,

parameterized by # edges, called HSE
Input(s): a hypergraph G = (V, E) with vertex weights ω, V = {v1, . . . , vn}
Output(s): a hitting set C ⊂ V of minimum weight

for all E′ ⊆ E do
F [E, 0] = ∞

end for
F [∅, 0] = 0
for j = 1, . . . , n do

for all E′ ⊆ E do
Let E′′ := {e ∈ E′ | vj ∈ e}.
F [E′, j] := min{F [E′, j − 1], F [E′ \ E′′, j − 1] + w(vj)}
{Two cases arise: either vj is not belonging to a minimum hitting set for E′,
then, F [E′, j] = F [E′, j − 1]; or vj belongs to a minimum hitting set C for E′,
but then, C \{vj} is a minimum hitting set for E′ \E′′ relative to Vj−1, so that
F [E′, j] = F [E′ \ E′′, j − 1] + w(vj).}

end for
end for

E′ ⊆ E and for j = 0, . . . , n, in F [E′, j] the minimum weight of a subset C of
Vj := {v1, . . . , vj} that covers E′ (C is also called a hitting set for E′ (relative to
Vj)); if no such cover exists, set F [E′, j] = ∞. More details on how to construct
the entries for F are contained in Alg. 1. There, also the basic reasoning for the
inductive step in the correctness proof of that algorithm is given.

Theorem 1. minimum hitting set, parameterized by # edges can be
solved in time O∗(2|E|) on a hypergraph G = (V, E) with vertex weights ω.

Corollary 1. weighted edge dominating set can be solved in time O∗(16k).

3 Replacing the Hitting Set Phase

In this section, we are going to explain that the second hitting set phase
can be replaced by a polynomial-time computation, which already considerably
improves on the run time stated in Cor. 1.

If we have a minimal vertex cover C of size at most 2k, we first compute
a maximum matching M in the induced graph G[C]. Clearly, |M | ≤ k. There
might be a set C′ ⊆ C of vertices not matched by M . Since M is maximal, no
two vertices of C′ are neighbors. Hence, for all x ∈ C′, we can take any edge
incident with x into the edge dominating set to be constructed.

Theorem 2. Alg. 2 runs in time O∗(4k) and solves edge dominating set.

Proof. The run time is dominated by the enumeration of at most 4k minimal
vertex covers of size 2k, see [4]. The correctness is based on the fact that the
following problem can be solved in polynomial time by matching techniques: An
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Algorithm 2. EDS-enum: An enumeration-based search tree algorithm for EDS

Input(s): a graph G = (V, E), a positive integer k
Output(s): if possible: a subset D ⊂ E, |D| ≤ k, that dominates all edges or

NO if no such set exists.

Create a list L of minimal vertex covers C of G with |C| ≤ 2k, see [4].
{This hides the search tree part.}
for all C ∈ L do

Set D :=GECmatch(G, C)
if |D| ≤ k then

return D
end if

end for
return NO

instance of generalized edge cover (GEC) is given by a graph G = (V, E)
together with a set of red vertices R ⊆ V . The task is to construct a minimum
set C ⊆ E of edges that cover all vertices from R. Namely, a maximum matching
of G[R] plus adding edges to cover the hitherto unmatched vertices will do. This
describes the procedure GECmatch that gets as arguments the graph and the
set of red vertices. Moreover, if R is a vertex cover, then a GEC solution will be
an edge dominating set.

Remark 1. Observe the crucial difference between the weighted and the un-
weighted case here. For example, notice that the thick edges in Fig. 1 (that
form a minimum edge dominating set) can be obtained by computing a max-
imum matching from a vertex cover formed by the black vertices (or from a
minimal vertex cover formed by the “outermost” three black vertices). However,
if the edges that connect the outermost black vertices with the black center ver-
tex have edge weight one and all other edges weight three, then those three edges
with weight one will form a minimum edge dominating set, in there is only one
minimum edge dominating set in this weighted graph. However, starting with a
minimum matching in the graph induced by the outermost three black vertices
will never find the mentioned minimum edge dominating set, since some edge
that connects the outermost black vertices will be contained in such a solution.

It is known (see [19]) that minimum weighted edge cover can be optimally
solved in polynomial (cubic) time. Based on this result, Plesńık gave a cubic
time algorithm for a generalization of the problem we are interested in, see [20];
below, we give a shorter construction for a cubic time algorithm for generalized

minimum weighted edge cover, directly based on [19].
So, let G = (V, E) be a graph with edge weight function ω and with a set R of

distinguished vertices. The task is to find a minimum weight edge set that covers
R. As explained above, we cannot restrict our attention to G[R] = (R, ER). In
addition, we consider the following edges. For each x ∈ R, let ex be the edge
incident with x that has lowest weight amongst all edges incident with x and
not contained in ER. If all edges incident with x are contained in ER, then ex is
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undefined. So, we add all such edges ex to G[R] to obtain a graph G′ = (V ′, E′)
with R ⊆ V ′ and ER ⊆ E′. Now, we identify all vertices in V ′ \R to get one new
vertex r, so that we obtain a graph G′′ = (V ′′, E′′) with V ′′ = R∪{r}. The edge
weight function is accordingly adapted and also called ω. Let f be the function
that maps edges from E′ onto edges from E′′ (by the described identification).

Proposition 1. (G, ω, R) has a minimum generalized weighted edge cover of
weight ωopt if and only if either (G[R], ω) or (G′′, ω) has a minimum weighted
edge cover of weight ωopt.

Proof. Let C be a minimum generalized weighted edge cover covering R. With-
out loss of generality, edges from C that are not contained in G[R] could be the
edges of the form ex chosen as described above. If C contains no edges of the
form ex, then C is also a minimum weighted edge cover for G[R]. If C contains
edges of the form ex, then f(C) is a minimum weighted edge cover for G′′.

Conversely, a set C that is a feasible edge cover for G[R] is also a feasible
generalized edge cover for (G, R). Similarly, an edge set C (containing no edges
outside of E′) such that f(C) is a feasible edge cover of G′′ is also a feasible
generalized edge cover for (G, R). Taking the cover of lowest weight ensures to
produce a minimum generalized weighted edge cover for (G, ω, R).

Hence, Theorem 2 is also valid in the weighted case.

4 A Closer Look at the Search Tree

Can we further improve on the running time of Theorem 2 ? To this end, recon-
sider the main idea behind the enumeration of all minimal vertex covers C of size
up to 2k: starting from such a cover, we are going to construct a corresponding
edge dominating set D of minimum cardinality among all edge dominating sets
D′ with C ⊆ CD′ .

It is usually a good strategy to look at small-degree vertices to find nice
branching scenarios (or kernelizations). Assume that we do not branch at vertices
of degree one. If � is a bound on the vertex cover size, this gives the recurrence

T (�) ≤ T (� − 1) + T (� − 2)

for the running time, i.e., T (�) ≤ 1.6181�, i.e., with � = 2k, 2.6181k is an upper-
bound for the run time in this case.2

So, after branching we are left with a set of vertices C that covers all vertices
of the originally given graph G = (V, E) but an edge set E′ that is the set
of edges of G[V \ C] that has maximum degree one. Now, we can produce a
corresponding edge dominating set for G from this structure by finding an edge
set D with the following properties:

2 The related so-called enumerate-and-expand speed-up technique was independently
developed by Mölle, Richter and Rossmanith (see Proc. CSR and COCOON, ap-
pearing in 2006), worked out with the example of connected vertex cover.
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– every v ∈ C is covered by some e ∈ D, i.e., C ⊆ CD;
– every e′ ∈ E′ is dominated by some e ∈ D, i.e., ∀e′ ∈ E′∃e ∈ D : e′ ∩ e �= ∅.

We will call a D satisfying both properties (C, E′)-satisfying. Coming back to
our hitting set model from the beginning, one can see that these properties can
be modeled by aiming at constructing a minimum hitting set for a hypergraph
whose vertex set is E and which has the following edges:

– for every v ∈ C, introduce the hyperedge {{u, v} | u ∈ N(v)};
– for every e′ ∈ E′, introduce the hyperedge {e | e ∩ e′ �= ∅}.

Notice that there cannot be more than 2k hyperedges in the constructed hitting

set instance (unless we face a NO-instance), since in the previously described
complete vertex enumeration scenario, each of the edges from E′ would have
been “resolved” by a further branching step.

We can go one step further; namely, notice that we can ignore the possibility
to include any e′ ∈ E′ into the corresponding edge dominating set we construct,
as long as there is any edge e ∈ E with |e ∩ e′| = 1. To exclude that special
case, we employ in the very beginning of the algorithm (before even starting the
vertex cover enumeration phase) the following reduction rule as long as possible:

Reduction rule 1. (isolated edges) Let (G = (V, E), k) be an instance of edge

dominating set. If e ∈ E such that ∀ê ∈ E : ê ∩ e �= ∅ ⇒ ê = e, then delete e
from the graph instance and decrease the parameter k by one.

After having performed the vertex cover enumeration phase (without branching
at vertices of degree one) on such a reduced instance G (without isolated edges),
we have arrived (at each leave of the search tree) at a partial cover set C plus
the above-mentioned edge set E′. Now, we form a new graph G′ from G by
contracting all edges from E′. Moreover, let M be the set of |E′| vertices obtained
by merging endpoints of edges from E′. Let C′ = C ∪ M . We claim that D is
a minimum edge dominating set for G that is (C, E′)-satisfying if and only if
there is a minimum general edge cover D′ for G′ (with red vertex set C′) with
|D′| = |D|. Namely, if D′ is a general edge cover D′ for G′ covering all vertices
from C′, then after “unmerging” we recover the graph G = (V, E) in which we
can view the edges from D′ as elements from E. Then, D′ is a (C, E′)-satisfying
edge set that is an edge dominating set according to our previous reasoning.
Conversely, if D is a (C, E′)-satisfying edge dominating set, then first we can
transform D into a (C, E′)-satisfying edge dominating set D′ with D′ ∩ E′ = ∅;
namely, since G contains no isolated edges, we can replace any e ∈ D ∩ E′ by
some (arbitrarily chosen) incident edge e′. The edge set D′ constructed this way
can be interpreted as an edge set of G′, and now D′ (with |D′| = |D| if we
assume minimality of D) is a general edge cover for G′.

Theorem 3. edge dominating set can be solved in time O∗((2.6181)k).

For minimum maximal matching we can conclude (based on [3,17,23]):

Corollary 2. The problem MMM can be solved in time O∗((2.6181)k).
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Algorithm 3. Reducing matrix domination set to edge dominating set.
Input(s): a matrix instance (M, k) of matrix domination set.
Output(s): a graph instance (G, k) of edge dominating set such that (M, k) is a

YES-instance iff (G, k) is a YES-instance.

Let C be the set of columns of M .
Let R be the set of rows of M .
Form the vertex set V = C ∪ R of G = (V, E).
for all i ∈ R, j ∈ C do

Put {i, j} ∈ E iff entry (i, j) of M is one.
end for

The sketched unweighted case can be transferred to the weighted case. More
precisely, the yet uncovered edges (left over from the vertex cover enumeration
phase) can be modelled by first introducing a fresh vertex u and connecting u
to all vertices [v, w] obtained by merging v and w as described above. The new
edge {u, [v, w]} will get the same weight as the former edge {v, w} had, and all
other edge weights will stay the same.

Corollary 3. The problem WEDS can be solved in time O∗((2.6181)k).

Let us finally consider a related problem, also mentioned in [23]: An instance
of matrix domination set (MDS) is given by an n × n matrix with entries
from {0, 1}, and a positive integer k (the parameter). We ask: Is there a set D of
one-entries in the matrix, where |D| ≤ k, such that every other one-entry has at
least one row or one column in common with some one-entry from D ? Observe
that this problem can be also seen as a chess piece domination problem: interpret
the matrix as a chessboard showing places where it is allowed to place a rook or
where not (by having a one- or a zero-entry in the corresponding position).

Lemma 1 (Yannakakis/Gavril). matrix domination set can be reduced
(via FPT reduction) to edge dominating set.

The corresponding reduction is formulated in Alg. 3, hence making explicit the
remark in [8, p. 249] that MDS can be solved via EDS. In [6, Exercise 3.2.9],
solving matrix domination set by means of a kernelization and search tree
based algorithm is proposed as an exercise. 3

Hence, MDS is in one-to-one correspondence to EDS, restricted to bipartite
graphs. Since our solution of edge dominating set is based on vertex cover,
and the latter (in its decision version!) is known to be easier on bipartite graph,
the following corollary might see some improvements; however, we did not man-
age to get improvements in a straightforward manner, since we are rather relying
on the enumeration than on the decision version of VC.

Corollary 4. matrix domination set can be solved in time O∗((2.6181)k).
3 In [22], a O∗(ck) algorithm is proposed for matrix domination set with c < 2; how-

ever, this is based on a wrong interpretation of our results on constraint bipartite

vertex cover as detailed in [11].
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5 Compact Representations

We have shown that auxiliary vertex cover structures can be quite useful to solve
edge dominating set and related problems. The speed-up described in the
previous section can be also interpreted as enumerating compact representations
of vertex covers that can be formalized similar to regular expressions.

1. ∅ is an expression denoting a compact representation that denotes no sets
at all, i.e., C(∅) = {∅}.

2. If a is a vertex, then a is an (atomic) compact representation of the cover
collection C(a) only containing the cover {a}, i.e., C(a) = {{a}}.

3. If e = {a, b} is an edge, then ê is an (atomic) compact representation of the
cover collection C(ê) only containing the covers {a} and {b},

4. If A and B are compact representations that represent cover collections C(A)
and C(B), resp., then A + B represents the cover collections

C(A + B) = {X ∪ Y | X ∈ C(A), Y ∈ C(B)}.

5. If A and B are compact representations that represent cover collections
C(A) and C(B), then A ∪ B represents the cover collection C(A ∪ B) =
C(A) ∪ C(B).

6. Nothing else are compact representations.

Example 1. For example, the minimal vertex covers of the graph

({1, . . . , k} × {1, 2}, {{(i, 1), (i, 2)} | 1 ≤ i ≤ k})

can be written as

̂{(1, 1), (1, 2)} + ̂{(2, 1), (2, 2)} + · · · + ̂{(k, 1), (k, 2)}.

For instance, if k = 3,

̂{(1, 1), (1, 2)} + ̂{(2, 1), (2, 2)} + ̂{(3, 1), (3, 2)}
= {{(1, 1)}, {(1, 2)}} + {{(2, 1)}, {(2, 2)}} + {{(3, 1)}, {(3, 2)}}
= {{(1, i), (2, j), (3, �)} | 1 ≤ i, j, � ≤ 2}

Theorem 4. Representations of all minimal vertex covers of size up to k (and
possibly some more non-minimal cover representations) can be listed in time
O∗(1.6181k).

Proof. (Sketch) The usual enumeration algorithm for listing all minimal vertex
covers up to size k can be modified by avoiding branches at vertices of degree
one. After this branching, the remaining graph has maximum degree one, and
the cover of an edge e = {x, y} can be described by ê.

The difference to the results of Damaschke [4] is that he insists on enumerating
only minimal vertex covers up to size k; hence, his running times are worse. Since
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vertex cover structure already found many applications, we believe that such
representations (or possibly similar ones) may yield interesting improvements in
the development of exact graph algorithms. For example, in [10], the problem
of finding a total vertex cover of size up to k was discussed, where a vertex
cover C is called total if every x ∈ C satisfies N(x) ∩ C �= ∅. By a vertex cover
enumeration phase yielding covers C in the leaves, followed by a hitting set phase
(with hyperedge set {N(x) | x ∈ C}), this problem can be solved in time O∗(4k).
With compact representations, this can be readily improved to O∗(3.2361k): for
ê in the compact representation of some covers with e = {x, y}, we can introduce
a hyperedge N(x)∪N(y). Choosing z ∈ N(x)∪N(y) also determines whether x
or y is put into the cover. However, different techniques allowed to further lower
the constants for that problem to O∗(2.3655k) in [10].

6 Kernels

We have solved the problems dealt with in this paper by a search-tree technique
based on enumerating minimal vertex covers. This approach can be also used
to show quadratic kernels for all these problems. Namely, as explained in [9],
Buss’ kernelization rules are also valid for the enumeration task. Hence, we can
assume that the reduced graph has no more than 2(2k)2 = 8k2 vertices in the
enumeration phase, where k is the parameter of the say EDS instance. We can
turn this into a kernel for EDS by the following observations: (a) We keep each
vertex in the vertex cover enumeration kernel in the EDS kernel. (b) For each
vertex v that was put into each vertex cover by Buss’ rule, we have to put v plus
an arbitrary neighbor u of v that is not yet in the EDS kernel, provided that v
does not have already neighbors in the EDS kernel. This possibly complicated-
looking rule allows to cover v by some edge also in the reduced instance. Since
the number of vertices added by this special treatment of vertices put into the
vertex cover by Buss’ rule is smaller than the quantity in the general case, we
get an upper bound of 8k2 vertices for the number of vertices in the EDS kernel.

Lemma 2. Given an instance (G, k) of edge dominating set, it is possible to
produce a kernel (G′, k′) of EDS with |V (G′)| ≤ 8k2 and k′ ≤ k. Similar results
are true for WEDS, MMM, and MDS.

Notice that a kernel of size 4k(k + 2) was obtained by Prieto for MMM by
adapting crown reduction techniques, see [21]. We can improve on the kernel size
for EDS at the cost of introducing annotations (marking vertices that should go
into the vertex cover):4 (a) isolated edges are to be put into the edge dominating
set anyways; (b) vertices of degree two with two neighbors of degree one comprise
a component that can be solved by arbitrarily taking one of either edges of the
component into the dominating set; (c) vertices of degree one that are not covered
by rules (a) and (b) need not be put into the vertex covers considered in the

4 The notion of annotated kernel is further discussed in joined work of Abu-Khzwam
and Fernau, also contained in these proceedings.
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enumeration phase but rather their unique neighbors; this is reflected by deleting
the degree-one vertex and by marking its unique neighbor. By (c), also marked
vertices have minimum degree of two. Hence, the kernel (possibly containing
some marked vertices doomed to go into the vertex cover) contains at most 4k2

vertices: Buss’ rule yields that there are at most (2k)2 many edges in the graph
instance, and knowing that both marked and unmarked vertices have minimum
degree of two means: there are also at most (2k)2 many vertices in the graph.

7 Conclusions and Open Problems

We have shown how ideas stemming from the area of parameterized enumera-
tion can be useful to obtain efficient parameterized algorithms for decision prob-
lems. More precisely, we derived an O∗(2.62k) algorithms for edge dominating

set and many variants. It would be interesting to see if these constants could
be further improved. In particular, it might be possible to avoid branching at
degree-two vertices in the enumeration phase, as argued before Theorem 3 for
degree-one vertices. Notice that in terms of approximation factors, there seems to
be no difference between vertex cover, total vertex cover, edge domi-

nating set, and feedback vertex set; however, in terms of search tree based
parameterized algorithms, vertex cover appears to be the easiest of the three,
while feedback vertex set seems to be the hardest one, see [1,5,14,18].

It would be interesting to see if and how the ideas presented in this paper
can be applied to solve weighted minimum maximal matching. Notice that
the main problem is to allow Alg. 1 to cope with the additional independence
condition. In the literature, several other variants of edge dominating set

have been considered that might deserve further studies from the viewpoint of
parameterized complexity; recent papers are [2,16].
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