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Edge effects and efficient parameter estimation
for stationary random fields

BY R. DAHLHAUS

Universitat Essen, Fachbereich Mathematik, D-4300 Essen 1, Federal Republic of Germany

AND H. KUNSCH

Seminar fur Statistik, ETH-Zentrum, CH-8092 Zurich, Switzerland

SUMMARY

We consider the estimation of the parameters of a stationary random field on d-dimensional
lattice by minimizing the classical Whittle approximation to the Gaussian log likelihood. If the
usual biased sample covariances are used, the estimate is efficient only in one dimension. To
remove this edge effect, we introduce data tapers and show that the resulting modified estimate
is efficient also in two and three dimensions. This avoids the use of the unbiased sample covariances
which are in general not positive-definite.

Some key words: Edge effect; Data taper; Sample covariance; Stationary random field; Strong mixing;
Whittle function.

1. INTRODUCTION

Edge effects are a serious problem in spatial statistics because the number of boundary points
increases with the dimension (Ripley, 1984). Consider for instance a stationary random field
X,, for t = ( / , , . . . , ld)eZd, observed on a rectangle PN = { 1 , . . . , n,}x .. . x { l , . . . , nd) of sample
size N = / i , . . . nd. For calculational convenience we assume that the mean of X, is zero. If we
estimate the covariances y(k) by cN(k) = TV"1 £ X,X,+k, where the sum is over /, t + ke PN, there
is a bias due to the boundary. If n,-»°o, n,/n,-» a, e (0, oo) (i = l,... ,d), this bias is of the order
O(N~l/d) which is for d 5=2 of the same or a higher order as the standard deviation of cN which
is usually O(N~^). To remedy this, Guyon (1982) proposed the use of

which is always unbiased.
Similar problems occur in parametric models with spectral density/fl(A), 0 e 0 , A ell ' ' , where

n = (—IT, IT]. The models we have in mind include the Gaussian Markov or autonormal models
(Besag, 1974), the so-called errors in variables models (Besag, 1977) and some models coming
from geostatistics (Mardia & Marshall, 1984). A common approach to the estimation of 6 is to
minimize Whittle's (1954) approximation to the Gaussian log likelihood

1{log/ 9 (A)+n,(A)/ 9 (A)-VA, (1)

where I%(k) = (2ir)~d 2 c%{k) exp(-/<A, k)). Here too, use of cN(k) would cause a bias which
is not asymptotically negligible (Guyon, 1982, § 3-3).

However, c% has some other unpleasant properties. First, it is not always positive-definite so
that the spectral estimates based on c%(k) may be negative. Furthermore, positive-definiteness
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allows one to interpret the Whittle estimator as a minimum distance estimator and this usually
guarantees the existence of a 6 minimizing (1); see Woods (1976) and Kunsch (1981) for the case
of Markov fields. A second disadvantage of c% is its large variance, particularly for larger lags.
In practical situations the use of c%(k) instead of cs(k) may make a big difference, as in the last
example of Mardia & Marshall (1984).

The purpose of the present paper is to show that we can avoid these disadvantages of c%(k)
and nevertheless get an asymptotically negligible bias by using the data tapers introduced in
nonparametric time series analysis by Tukey (1967). Dahlhaus (1984) used data tapers for the
parametric analysis of time series.

2. THE ASYMPTOTIC BIAS OF TAPERED WHITTLE ESTIMATES

Let w be a continuous increasing function with w>(0) = 0 and w(l) = l. We define a one-
dimensional taper h(u), «e[0,1], with smoothness parameter p, by

(w(2u/p) ( 0 « « < | p ) ,
*(«)= 1 (ip « « « | ) , (2)

[ / J (1 -M) G < M « 1 ) .

The tapered covariance estimate is then

t,t+kePN

where

"»(«) = 1 h{{s-\)/n}jtxp(-ias).
v = l

A common taper in time series analysis is the Tukey-Hanning taper with w(u) = J{1 -cos (MTT)}.
Replacing /£(A) by Ih

N(A) = (2ir)-d 2 ch
s(k) exp (-/(A, fc» in (1) leads to the tapered Whittle

estimate which we denote by 0N. By standard arguments (Walker, 1964) one obtains consistency
of 0N under some regularity conditions and hence by the usual Taylor series argument

eN - 6>o = - r ( 0 o r ' — LN(O0){\+op(i)}
do

Jli " dd

where

r(0),7=i(27r)-" | ^-log/8(A)^-log/a(AMA. (3)

We study in this section the expectation of

- f h
J11 N ""

where <j> is a continuous function. This gives the asymptotic bias of ch
N{k) and typically also of dN.

For the taper we need the following assumption.

Assumption 1. The function w is differentiable on [0,1] with a Lipschitz-continuous derivative.
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THEOREM 1. Let X,, for teZd, be a mean zero stationary random field with twice differentiate
spectrum/. Assume the taper h(u) satisfies Assumption 1. Then

{j
xf I a'A 4>(P)-^r2f{P)dp\{\+o(\)}

U = i Jn \°Pk) i

if nf->oo and «,/«, -» af 6 (0, oo) (i = 1 , . . . , d). Here p may depend on N and the o(l) term is
uniform in p, where p"1 = o(N^).

Proof. Straightforward calculations yield

E(JN(<f>))= [ f
JII Jn

with

KN(a)=U

Furthermore, since / is twice differentiate we have
d Q d g2

f(P + a)—f(P)= Y. ak /(/3) + 2 X sin {\ak) sin {\a,) /(/3) + R(y3, a),

with

Since /C^(a) = KN(-a) , \akKN{a)da=0 and Jsin (5^) sin ({a,)KN(a) da = 0 for k + /.
Summation by parts gives, with /I(M) = 0 for u£[0,1],

exp I
*=o 1. \ nk /)

where

Hence,

fsin2Gat)/CN(a)rfa = H2ni(0)- I D] / i l^^)[ . (4)
J ,=o I \ nk J )

Since h(u) is differentiate for u £ Dp = {0, {p, 1 -^p, 1} we obtain for s with [(s-{)/n, (s + ^)/n]n
Dp = 0 , by the mean value theorem,

£ > { V — H =n-' I /.'(x)2dx + /i-'J {/I'(X5)2-/I'

where the integrals are over ((s— l)//i, (.s + ̂ /n)) , and with (5 — j)/"5*Jc,^(s + |)/n. The result
follows by a straightforward estimation of the second term, and by considering the four remaining
terms in (4) separately. •
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The result remains valid if we drop the assumption that the mean is known. We then subtract
the tapered sample mean

ieP,, Li = l

from the data.
We thus have shown that for d = 1,2,3 the bias for the tapered estimates is of smaller order

than N~K For fixed w we obtain

{/T(X)}2 / J {/,(x)}2dx = - j {

and the bias is therefore smallest if we choose for p the maximal value 1. However, asymptotically
a loss of efficiency occurs if p > 0; see § 3. To avoid this we let p depend on N with pN -» 0. By
Theorem 1 this can be done for d = 1, 2, 3 without getting a bias of the order O(JV~J).

Another advantage of tapering is the reduction of the bias if some nonstationarities are present
at the boundary, for instance if boundary plots in a field trial behave differently. In the literature
several variants of Markov fields have been proposed which treat boundary observations differently
(Ripley, 1984). This causes a severe bias for c%(k), whereas ch

N(k) will have a small bias no
matter what the covariances at the boundary look like.

3. EFFICIENCY OF TAPERED WHITTLE ESTIMATES

In this section we prove a central limit theorem for the estimate dN and study its efficiency. As
usual we need assumptions on the parameter space, Assumption 2, e.g. identifiability conditions,
assumptions on the observed random fields, Assumption 3, and assumptions on the taper,
Assumption 1, which have already been stated in § 2.

Assumption 2. Let 0 be a compact subset of W, and X, e a family of stationary random fields
with spectral densities /„. Suppose (/e) is bounded uniformly above and away from zero, that
/ a ' has a continuous second derivative, with respect to 0 which is continuous on 0xird and
6, + 02 implies /fl| =t=/fl2 on a set of positive Lebesgue measure. Suppose 0O is true, and 0N exists
in the interior of 0.

Assumption 3. We have that X, 8o, t e Zd is a strongly mixing stationary random field with mean
zero, E(|X,|4+2S)<oo for some S>0, and mixing coefficients akl(m) (Bolthausen, 1982) with, for
all JfceN,

n = 1 m = I

In addition to the matrix Y(0), defined in (3), we need

B(0) = s(27r) — Iog/B(o?,)— log fe(a2) datda2,
Jit2-1 /e(«i)/«(«2) d0j 80j

where f4e is the fourth-order cumulant spectrum of the process X, a.

THEOREM 2. Suppose Assumptions 1, 2 and 3 hold where the smoothness parameter p depends
on N with pN -* p0 and p^,1 = o(N2/</"!). Then N^(0N - 0O) converges weakly to

0o)} r (0 o r ' ) ,

where H = l{hjx)}4 dx/[J{/iH,(x)}2 dxf.

Proof. The technique of proof which was sketched in § 2 is part of time series folklore, provided
we have a central limit theorem for JN(<j>) with ^(A) = d/flo(A)~l/d6. This is stated in the Appendix.

•
COROLLARY. Suppose in addition that X,flo is Gaussian and p^-^0. Then 0N is asymptotically

Fisher-efficient.
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Proof. Since H = 1 in the case po
 = 0. t n e result follows from Theorem 4-2 and Proposition 1

of Guyon (1982), analogously to Proposition 4 of Guyon. •

Due to the requirement p"N
x = o(N2/d~*) we can obtain efficient estimates in the cases d = 1, 2,

3, while in the nontapered case we only have efficiency if d = 1 (Guyon, 1982, § 3-3).
The theoretical results of this paper were confirmed in a simulation study where a conditional

autoregression model was fitted to the superposition of two plane waves in white noise. The use
of the tapered covariances ch

N led to a better resolution of the smaller peak than the use of the
covariances cN. The unbiased covariances c% were often not positive-definite, and as a consequence
the corresponding Whittle function did not always have a minimum, while for cN and c% the
existence of a minimum is guaranteed automatically.

The results mean that in two and three dimensions our tapered estimate is an attractive
compromise between the classical biased and the unbiased versions avoiding their bad properties
and retaining many of the good ones.

APPENDIX

A central limit theorem

We state a central limit theorem for the statistic JN(<f>) needed for the proof of Theorem 2.

THEOREM Al. Suppose that X,, for teZd, fulfils Assumption 3, Assumption 1 holds where the
smoothness parameter p depends on N with pN -*• p0 and p~jj = o{N2/d~^), and 4>j (j' = 1, • • •, k) ore
continuous functions. Then {N^dJN(<j>j)} for j = 1 , . . . , k converges weakly to a Gaussian random
vector {Yj) with mean zero and

cov ( Yj, Yk) = (2ir)"( J1 {h^x)}4 «**/[ J ' i^Jx)}2 dx j )

(«i)^(-«i)/4(ai,-ai,«2) da, da2
^(«i)^(-«i)/4(ai,-ai

LJu2'1

| <f>,(a){<t>2(a) + <l>2(-a)}f{a)2da \,
JuJ J

where f4 is the fourth-order spectrum of the process.

Proof. The proof consists of the following two steps. By generalizing the arguments of Bolthausen
(1982) we first prove a central limit theorem for the empirical covariances ch

N(k), and by using
the Cesaro sums of the </>, we then conclude from this to the weak convergence of {N^dJN(<l>j)}
for j=l,...,k. Details may be obtained from the authors upon request. •

Alternatively, the result may also be proved by a cumulant method under the assumptions that
all moments of the process exist and the cumulant spectra fulfill certain smoothness conditions,
for example by using a modified version of Theorem 3.1 of Brillinger (1970).
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