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Abstract— Applying deep learning models to large-scale IoT
data is a compute-intensive task and needs significant com-
putational resources. Existing approaches transfer this big
data from IoT devices to a central cloud where inference
is performed using a machine learning model. However, the
network connecting the data capture source and the cloud
platform can become a bottleneck. We address this problem
by distributing the deep learning pipeline across edge and
cloudlet/fog resources. The basic processing stages and trained
models are distributed towards the edge of the network and
on in-transit and cloud resources. The proposed approach
performs initial processing of the data close to the data source
at edge and fog nodes, resulting in significant reduction in the
data that is transferred and stored in the cloud. Results on
an object recognition scenario show 71% efficiency gain in the
throughput of the system by employing a combination of edge,
in-transit and cloud resources when compared to a cloud-only
approach.

I. INTRODUCTION

Internet of Things (IoT) devices such as sensors, video

cameras and smart objects [1] act as the basic building

blocks of smart cities and autonomous vehicles. The expo-

nential growth and availability of these devices is producing

a tremendous amount of data in zettabytes. As a result

of these IoT deployments, large data volumes need to be

transmitted via a (public) network to the analytics platform.

In video analytics, a single video camera can produce about

25-30 frames/second. In HD and FHD cameras an 8-bit

uncompressed RGB frame amounts to about 553 Mbps and

1.24 Gbps for a one minute video, respectively. With the

advent of 4k and 3D video cameras, this size is likely to grow

exponentially. By 2021, video traffic will account for about

82% of the whole IP Internet traffic, as estimated by Cisco

Global [2]. Developers and engineers are facing the challenge

of providing on time analytics of video data to support public

safety and security from video cameras. Cloud computing

is not efficient enough to support prompt analytics of such

video data [3]. Video Analytics based on edge computing is

the only feasible approach to cater low latency requirement

for large-scale video streams [4].

Fig. 1. Traditional Cloud based Video Stream Analytics

Traditionally video data from data sources is transferred

to the cloud where data analytics takes place, and results

are sent back to the client as shown in Fig.1. The traditional

model suffers from high latency and network bandwidth use,

as all the data has to be transferred to the cloud for analytics.

Video analytics is described as an autonomous understanding

of the events or actions occurring in a video feed [5], and

is still in its infancy compared to other forms of analysis.

Two approaches to video analytics are (i) centralized and (ii)

edge based architecture as mentioned in [6]. In a centralized

approach data from video cameras are routed to a centralized

cloud where all of the analytics takes place, whereas in an

edge-based architecture part of the analytics is performed

near the source of data and partly on the centralized cloud.

Most of the existing intelligent video analytics (IVS) systems

are based on centralized approach and assume the video

data to be readily available in proximity to where analytics

takes place. However, in reality, the video data has to be

transported from a source which may involve moving the

data through several network hops to reach the destination

where it is stored and analyzed.

With the success of deep learning, video analytics using

deep learning is increasingly being employed to provide

accurate answers to object classification particularly with

convolutional neural network (CNN) [7]. However perform-



Fig. 2. Deep Learning Pipeline for Object Recognition

ing analytics using deep learning is a complex task with

high demand put on the performance and the accuracy of

results. Deep learning algorithms often use cloud computing

for training and inference. With the exponential growth of

video data from cameras, the traditional cloud computing

paradigm is not able to meet the Quality of Experience (QoE)

demands often associated with network latency and Round

Trip Time (RTT) constraints. Moreover, an increase in data

from video cameras leads to an increasing cost of resources

on a centrally managed cloud [8].

Unlike the use of data prediction techniques on batch data,

video analytics is a complex problem and can often logically

be decomposed into stages. For example, object recognition

in videos can be decomposed into stages of motion detection,

frame enhancement, object detection, and recognition. A

typical Cloud-based deep learning pipeline for object recog-

nition and the proposed edge enhanced decomposition of the

pipeline is shown in Fig.2. It consists of four stages marked

as S1-S4. In cloud-based systems, typically all of the stages

are executed on the cloud particularly if the source producing

the data is on a different network than the client. In this work,

we split the deep learning pipeline by using edge computing

resources to improve the performance of the video analytics

system while keeping the accuracy intact.

Our main contributions are:

• Design and development of an edge inspired infrastruc-

ture for high-performance video streams analytics.

• Distribution of the deep learning pipeline stages across

the edge, in-transit and cloud resources to bring the

benefits of low latency, reduced bandwidth costs and

improved performance for object inference.

• To provide a scalable architecture which could effi-

ciently scale to a large number of video cameras by

utilizing hardware resources including multiple edges,

in-transit and cloud nodes to provide high-performance

analytics.

The rest of this paper is organized as follows. In section II

we describe state of the art in edge computing and computer

vision. In section III, we propose our system architecture for

edge enhanced deep learning and how it can scale to many

edge and in-transit nodes to provide parallel and sequential

processing of the video streams. In section IV, we discuss

the decomposition of an object recognition scenario and

develop a data pipeline model for video streams. We also

briefly describe the training setup of the neural network

used for object recognition in this section. In section V

and VI we discuss the experimental setup and the results

obtained respectively. Section VII include conclusions and

future directions of the work.

II. RELATED WORK

Existing efforts in video surveillance have relied on the

human operator manually watching camera feeds and press-

ing an alert button in case of an event. However, security

personnel can hardly remain alert for monitoring tasks after

20 mins [9]. Recently intelligent video analytics systems

(IVS) with the aim to analyze video streams without human

intervention have emerged which provide constant analysis

of a scene [10]. Most of the existing work on intelligent

video analysis is based on centralized architecture using a

storage-analyze cloud model such as [11] where the data is

first transported and stored in the cloud. The analytics is then

performed on the stored data using job scheduling [12]. The

post analytics of video data is a time consuming process and

can often take hours.

Deep learning has seen unprecedented success in recent

years for complex tasks such as speech and facial recogni-

tion. CNN is a deep learning model which has brought a

breakthrough in image, video and audio classification prob-

lems. In [13], the authors used CNN for large-scale video

classification. The training and inference of deep learning

models are performed by using cloud services [8]. With the

proliferation of IoT devices, analytics on the cloud can suffer

from slow response times mainly due to network delays and

round trip times. Due to high data volumes from IoT, data

has a strong gravity which indicates the difficulty of moving

a mass amount of data over the network. A viable approach

is to move the analytics towards the data source instead.

Consequently, edge and fog Computing [14] are proposed

as new paradigms, where data analytics takes place at the

network edge to minimize the cloud workload, to improve

the response times and to reduce the cloud storage. Current

work in edge computing focuses on reducing latency and

bandwidth from edge/cloudlet to cloud such as in Gigasight

[15] by running computer vision algorithms on the cloudlet

and sending the resulting reduced data (output, recognized

objects) to the cloud. An edge based system utilizing edge

and cloud computing include [16]. Another important work

in this regard is [17], which focuses on video analytics using

edge and in-transit resources with a deadline time for each

job. Some works such as Yaseen et al. [18] employ Graphics

Processing Unit (GPU) to accelerate the video processing

tasks to reduce the computational complexity involved in

video stream decoding and processing. Another GPU based

video analytics system on the cloud [19] is capable of

analyzing recorded streams of video data from a cloud or

storage server. An operator specifies the video file and search

criteria to a client program; video analytics is then performed

on the cloud and results are returned to the operator after

some time. However, these system only considered video

analytics using a centralized architecture.
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Fig. 3. Edge Enhanced Deep Learning Architecture with Horizontal and Vertical Scalability for Video Stream Analytics

As evident from the above discussion, existing state of

the art in video analytics focus is to provide accurate results

using both shallow networks and deep learning models.

These systems assume the video data is readily available for

analytics while the transfer cost and network latency from

source to destination is not considered. Few systems analyz-

ing video streams from cameras also assume the streaming

data has been stored in the cloud. In contrast to that,

we assume the video data is continuously being streamed

from IoT devices and discuss the challenges arising in this

scenario. Our focus in this paper to improve the performance

of the deep learning pipeline for video analytics by utilizing

edge computing paradigm. To the best of our knowledge,

this is the first time an edge computing based deep learning

pipeline distribution for efficient video analytics has been

proposed. The proposed system can be tailored to meet the

demand for real-time applications other than video analytics

such as speech recognition and anomaly detection.

III. EDGE ENHANCED SYSTEM ARCHITECTURE FOR

VIDEO ANALYTICS

The proposed system architecture consists of three logical

tiers namely edge, cloudlet and the cloud as shown in Fig.3a.

Video streams from data sources pass through the edge

and cloudlet tiers to reach the destination cloud. Cloudlet

or fog node is an in-transit node placed between the edge

and the cloud. Tiers can scale in vertical and horizontal

direction. In Vertical Tier Scalability (VTS), a tier may

contain one or more computational nodes to form a cluster as

shown in Fig.3c. Vertical tier nodes are connected with Local

Area Network (LAN) in a close vicinity forming a compute

cluster which is managed by a master node. In Horizontal

Tier Scalability (HTS), a tier can extend in the horizontal

direction with a set of vertical clusters at a certain physical

distance from each other as shown in Fig.3b. The vertical tier

scalability provides parallel processing of the video streams,

and horizontal tier scalability provides sequential processing

of the streams in a single logical tier. This scalability can

be adapted to the available hardware resources and the

specific analytics problem. It allows parallel and sequential

processing of data in three tiers. The master node of each tier

in VTS receives input from the previous tier and distributes

the load among available tier nodes. Tier nodes in VTS work

in parallel reducing the time to process the overall video data.

In VTS case, if there are 500 video frames to process and

a tier consists of two nodes, then each node may process

250 frames in parallel. At the network edge, video cameras

continuously stream time series video data to the network.

The video data is moving to the cloud in the horizontal

direction. As the data is in-transit, analytics is performed

at the intermediate nodes at the edge and cloudlet nodes.

In smart cameras, we can program the cameras to broadcast

the video to the network only when there is some motion

detection. In this case, edge tier includes the camera device

and the immediate edge node. In simple devices, such as

sensors, we may only forward the data to the cloud if the

temperature exceeds a certain value. These devices work on

rules which are specified by the user. One such tool is Krikkit

[20] which allows edge devices to be programmed by rules

specified using web services rather than programming each

of the network nodes manually. However, for video analytics,

the problems of vehicle tracking, object recognition and

semantic segmentation are not tractable with simple rules,

due to the complexity of the problems. By employing CNN,

a deep learning model, we distribute the data pipeline across

network nodes. Initially, the CNN models are trained on

the cloud, and the resultant models are saved. The saved

models are then transferred and distributed over cloudlet

and cloud resources for object inference. The edge resources

are used for basic processing stages. By overlapping the

deep learning pipeline stages over edge, in-transit and cloud

resources, the deep learning pipeline can be executed in

parallel to improve the performance of the overall system.

The numbers of nodes in each tier may vary depending

on the commodity hardware availability and the application

requirements. Total computational nodes on the network will



be the sum of the edge, cloudlet and cloud resources. By

using infrastructure in Fig.3, we can transform the low-value

density of video data into high-value density data before

feeding this data to the cloud resulting in improved response

times, reduced bandwidth and storage requirements on the

cloud. For object recognition, we define the value of the

data as high if the video frame contains an object or low

otherwise. The video data is pushed from the video sources

to in-transit resources and the central cloud using software-

defined networking (SDN) [21] such as OpenFlow [22]. SDN

is a design methodology for personalized networking and

provides the flexibility to deploy custom work-flows on com-

modity hardware by programming the control plane. As the

data is in transit, it can be filtered by the edge and in-transit

resources. The filtration process can transform the video

streams from a low-value density to a high-value density

data before being fed to the cloud for final processing. Fig.3

shows the reference architecture for a constant streaming

video analytics which can be modified to a specific video

analytics problem and the available hardware resources to

generate an application specific architecture (ASA). SDN can

then be used to realize the physical configuration of the ASA

consisting of edge, cloudlet and cloud nodes.

IV. EDGE ENHANCED DEEP LEARNING MODEL

Researchers have traditionally relied on handcrafted fea-

tures to solve computer vision problems with limited success.

Recently with the advent of deep learning, problem features

can be automatically learned by the deep learning algorithms

such as CNN. Deep learning has achieved promising results

which equal to or exceed human performance in computer

vision problems [23]. In video analytics domain, problems

such as object recognition and segmentation can be decom-

posed into a cascade of simpler problems. For example,

object recognition is a complex video analytics problem and

consists of the following stages

• S1. Frame Loading/Decoding and Motion Detection:

Video frame from the camera source is first loaded and

decoded in memory. The video frame is then passed to

a motion detector where it is compared with the pre-

vious frames for differentiation. Video sources such as

Closed-circuit television (CCTV) cameras continuously

produce video data even if there is no change in frames;

motion detection is usually employed to reduce the input

data.

• S2. Preprocessing: Includes basic enhancements such

as conversion to binary Image, histogram equalization,

and scaling where an image is downscaled or upscaled

according to the algorithm requirement.

• S3. Object Detection and Decomposition: Process video

frame into single objects, a video frame may consist

of more than one object. Usually, the frame is decom-

posed into individual objects, and then each object is

individually detected. The detection of object orienta-

tions/landmarks in a bad light or low light conditions is

also considered in this stage.

• S4. Object Recognition: The video frame is passed

through a deep learning model for object recognition.

The stages above can be distributed among edge, cloudlet

and cloud resources in varied ways which determine the

performance of the system. In general for a video analytics

problem, the work can be divided into three phases. In the

first phase, the deep learning pipeline is decomposed into

logical stages. For each stage, one or more computational

tasks are determined. In the second phase, stages based on

machine learning are trained on the cloud. In the third phase,

the stages are distributed on the physical network nodes using

SDN. The decision to run the trained model on cloud or

cloudlet can affect the performance of the overall system.

The decision strategy of running trained models on cloud or

cloudlet is discussed in section IV-B. In general, we perform

non-compute intensive stages on the edge tier and more

compute-intensive stages on the in-transit and cloud tiers.

For object recognition case, the distribution of stages over

network resources is shown in Fig.4. For S1 and S2, edge

tier can be used. Edge tier is defined as consisting of the

data sources (cameras) and the edge nodes. For S3 machine

learning model to detect the object is run on the cloudlet

node. For S4, the trained deep learning model is run on

the cloud to perform the compute-intensive work of object

recognition. If there are more than one deep learning models

for these stages, we need a way of mapping the deep learning

models onto our cloudlet and cloud nodes. In general, if

we denote the deep learning pipeline for a specific video

analytics problem by letter ’P’, the number of stages for the

problem set P is

P = {S1, S2, S3...SN} (1)

SN is the final stage number, and the set P denotes all the

stages of a problem P. It consists of two types, basic stages

and machine learning stages. Basic stages do not involve a

machine learning model for processing. For each stage, we

may have one or more tasks given as a set TSi

TSi
= T1, T2, T3, . . . TN (2)

where ’i’ in Si denotes a stage number. Total tasks for all

stages is given by

TtS =

N∑

n=1

TSn
(3)

Each task in a stage performs some transformation on the

input frame resulting in an output frame given by the

following equation

G(x, y) = T (F (x, y)) (4)

G(x, y) indicates the output pixel value at location x, y and

F (x, y) indicates the input pixel value at location x,y. The ’T’

indicates the transformation function which is applied to all

the pixels of the frame. For basic processing stages, the trans-

formation function could be an image smoothing/sharpening,

noise reduction, histogram equalization and or image scaling.



Fig. 4. Edge Enhanced Deep Learning for Object Recognition Scenario

For deep learning stages, the transformation function will be

a deep learning model.

If there are more than one deep learning stages, deep

learning models to run on each node is given by M

M = DL(SN )/N (5)

DL is a function which takes the total number of stages

in a problem and returns the number of deep learning

models in the problem. N is the number of cloudlet and

cloud nodes. If M is more then one, it means we need to

execute more than one model on either cloudlet or cloud

node. Due to processing and storage constraints, we do

not consider edge as a candidate for deep learning models.

Deep models may or may not have a dependency; dependent

models must be executed in a sequence to yield correct

results. Detection of an object is a precursor step to object

recognition, therefore object recognition model is dependent

on the object detection model and must be executed after it to

conform with the serial execution requirement. An example

of independent models is a driver recognition scenario. The

semantic recognition of the driver and the vehicle may need

two deep learning models without dependency; it does not

matter whether a person is recognized first or the vehicle. We

discuss three strategies to decide the execution of models on

network nodes given in section IV-B

A. Data Pipeline Model

The inference is to be performed on the video streams

coming from cameras. We denote the set of video cameras

as

CN = {C1, C2, . . . CN} (6)

where N is the total number of video cameras. Each of these

video cameras is producing data at N frames per second;

each camera frame rate is denoted by

CNfps = {F1, F2, F3, F4 . . . FN} (7)

Each frame is considered a job to be processed by the deep

learning model. Number of jobs produced cameras with same

frame rate per second will be

CNjps = CNfps ∗M (8)

where CNfps is the number of frames per second for camera

N and M is the number of cameras with the same frame rate.

Total number of jobs produced by all camera in one second

will be

JTjps =
N∑

n=1

CNfps ∗N (9)

where CNfps denotes the camera with unique frames per

second and N is the number of cameras with the same frame

rate. The time cost to process each job with algorithm A will

be

Cja = At + Tt (10)

where At is the algorithm time to process the job and Tt

is the network time to transfer the record from source to

destination. Total cost to process all the jobs with algorithm

A will be

CTja = JTjps ∗ Cja (11)

where JTjps is the total number of jobs and Cja is the cost

time for each job. We also define a percentage gain to show

the efficiency of a setup S in terms of time and cost of a

reference cloud setup.

Gs = (CTja(c)− CTja(s)) ∗ 100/CTja(c) (12)

where CTja(s) is the total cost to process all jobs on a setup

S and CTja(c) is the cost to process all the jobs on cloud

setup. We will use the Gain to compare our approach with

the traditional cloud model and to prove the efficacy of the

proposed system.

B. Model Decomposition Decision Strategy

The deep learning pipeline consist of 1) deep learning

models and 2) basic processing stages. For multiple stages,

the choice of running the deep learning model on the

Cloudlet or Cloud is a critical decision to be made. Depend-

ing on the problem requirement, it can largely influence the

response time and bandwidth/storage costs between network

resources. Model selection decision on network nodes is

based on the model algorithm time and the volume of the

data to be processed by the model. To make the decision

easier, we propose three strategies as following:

• Model Time (MT): Based on the inference time each

model takes, we decompose the models on the edge,

cloudlet, cloud tiers by observing the available hardware

and application requirements. Intuition may lead us to

run the compute-intensive model on the Cloud, however,

if it also has a more capacity to filter low-value density

data, it might be appropriate to run it on the cloudlet



Algorithm 1 Model Time based Node Allocation

Input: Models

Output: CloudNodes,CloudletNodes

Initialisation :

If its a single model schedule it on cloud

1: if (Models.size()==1) then

2: CloudNodes.first().assignModel(Models.first))

3: return CloudNodes, CloudletNodes

4: end if

Find model time for each model

5: Map{Model,Time} modelTimeMap

6: for (i = 1 to Models.size) do

7: time=Models[i].getAlgorithmTime()

8: modelTimeMap.set(Models[i], time)

9: end for

Sort the model time map based on time

10: if (strategy=highTimeOnCloud) then

11: sortAscending(modelTimeMap, time)

12: end if

13: if (strategy=LowTimeOnCloud) then

14: sortDescending(modelTimeMap, time)

15: end if

Allocate the models on cloudlet and cloud node

16: for (i = 0 to CloudletNodes.size()) do

17: m=modelTimeMap.getModel(i)

18: CloudletNodes.assignModel(m)

19: end for

Check if there are models to be assigned to Cloud

20: if (modelT imeMap.size() > CloudletNodes.size())
then

21: for (i = 0 to CloudNodes.size()) do

22: cloudletSize=CloudletNodes.size()

23: m=modelTimeMap.getModel(cloudletsize+i)

24: CloudNodes[i].assignModel(m)

25: if ((cloudletsSize+ i) > modelT imeMap) then

26: Break

27: end if

28: end for

29: end if

30: return CloudNodes, CloudletNodes

to reduce the network bandwidth and to save the cloud

costs. Algorithm for this strategy is given in Algorithm

IV-B.

• Frequency Sampling: In this strategy, we estimate the

number of classes in the video streams. In case of

object recognition, two classes can be ”object-yes” and

”object-no”. Based on a statistical approach, count of

all the classes is estimated and is used to schedule the

model on cloudlet or cloud. For instance, if a dataset has

more background objects, frequency-based sampling

can be employed to detect and filter the background

objects in the cloudlet. On the other hand, if the

dataset has many foreground objects than background

objects, it might be appropriate to run the deep learning

TABLE I

STORAGE SIZE AND PROCESSING DEADLINE

Name Memory Storage(MB) Deadline(sec)

Edge 32 1
Cloudlet 64 2
Cloud 128 500

recognition model on both cloudlet and cloud to make

the system efficient.

• Adaptive Strategy: This strategy observes the history of

the previous one hour, one day or one month record and

switches the cloudlet and cloud nodes based on cloud

saving, cloudlet cost-saving strategy. The saving cost

may apply to energy, bandwidth and or storage saving. It

is determined subjectively by the user based on analysis

of the network and application requirements.

C. Deep Model Training

The deep learning training for object recognition was

performed on the cloud platform. After the model was

trained, it was saved in a file and used for object inference

on video streams coming from the camera sources. For

object detection, a pre-trained model was obtained from the

OpenCV library [24]. It was not feasible to decompose the

deep learning training towards the edge due to two reasons.

Firstly, the training data was already available in the cloud.

Secondly, as cloudlets and edge nodes are usually not near

each other, distributing the training process on edge and

cloudlet nodes may introduce a significant delay which may

hamper the training process more than if it was being trained

on a cloud. The deep learning training was performed on

the cloud cluster with 8 compute cloud nodes using the

University of Derby cloud. Each node in the cloud has a

storage of 100 GB, 4 VCPUs and 16 GB RAM. The total

video dataset size is 5GB. The first convolutional layer of

CNN filters the frames with 96 kernels. The layer next to it

has 256 kernels in it. The next three layers are convolutional

with 384 kernels in them. All these layers end up to fully

connected layers. The object recognition model was fully

trained after about 1 hour and the trained model was saved

on a disk storage.

V. EXPERIMENTAL SETUP

The experimental setup was created using OMNeT Sim-

ulator. It is a discrete event simulator and provides accurate

simulations for a wide variety of scenarios. Every effort was

made to make the simulation as accurate as the real hardware.

The experimental setup consists of video cameras, processing

nodes and gateways (switches, routers) to transport data

between hosts. The edge and in-transit nodes have limited

memory storage space. When the memory buffer of an

edge or in-transit resource is exceeded, it sends all the

jobs in its current memory buffer to the next network hop

and frees the space occupied. All processing nodes also

associate a time deadline to each object recognition job in

their current memory buffer under which a job should be

completed. The storage space for the computational nodes



Fig. 5. Experimental Setup for Deep Learning Object Recognition

and their deadline time to process a job is given in Table

I. If a network node is unable to process the job under

its respective deadline time, the job is forwarded to the

next hop in the network or rejected in case of a cloud.

The experimental setup in Fig.5 depicts a subset of the

proposed infrastructure given in Fig.3 and presents a sim-

ple scenario to demonstrate the efficacy of the system.

A brief explanation of the nodes is given below.

Cam1 and Cam2 are video camera sources and are con-

tinuously streaming video data of 20 and 10 frames

per second respectively. The data is obtained from the

video folder which consists of images of HD res-

olution with an average size of 102Kb. Cam1 pro-

duces about 2Mb of video data per second and

cam2 produces about 1Mb of video data per second.

Edge Switch moves data from video sources to edge or

to the next network node. The decision of switching is

based on the configuration being run. For instance in

cloud only mode, it transfers all the video data to the

next network switch, that is cloudlet Switch in our setup.

Cloudlet Switch decides to forward the packet either to the

next network hop that is cloud Router or to the cloudlet.

The decision is made based on the experiment and config-

uration being executed. Cloud Router is used to forward

video data from the data source network to the cloud

network to reach the cloud. We assume the cloud resides

on a network other than the rest of the nodes and is

connected to the data sources network through a router.

Edge node does preprocessing of the data before forward-

ing the data back to the edge Switch. Edge Switch then

forwards it to the next horizontal node. Edge node has a

limited storage buffer for jobs. A job from the camera is

first stored in the buffer of the edge node before it can

be processed, the job is removed from the buffer after

processing. The buffer size is fixed for all experiments.

If the incoming jobs exceed the storage buffer of the

edge node, processing is aborted and edge node forwards

the unprocessed jobs to the next node in the network.

Cloudlet is an intermediate node which sits between the

data sources and the destination cloud. It has more storage

and processing capacity than the edge but equal to or fewer

resources than the cloud. The cloudlet is used to perform

inference for object detection. Video Data is transferred to

the cloudlet node only in cloudlet-cloud and edge-cloudlet-

cloud mode. The storage capacity of the cloudlet is fixed for

all the experiments and is given in Table I. Likewise edge, if

a cloudlet buffer is exceeded, it forwards the jobs to the next

network hop without processing and frees its buffer storage.

The Cloud performs the final processing and is the last

network node for the data in transit from the video sources.

The cloud runs a deep learning inference model for object

recognition on every job which takes around 250ms in

average. The storage capacity of the cloud is assumed to be

sufficient for the experiments being conducted. The Internet

Protocol (IP) address for the nodes was assigned automati-

cally by the software. Nodes were connected to each other

through communication links and ports. Ports are referred to

as gates in the simulator and were manually configured for

each node. All the nodes are placed from each other at a

certain distance to introduce the delay in the communication

links. Edge node is assumed to be closest to data sources,

cloudlet is placed in-between cloud and the edge node and

cloud is the furthest from data source. The communica-

tion delay between edge Switch to cloudlet Switch and

cloudlet Switch to cloud Router is 2ms and 4ms respectively.

All the other network connections have a delay of 1ms.

The experimental evaluation is performed using an object

recognition use case because it needs deep learning models

and has complex computational and data access require-

ments. The experimental setup is used for evaluating the

proposed system and producing the results. The frames from

video cameras consist of images of High Definition (HD)

quality with an average size around 103KB. The frames are

of two types i) background frames and ii) foreground frames.

Background frames only consist of background information

while the foreground frames consist of an object with a

background. In the dataset that has been used to evaluate

the system, the ratio of foreground to background frames

is 2:3, out of every 5 frames transferred, 2 consist of

foreground objects and 3 have only background information.

We associate foreground frames with a high value of 1 and

background frames with a low value of 0. A video stream

with all foreground frames will have a high-value density

and video frames with a mix of background and foreground

frames will have a low-value density. A continuous streaming

video data is produced by the camera sources to emulate

the real-life scenario. The edge, cloudlet and cloud nodes

have been used to evaluate the distribution of deep learning

pipeline for object recognition operations in real time on the

streaming data.

VI. RESULTS AND DISCUSSION

The experiments were run for four software defined net-

working (SDN) configurations namely i) Cloud Only (CO)

ii) Edge-Cloud (EC) iii) Edge-Cloudlet-Cloud (ECC) iv)

Edge-Cloudlet-Cloud with Filtration (ECCF). In all of the

configurations, tests were performed for object recognition

inference. No tests were performed for deep learning training

as it was not distributed towards the edge and in-transit

resources. For each SDN configuration, two experiments

were run.
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Fig. 6. Time to process 10k,50k,100K jobs on the four SDN configurations

Fig. 7. Time to process stages of an object recognition job in milliseconds
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A. Experiment 1: Total time to process 10K, 50K, and 100K

object recognition jobs

In the first experiment total time to process object recogni-

tion jobs was measured and plotted. The experiment was run

for 60 minutes and time was noted to process 10K, 50K and

100K jobs. In total 108,000 video frames were submitted to

the system which amounts to about 10.6GB in size.

1) Cloud Only: The cloud only configuration is the tradi-

tional approach and is used as the reference to compare and

analyze the results with the other SDN configurations. In this

setup, all the stages of the deep learning pipeline shown in

Fig. 7 were executed on the cloud and results were obtained.

For the first experiment using Cloud only configuration, the

results are shown in Fig.6. It takes about 666 minutes (11

hours and 7 minutes) to process 100K jobs. During this time

100K total object recognition inference jobs were completed.

The cost function for the total jobs defined in equation 11

is given below CTja=100000*400/1000=40,000s (11hrs and

6 mins) The actual time to process these records as shown

in Fig.6 is 2 seconds more than the total cost function. This

delay is attributed to transfer of the video data from video

cameras to Cloud node.

2) Edge and Cloud Only: The experiments were repeated

for edge and cloud only configuration. In this case stages S1

and S2 of Fig.7 were executed on the edge and S3 and S4

were run on the cloud. The results are shown in Fig.6. In

this case, percentage efficiency gain is more than the Cloud

only approach as distribution of stages S1 and S2 on the

edge introduces parallel processing and reduces the time to

process all the jobs.

3) Edge, cloudlet and Cloud Only: In this configuration

all the network resources that are edge, cloudlet and cloud

were employed to distribute the tasks among them. Stages

1 and 2 of Fig.7 were distributed on the edge node while

stage 3 and stage 4 were distributed on cloudlet and cloud

nodes respectively. The results are shown in Fig.6. It is

more efficient than the Edge-Cloud approach as the object

detection stage S3 which was being executed by the Cloud

is transferred to the cloudlet. Since object detection is a

compute intensive task, it took less time to process the

overall jobs in Edge-Cloudlet-Cloud approach as increased

parallelism for compute-intensive tasks lead to increase in

percentage efficiency gain.

4) Edge, Cloudlet, Cloud with Filtration: It is same as

edge, cloudlet and cloud configuration, however in this case

we have filtered streams which fall under the filtering criteria.

For example, streams with only background frames are a

candidate for filtering as they do not contain any useful

data to recognize the object. It is important to note in real

video camera streams; not all the frames are of interest. In

object recognition case, we can only forward the frames

to the cloud in which an object has been detected by an

object detection model. As object recognition is a compute-

intensive task and consumes significant time, by filtering the

streams at the cloudlet node, we were able to accelerate our

system performance. As shown in Fig.6 it takes less time

to process object recognition jobs in Edge-Cloudlet-Cloud-

filter approach than in Edge-Cloudlet-Cloud approach. The

percentage gain in ECCF case as compared to the cloud

only and Edge-Cloudlet-Cloud approach is 71% and 54%

respectively.

B. Experiment 2: Number of object recognition jobs com-

pleted in window time of 2,30,60 seconds

For near real-time analytics, it is often more important to

determine the number of object recognition jobs completed

per unit time to aid in decision making and to provide

timely control of events. To demonstrate this, we plot the

chart for window time of t=2,30,60 seconds for all the four

configurations as in experiment 1. The distribution of stages

for the configurations were the same as Experiment 1.

1) Cloud Only: For the second experiment on the cloud,

it can be seen in Fig.8a that only 4 jobs were completed in 2

seconds, 74 jobs in 30 seconds and 149 jobs in one minute.

We use the cloud case as a reference to compare and evaluate

results with the other configurations.

2) Edge and Cloud Only: In this case, edge and cloud

nodes are employed to determine the number of object

recognition jobs completed in window time of t=2,30,60



Fig. 8. Number of jobs completed in window time of 2,30,60 seconds

seconds. The completed jobs are compared with the reference

cloud only approach. It can be seen in the Fig.8b that for

edge-cloud case, only 5 jobs are completed in 2 seconds, 85

jobs in 30 seconds and 171 jobs in one minute..

3) Edge, Cloudlet and Cloud Only: In this experiment,

all the network resources that is edge, cloudlet, and Cloud

nodes were employed to determine the number of object

recognition jobs processed in a window time of t=2,30,60

seconds. The results of the experiment are shown in Fig.8c.

It can be seen that Edge-Cloudlet-Cloud case gives the

maximum efficiency gain as compared to Cloud and Edge-

Cloud configurations. Specifically, in Edge-Cloudlet-Cloud

case, around 68 more jobs were processed in 60 seconds

than the Edge-Cloud approach.

4) Edge, Cloudlet, Cloud with Filtration: This is same

as edge-cloudlet-cloud configuration, however we also filter

the low-value jobs at the cloudlet tier in this case. The

cloudlet based filtration reduces the input data to the cloud

which improves the response times and saves the cloud

bandwidth and storage. The results in Fig.8c shows, this

configuration is more efficient than the other configurations.

All the network nodes in the experimental setup have phys-

ical constraints such as limited data storage, processing

and transferring facility. This limited storage and processing

capability restricts how fast a network resource can operate

and store data. If the rate of data production exceeds the rate

of the processing capacity of a network node, then some of

the data must be stored on the storage of the node such as a

memory buffer or a hard disk. In the video streams case, this

might not always be a feasible option for edge and in-transit

resources, as the temporary buffer is guaranteed to run out

of memory if the rate of production is more than the rate of

consumption. For instance, if several cameras are producing

constant video streams with high frames per second rate, then

initially all incoming streams can be stored in the buffer and

processed. However after sometime buffer will start to fill

with the incoming streams, this pattern will continue until at

time t=buffer overflow time (BOT), the network node either

has to reject the incoming streaming job or forward it to

the next hop without processing. We propose three modes to

solve this problem:

• Delay Processing Mode (DPM): The network node

forwards the unprocessed streams to the next node in

time t=BOT.

• Reject Mode (RM): In this mode, the network node

deletes the last job in the queue with the highest waiting

time to make room for the new job. The underlying idea

is, the last job in the queue will be less relevant than the

other jobs in the queue. This strategy results in loss of

some jobs as some jobs will be starved to death by the

system. However, for video analytics case, a minor loss

of some jobs is not significant for many applications as

most cameras produce about 20 to 30 frames per second

for a smooth video experience.

• Ideal mode (IM): In this mode, an edge and in-transit

nodes can process all the jobs produced per second

by the video cameras. In this case, the rate at which

frames/jobs are produced is equal to or less than the rate

at which jobs are processed by the network resource. An

ideal mode can provide the users with real-time object

recognition from the video streams.

In the DPM, the end effect will be a delay in the pro-

cessing time of all the jobs. We recommend for real-time

analytics, the edge and in-transit nodes ideally should be

able to consume all the video streaming jobs which were

produced per unit time. In video analytics case, if there

are 10 cameras with a frame rate of 25 per second, then

each network node should be able to process 250 stream-

ing jobs per second to be considered in the ideal mode.

The time deadline for jobs can be of two types namely i)

resource-based deadline ii) Job-based deadline. In resource-

based deadline time, each resource may have a separate

deadline time window under which all the jobs in its current

memory buffer are executed or rejected otherwise. As edge

and in-transit are expensive resources, it might be useful in

some cases to assign resource based deadline. In a job-based

deadline time, each job is associated with a deadline time

regardless of its processing stage and the resource executing

it. Using the proposed infrastructure, a system with multiple

edges, in-transit nodes can be designed to meet the job

deadline time.

VII. CONCLUSIONS

In this paper, an edge-based system for deep learning is

proposed for efficient and large-scale video stream analytics.

Using the infrastructure, an object recognition scenario was

implemented. Four different configurations of edge, cloudlet

and cloud nodes were compared with the traditional cloud

only approach to demonstrate the efficacy of the system. The



deep learning pipeline stages consisting of frame loading

and decoding, preprocessing, detection and recognition were

distributed towards the edge, in-transit and the central cloud

for object inference. The results showed efficiency gain of

37% and 71% in Edge-Cloudlet-Cloud and Edge-Cloudlet-

Cloud-Filter configurations respectively as compared to the

cloud only approach. The efficiency gain is a reduction in

the total time required to complete the processing of object

recognition jobs. The proposed system approach brings the

deep learning based analytics towards the source of the

video streams by parallelizing and filtering streams on the

network nodes. The background filtering approach used in-

transit nodes filtered the background frames, which further

reduced the video data, bandwidth and the storage needed

at the destination cloud. Although we have demonstrated a

deep learning pipeline decomposition using a video analytics

case, the proposed approach can be applied to other domains

employing the deep learning algorithms. It is particularly

useful when the streaming source resides on a network other

than the cloud. In the future, we aim to further explore our

edge enhanced infrastructure using multiple edge/cloudlet

nodes to analyze the scalability and efficiency gain. We also

aim to investigate approaches to programming the edge and

in-transit nodes dynamically and to automate the execution of

multiple models of deep learning based on the video stream

content.
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