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Abstract
This paper focuses on the instance segmentation task. The purpose of instance segmentation is to jointly detect, classify and
segment individual instances in images, so it is used to solve a large number of industrial tasks such as novel coronavirus
diagnosis and autonomous driving. However, it is not easy for instance models to achieve good results in terms of both
efficiency of prediction classes and segmentation results of instance edges. We propose a single-stage instance segmentation
model EEMask (edge-enhanced mask), which generates grid ROIs (regions of interest) instead of proposal boxes. EEMask
divides the image uniformly according to the grid and then calculates the relevance between the grids based on the distance
and grayscale values. Finally, EEMask uses the grid relevance to generate grid ROIs and grid classes. In addition, we design
an edge-enhanced layer, which enhances the model’s ability to perceive instance edges by increasing the number of channels
with higher contrast at the instance edges. There is not any additional convolutional layer overhead, so the whole process is
efficient. We evaluate EEMask on a public benchmark. On average, EEMask is 17.8% faster than BlendMask with the same
training schedule. EEMask achieves a mask AP score of 39.9 on the MS COCO dataset, which outperforms Mask RCNN by
7.5% and BlendMask by 3.9%.

Keywords Instance segmentation · Single-stage · Regions of interest · Edge-enhanced

1 Introduction

Instance segmentation, a downstream task of object detec-
tion, is a very difficult task. The first is that segmentation
requires predicting the class of each instance. Not only the
number of instances in the image is uncertain, but also the
pose, angle, and size of each instance is unknown. Mean-
while, the edges of each instance are very complex, which
make models hard to achieve a good mask outcome.

Due to the models hard to determine exactly where the
instances are located, it becomes difficult to predict the
classes of all instances in an image. The current mainstream
approaches are divided into two-stage and single-stage. The
two-stage models [14] use CNNs (convolutional neural net-
works) to filter out some proposal boxes first and then
classifies and regresses these proposal boxes. The accuracy
of the two-stage models is higher, but the speed is slower.
The reason is that the two-stage models can only be executed
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sequentially and require two classifications and regressions.
Most single-stage models [15,26] are densely sampled at dif-
ferent locations of the image anduseCNNnetworks to extract
features. After that, classification and regression can be per-
formed by using those features. Single-stage models are fast
because they only need to perform classification and regres-
sion once. However, most of the single-stage models are not
as accurate as the two-stage models because of its simple
structure.

Edge optimization for instance segmentation is a chal-
lenging task. Because the edges of each instance are diverse,
and the edges of instances in different poses are complex and
varied. Most of the network model predictions are smoothed,
i.e., neighboring pixels often use the same label. Therefore,
in the edge regions of the instances, the segmentation results
are often different from the actual ones.

To address above two difficulties, we propose a single-
stage instance segmentation model EEMask. For the first
difficulty, we design a SAM (Spatial Attention Module),
which establishes the relevance between two regions based
on their grayscale values and the distance. There is a high
probability that pixels with the same greyscale value and
close distance belong to one instance. According to this
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rule, we can make the different parts of an instance of an
image more relevant. For the second difficulty, we present an
edge-enhanced layer which eliminates the redundant chan-
nels by adjusting the ratio between channels. Some channels
lose basic image information during the convolution process.
These channels become redundant channels, which are not
beneficial to model learn. Some channels have a relatively
large contrast between the instances and the background.
These channels allow the model to place an emphasis on
the edges of the instances. Our methods do not need to add
additional convolutional layers, so the whole process is effi-
cient.

To prove that EEMask is feasible, we do visualization and
many ablation experiments, see Sect. 4 for details. In the
visualization, we verify that EEMask can capture the ROIs
in the image by visualizing the last convolutional layer of the
SAM. In the experiments, we do many ablation experiments
to verify that all modules in EEMask are useful. Finally,
we evaluate EEMask with the state-of-the-art models on
the COCO 2017 dataset [22]. EEMask is on average 17.8%
faster than BlendMask. EEMask with ResNet-101 [13] as
the backbone network obtained 39.9 AP, which is a 3.9%
improvement compared to BlendMask and exceeds most of
the latest state-of-the-art models.

In summary, the contributions of this paper are:

– A novel, single-stage and end-to-end instance segmen-
tation model, which uses the characteristics of different
dimensional feature maps for targeted processing;

– A lightweight SAM that generates accurate class infor-
mation of instances by computing relevance between
different regions in an image.

– A lightweight edge-enhanced layer that improves the
model’s perception of instance edges by adjusting the
ratio between channels.

2 Related work

Object detection. Object detection, the downstream task of
image classification(each image has only one class), solves
the task that there are multiple objects in an image. Object
detection is more challenging than traditional image classi-
fication, which consists of two subtasks:object classification
and localization. First, objects can appear anywhere in the
image with different sizes. Second, there are various poses
and angles of those objects, moreover, some objects may be
obscured.Traditional object detectionmethods [5,7–9,32,33]
are weak in maintaining instance integrity, and handmade
features lack robustness. These methods are gradually being
replaced by neural networks. Neural network-based object
detection algorithms [11,12,14,15,23,24,26,29] include two
categories. One category is two-stagemodels based on region

proposal. Such as R-CNN [11], Fast R-CNN [12], Faster R-
CNN [29] and Mask R-CNN [14] etc. They need to first
generate the bounding boxes of objects, then classify and
regress the bounding boxes. Another category is single-stage
models such as YOLO [15] and SSD [26], which use only
one convolutional neural network(CNN) to directly predict
the class and location of different objects.

Single-stage object detectors are able to speed up exist-
ing two-stage detectors by simply removing the second stage
and compensating for performance loss in other ways (e.g.,
strong data augmentation, anchor clustering.). However, the
same approach is not easily extend to instance segmentation.
Instance segmentation is much more complex than object
detection. The state-of-the-art two-stage instance segmen-
tation methods depend heavily on feature localization to
generate masks. These methods “re-pool” features in some
bounding box region, and then feed these localized features to
theirmaskpredictor. This process is inherently sequential and
therefore cannot be accelerated. Although the single-stage
models predict the class and generate the base masks are run
in parallel. The models then fuse the two parts together to
generate the final mask. But it is difficult to determine which
branch ends first.

EEMask has three main improvements in the efficiency
of predicting instance classes. The first is the simplification
of the semantic branching operations using a grid layer, i.e.,
dividing the image uniformly into a fixed number of grids.
Second, EEMask generates ROIs instead of bounding boxes
and generates grid-ROIs. Finally, EEMask runs in parallel
and does not add redundant convolutional layers. In addition
to speed improvements, equally important is accuracy. In our
previous work, we have proposed DCM [40] (Dual Context
aggregation Module), which builds relevance by construct-
ing pairwise relationships between positions of the same row
and column to improve feature representation. We continue
to improve on our previous work. We redesigned the SAM,
which uses grayscale values and distances to establish rele-
vance between different grids in the whole image. Relevance
is established not only in the horizontal and vertical direc-
tions, but also in the oblique direction. The multi-directional
relevance between grids allows EEMask to better identify
the position of the instances, thus improving the recognition
accuracy.

Instance Segmentation. With the advent of CNNs [16,
17,37], many instance segmentation models have been pro-
posed. For example [1,14,25,27,39], the precision of instance
segmentation accuracy grew rapidly [6]. Mask R-CNN [14]
implements a full convolutional network that is added to
the structure of the Faster R-CNN [29] for pixel-level clas-
sification. Mask R-CNN [14] is a representative two-stage
instance segmentation model, that first scans the image and
generates proposals, then generates bounding boxes and
masks. FCIS [21] is the first fully convolutional end-to-end
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instance-aware semantic segmentation model, which outputs
instance masks and classes information by computing loca-
tion sensitive inside/outside score maps. YOLACT [2] is
the first single-stage real-time instance segmentation model
that divides the instance segmentation task into two parallel
subtasks:generating a set of prototype masks and predicting
the per-instance mask coefficients. TensorMask [4] presents
the first dense sliding window instance segmentation model
that uses a structured 4D tensor to represent the mask in
the spatial regions, achieving almost the same results as the
Mask R-CNN. PolarMask [34] is an anchor-box free and
single shot instance segmentation model, which formulates
the instance segmentation problem as predicting the contours
of instances by instance center classification and dense dis-
tance regression in polar coordinates. Pointins [28] is a novel
idea of point-based instance segmentation framework, which
is able to maintain performance while improving speed. In
recent years, some multi-branch and multi-scale network
models [3,38] have become popular, because it exploits
the advantages of different scale feature maps. The multi-
branch and multi-scale network MMALNet [38] has good
classification ability and robustness for images of different
scales. BlendMask [3] is an instance segmentationmodel that
combines top-down and bottom-up design strategies, and it
utilizes a more reasonable blender module to fuse high-level
and bottom-up features. Eventually Blendmask outperforms
Mask R-CNN in terms of speed and accuracy.

Recently, single-stage models have surpassed two-stage
models in terms of speed and accuracy, such as the Blend-
Mask. Single-stage models often have low segmentation
accuracy for instance edges due to their simple structure. We
designed an edge-enhanced layer, which removes redundant
channels and adds channels that contain richer edge infor-
mation. In this way, the model allows for better learning of
edge details.

In summary, CNN-based models have greatly outper-
formed traditional models. Even some single-stage models
surpass the two-stage models in terms of speed and accu-
racy, such asBlendMask.However,most current single-stage
models suffer from two problems. On the one hand, it is dif-
ficult for models to predict the instance class quickly and
accurately. On the other hand, the segmentation of instance
edges is not accurate enough. For the first one, we replace
the bounding boxeswith grid-ROIs to improve efficiency and
create region relevance to improve the accuracy of class pre-
diction. For the second, we adjust the ratio between channels
to enhance the model’s perception of instance edges.

3 Our approach

In this section, we first briefly introduce the overall pipeline
of the EEMask. Then, we introduce the grid layer and the

SAM in the semantic branch. Next, we introduce the edge-
enhanced layer and the CAM (Channel Attention Module)
in the mask branch, a module that generates the final mask.
Finally, we introduce a new LEEMask (see Sect. 3.4) to opti-
mize the quality of the CAM to generate the final mask.

3.1 Overall pipeline

EEMask is basedon simultaneouspredictionof twobranches,
which completely eliminates bounding boxes. EEMask uses
ResNet101 as the backbone network. The ROIalign layer is
used to merge feature maps of different sizes in the FPN to
generate higher-level feature maps. The prediction network
ofEEMaskconsists of semantic branch andmaskbranch.The
semantic branch contains two parts: grid layer and SAM. The
grid layer for simplifying the processing of featuremaps. The
SAM for predicting the grid-ROIs and the class of each grid.
The mask branch also contains two parts: edge-enhanced
layer and CAM. The edge-enhanced layer for adjusting the
ratio of channels. The CAM formerging grid-ROIs and base-
mask features. The whole structure is shown in Fig. 1.

3.2 Semantic branch

The semantic branch is mainly used to predict the classes and
ROIs of the instances in images, and it uses the high-level fea-
ture maps in the FPN as input. The higher level feature maps
contain larger perceptual fields and more semantic informa-
tion. When predicting ROIs, EEMask needs to focus more
on the location information and the affinity between grids.
CNNs are insensitive to Cartesian coordinate systems, which
cannot be interpreted as One-Hot information. Inspired by
the idea of “coordinate transformation” [10], we use fused
coordinate features to solve the problemofCNN insensitivity
to location. The coordinate features consist of two matrices.
The size of the matrix is S*S (S is the number of grids). The
first matrix has the same value in each row. The value of
each column is from zero to S-1 in integer increments. The
second matrix is a symmetric matrix of the first matrix. Then
the values of the two matrices are normalized to the range
[-1, 1]. Finally, they are added to the last two channels of
the feature maps. For the affinity problem between grids, we
propose the SAM. See Sect. 3.2.2 for details.

3.2.1 Grid layer

Thegrid layer divides the higher-level featuremaps of dimen-
sion (C,H,W) into S2 grids uniformly in space. The grid
feature maps of dimension (C, S, S) are obtained. In the
specific process of dividing the grid, we keep the floating-
numbers and use bilinear interpolation to generate the values
for each grid. We specify that each grid can represent only
one class. The right number of grids can accelerate the train-

123



1140 Y. Gao et al.

grid-ROIs+
grid-Classes

ROIalign
layer SAM

CAM
base-
mask

feature
 maps

edge-
enhanced

layer
C2

C4

C5

C3

P2

P3

P4

P5

P6

P7

2*Conv

Sem
an�c Branch

M
ask Branch

higher-
lever

feature
maps

grid
feature
maps

lower-
lever

feature
maps

grid
layer

backbone feature pyramid Seman�c Branch Mask Branchfeature maps

ROIalign
layer

Coordinate 
Features

high-level features lower-level features

Fig. 1 The boxes of different categories in the figure represent different
modules. The specific category of each module is shown at the top of
the figure. EEMask uses the fusion of the lower-level features with the
high-level features to generate the final mask. The SAM is added to
the top of the detection tower to generate grid-ROIs and grid-Classes
by calculating the regional relevance of the feature maps. The lower-

level features of the backbone and FPN networks are used to generate
the base-mask feature maps. The CAM is used to linearly combine the
grid-ROIs, grid-Classes and base-mask feature maps to generate the
final mask. See Sects. 3.2 and 3.3 for processing details in the semantic
branch and the mask branch, respectively

ing while maintaining relatively high accuracy. We compare
different numbers of grids in the ablation experiments in
Chapter 4.

3.2.2 SAM

TheSAMtakes the grid featuremaps as input, and it improves
the feature representation by capturing the global context.
Finally, SAM generates the grid ROIs and grid classes. Cap-
turing long-distance-dependent information aims to obtain
global contextual information and enhance the discrimina-
tionof similar features.Convolutional neural networks obtain
image features by stacking network layers,which is relatively
inefficient. In this paper, we capture dense spatial contex-
tual information by establishing relevance between different
grids. Establishing relevance between grids makes EEMask
more accurate in determining the class of each grid.

As shown in Fig. 2, the SAM is first divided into three
branches. Each branch contains two 1*1 convolutional lay-
ers. The outputs of the 1*1 convolution layers are the feature
maps A, B and C respectively. The 1*1 convolution does not
change the size S of the grid feature maps. Its main func-

Fig. 2 SAM first establishes the region relevance of the image and then
further calculates the grid-ROIs and grid-Classes based on the relevance
feature map. The whole SAM is calculating in the size of S*S

tion is to reduce the amount of data by reducing the number
of channels. Feature map A is mainly used to calculate grid-
ROIs. FeaturemapB ismainly used to calculate the relevance
between grids. Feature map C is mainly used to calculate the
classes represented by each grid.We first perform the affinity
operation on B. The equation for the affinity operation is as
follows.

AFi j =
√

|Bix ,iy − Bjx , jy |
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20*20 grid ROIsOriginal image Original image+ ROIs 20*20 grid ROIsOriginal image Original image+ ROIs

Fig. 3 We visualize the ROIs for different scenes of the images. The
number of 20*20 grids is taken as an example. In grid-ROIs, the yel-
low area represents the model is more attention. In ROIs, the redder

color means the model is more attention, and the bluer color means the
model is less attention. Due to the multi-directional relevance between
the grids, EEMask is able to capture the poses of the instances accurately

The AFi j represents the affinity between grid i and grid j .
The equations i, j represent the ordinal numbers in the grid
feature maps, from left to right and from top to bottom. ix
represents the row number of grid i and iy represents the
column number of grid i , j similarly. The specific formulas
for ix ,iy are: ix = i/S,iy = i%S. Bix ,iy represents the value
of grid i in feature map B. The smaller difference between
the values of two grids in featuremapB indicates the stronger
affinity. And the distance between two grids is calculated by
the following equation.

Di j =
√

(ix − jx )2 + (iy − jy)2

Di j represents the distance between grid i and grid j . Some
recent multi-feature fusion architectures [18,19,39] give us
some reference. The features with high discrimination and
low correlation should be selected and provided with high
weights in fusion. In the process of AFi j and Di j fusion,
AFi j is with high discrimination, because AFi j represents
the affinity between two grids. Di j represents the distance
between two grids, which is lower discrimination. Therefore,
we give higher weight to AFi j , converge faster and gainmore
accurate results. After obtaining AFi j and Di j , the final rel-
evance feature maps are obtained by the following equation.

Ri j = α ∗ so f tmax(AFi j ) + so f tmax(Di j )

Ri j represents the relevance between grid i and grid j , which
is obtained by summing AFi j and Di j , and Ri j = R ji . α is
the dynamic weight of so f tmax(AFi j ), which is trained by
the network. We specify alpha∈ [1, 10] and set alpha to the
threshold value when it exceeds the threshold value. Smaller
Ri j means stronger relevance between grid i and grid j . The
specific time complexity of generating the relevance feature
maps is 1

2 (S
2 − 1)S2, where S is the number of grids. The

feature map A is combined with the relevance feature maps
to generate the grid-ROIs of the image. Feature map C is
combined with the relevance feature maps and then passed
through the softmax function to generate the classes of each
grid.

To demonstrate the ability of EEMask to capture ROIs
in images, we visualized the final ROIs generated by the
SAM. We draw on recent work in CNN visualization and
model explanations. Visualizing CNNs, a number of previ-
ous works [30,35,36,41] have visualized CNN predictions
by highlighting “significant” pixels (i.e., those pixels whose
changes have the greatest impact on prediction scores). The
darker the image color, the higher the value of interest. High
interest values indicate that the model is more concerned
about the region. We tested this with images of different
scenes. The results are shown in Fig. 3.
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3.3 Mask branch

The mask branch is mainly used to generate the base-mask
feature maps and the final mask. The mask branch takes as
input the lower-level features in the backbone network and
theFPN.Because individual pixels of the lower-level features
have a smaller receptive field and more detailed information,
e.g., texture, edges.

3.3.1 Edge-enhanced layer

The edge-enhanced layer is the module that we propose to
perform data enhancement on the feature maps. The specific
implementation is to adjust the ratio between the channels.
We propose an average grayscale distant value to determine
whether the channels are favorable or not. The specific cal-
culation is as follows:

AG =
(
H∗W∑
l=1

pl

)
/H ∗ W

Wefirst use the above formula to get the average grayscale
value AG, where pl denotes the grayscale value of pixel l.
Then we solve for the number of pixels that are far from
the AG among all pixels. We judge the grayscale value of
each pixel. If the pixel value is greater than AG + β, or less
than AG − β, the pixel is counted as a distance pixel. β is
a parameter for the dynamic training of the neural network
and is mainly used to control the distance away from the
average grayscale value. We count the number of distance
pixels in channel k and write it as nk . We calculate the dis-
tance pixels as a percentage of the total pixels in the channel,
Pk = nk/(H ∗W ). Finally, we calculate the number of chan-
nel k using the following equation:

Nk =
⌈

Pk
sum(P)

∗ T NC

⌉

Nk represents the new number of the channel k. sum(P)

represents the cumulative sum of the distance pixel ratios
in all channels. T NC represents the original total number
of channels. Rounding upward ensures that each channel is
trained. After getting Nk , we make a copy of the channels
whose scaling needs to be scaled up.

The simple flow is shown in Fig. 4. The original image
is passed through the backbone network+FPN module, and
the ROIalign layer to obtain the lower-level feature maps.
There are 64 channels in the lower-level feature maps. In
Fig. 4, we give an example with some of the channels. The
Nk of each channel is calculated by our proposed formula.
Finally, we change the number of channels k to Nk . By this
way, we increase the proportion of channels that are easily
distinguishable at the edge.

Fig. 4 Overall framework of the control channels. Channel
{3,17,41,53,59} was selected from the 64 channels

mask

grid- ROIs

base - mask 
feature 
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1*1Convresize 3*3Conv

grid-
Classes 3*3Convresize 1*1Conv

so
ftm

ax
so

ftm
ax

softmax
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Fig. 5 CAMgeneratemasks by combining grid-ROIs, grid-Classes and
base-mask feature maps

In order to fix the number of channels in the new feature
maps, we set the threshold value is 90. When the number of
channels is greater than 90, we scale down the channels with
larger Nk values accordingly. When the number of channels
is less than 90, we increase the channels with larger Nk val-
ues accordingly. In this way, we ensure that the number of
channels output by the edge-enhanced layer is 90.

3.3.2 CAM

The CAM module’s main function is combining the feature
maps of the different parts to generate the final mask.

As shown in Fig. 5, the input of the CAM is divided
into three parts, which are the base-mask feature maps gen-
erated by the lower-level features, the grid-ROIs and the
grid-Classes generated by the semantic branch. The grid-
ROIs are treated the same way as the grid-Classes, but not
the same network. Both resize the grid first so that the fea-
turemap becomes the original size. Then a 1*1 convolutional
layer and a 3*3 convolutional layer are processed. Finally,
the K dimension is normalized with the softmax function.
The processing of the base-mask feature maps is normal-
ized with the softmax function along the K dimension. The
specific processing of each stage is shown in the table.
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Table 1 Transformation process of feature map in CAM. Fr represents
gird-ROIs, Fb represents base-mask feature maps, and Fc represents
grid-Classes

Value Pre-dimension Process Dimension

Fr [1, S, S] Resize [1, H, W]

[1, H, W] 1*1Conv [K, H, W]

[K, H, W] 3*3Conv [K, H, W]

[K, H, W] Softmax [K, H, W]

Fb [K, H, W] Softmax [K, H, W]

Fc [1, S, S] Resize [1, H, W]

[1, H, W] 1*1Conv [K, H, W]

[K, H, W] 3*3Conv [K, H, W]

[K, H, W] Softmax [K, H, W]

Finally, we apply the element-wise product to the feature
maps Fr , Fb and Fc, and sum along the K dimensions to
obtain final mask:

mask =
K∑

k=1

Fk
r ◦ Fk

b ◦ Fk
c

3.4 Loss function

EEMask proposed in this paper adopts a single-shot end-
to-end training. In the training process, “poly” strategy is
adopted. On the basis of basic learning rate, multiply by
(1 − i ter

max_i ter )
power , where power=0.9. Our network is

trained with min-batch stochastic gradient descent (mini-
SGD). During the experiment, InPlace-ABN is applied to
synchronize the mean and standard deviation of BN on mul-
tiple GPUs. On the MS COCO training set, 36 epochs are
trained with the initial learning rate of 0.01. During the train-
ing, when the 24th epoch is completed, the learning rate is
divided by10.On the 30th epoch, it is divided by10 again. Set
themomentumof the optimizer to 0.9 and theweight decay to
0.001. The weight parameters of the backbone are initialized
by the pre-trained network parameters in ImageNet.

The definition of the training loss function is also based
on the consideration of two parts. One is the classification
loss and the other is the mask prediction loss. The definition
is as follows:

LEEMask = Lcl + λLmask

where Lcl refers to class loss:

Lcl = −{α(1 − p)r log(p) + (1 − α)pr log(1 − p)}

Among them, p is the confidence of the sample, and α is
used to weigh the class. Here, set α=0.25 and r=2. The loss
of mask prediction is calculated with Lmask

Lmask = 1

N P

∑
m

f (ci, j )dmask(p, pt )

Among them, N P represents the number of positive sam-
ples, i, j represents the coordinate values of the samples,
m = i · S + j , f (ci, j ) is a marking function. When the
value of ci, j is greater than 0, its value is 1, otherwise the
value is 0. p and pt represent training value and label value,
respectively. dmask is calculated by the Dice Loss function:

LDice = 1 − 2
∑

i, j (pi, j · qi, j )∑
i, j p

2
i, j + ∑

i, j q
2
i, j

Here, pi, j refers to the predicted value of the grid with
coordinates at (i, j), and qi, j represents the target value.

4 Results and discussion

4.1 Dataset and evaluationmetrics

The experimental dataset is theMSCOCO 2017 dataset with
label information comprising classes, location information
and text descriptions, and it canbeused for various tasks, such
as object detection, image caption and instance segmentation.
The COCO dataset contains 118,287 training images, 5,000
validation images and 40,670 test images, including 80 target
classes and 91 segmentation classes. The dataset is applied
in ablation studies, with 5000 images of the validation set for
evaluation. The evaluation metrics are COCO mask average
precision (AP), AP at IoU 0.5 (AP50), 0.75 (AP75) and AP
for objects at different sizes APS (AP for small objects: area
< 322), APM ( medium objects: 322 < area < 962), and
APL (large objects: 962 <area).

4.2 Ablation studies

We investigate the effectiveness of each module in our
semantic branch and mask branch by performing ablation
experiments. The performance and time of EEMask is mea-
sured by one image per batch on a 1080Ti GPU (11G).

Number of grids The number of grids affects the prediction
of different size instances. If the number is too large, small-
sized objects are easily ignored in recognition. Conversely,
the small size of the grid is beneficial for the segmentation
of small-sized instances, but it causes a lot of unnecessary
calculations. Therefore, we choose different grid numbers in
{10,15,20,25,30} to find the best case. As shown in Table 2,
when the grid number is 10*10, the receptive field of a single
grid is too large, so it is difficult to identify instances with
small size. When the grid number is 30*30, a single grid
receptive field is too small, so it is difficult to distinguish
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Table 2 Experiments show that when the number of grids is small, the
performance is poorer in small objects. When the number of grids is
higher, the performance is poorer in large objects

Number of grids AP APS APM APL

10*10 38.6 16.9 42.4 58.4

15*15 39.6 17.0 43.2 58.6

20*20 39.9 17.2 43.8 58.8

25*25 39.6 17.2 43.4 58.5

30*30 39.5 17.2 42.8 57.9

Table 3 Comparison experiments of different shapes of grid. Numbers
represents the number of grids and shape represents the shape of the
grids. It can be observed in the table that the rectangular grid does not
perform as well as the square grid

Numbers Shape AP APS APM APL

10*20 Rectangle 37.8 15.2 40.8 56.5

15*25 Rectangle 38.1 15.8 41.6 56.6

20*30 Rectangle 37.4 15.9 41.1 55.8

20*20 Square 39.9 17.2 43.8 58.8

the instances with large size from the background. When the
grid number is set to 20*20, the accuracy reaches a relatively
high score and does not generate too many parameters. From
the data in the table, we can judge that the optimal value of
grid number is between 10 and 30. We believe that a better
result can be achieved by refining. Of course, this optimal
grid number is only suitable for the MS COCO 2017 dataset.

Shape of the grid We explore the results obtained by using
a rectangular grid shape compared to a square grid shape.
Because the size of the image is randomly variable, there
are H> W and W> H. If we use rectangle, it will cause
some images to be compressed too much in one direction.
For example, if the image size is H*W, 640*360, and the
grid numbers is 20*30, this will lead to over-compression
in height and loss of feature information of the image.
Compared to rectangles, squares are a best method for com-
patibility and robustness. We have also conducted relevant
ablation experiments to confirm this. From the results, it can
be observed that the rectangular grid shape has a much lower
AP and other evaluation values than the square grid shape.
But we agree that better results can be achieved by refining
the grid number. The results are shown in Table 3.

Coordinate features The disadvantage of traditional CNN is
that the effect of coordinates cannot be considered in pixel
segmentation. Although convolutional kernels perform well
in handling local information, they do not work well in seg-
menting instance edges. Instead, we enhance the model’s
ability to perceive location by fusing coordinate features. The

Table 4 EEMask without fused coordinate features achieved 39.3 AP.
The segmentation result of EEMask with added coordinate features
improved significantly to 39.9 AP, which is 0.6 higher than the original
score. The experimental results show that fusing the coordinate features
twice does not continue to improve the scores

Times AP AP50 AP75

0 39.3 61.5 42.8

1 39.9 62.5 43.5

2 39.9 62.4 43.4

Table 5 Grid represents the grid layer, Pooling represents the pooling
layer, and Channel represents the edge-enhanced layer

Grid/Pooling Channel Time(ms) AP AP50 AP75

Pooling 86.4 38.3 60.4 41.9

Grid 86.0 38.5 60.6 42.0

Pooling � 86.9 39.6 62.1 43.3

Grid � 86.4 39.9 62.5 43.5

Table 6 Grid represents the grid layer, Pooling represents the pooling
layer, and Coordinate represents the coordinate features

Grid Pooling Coordinate Time(ms) AP AP50 AP75

� 85.1 39.3 61.5 42.8

� 84.9 39.3 61.4 42.8

� � 86.9 39.6 62.1 43.3

� � 86.4 39.9 62.5 43.5

fused coordinate features affect the final result by influencing
the region relevance.

We perform ablation experiments on the number of fused
coordinate features to test whether it affects the segmentation
performance. The results are shown in Table 4.

Grid layer and edge-enhanced layer In our model, we add a
grid layer to reduce the number of parameters and computa-
tions, and an edge-enhanced layer to improve the accuracy of
EEMask. The results of the ablation experiments are shown
in Table 5. The advantage of the grid layer over the pooling
layer is that it can be better integrated with the coordinate
features. The results of the ablation experiments comparing
the grid layer with the pooling layer are shown in Table 6.
In addition, we also performed experiments on the method
of generating each grid value, and the results are shown in
Table 7.

Mask branch We add the ablation experiments with mask
branch and without mask branch (using one convolutional
layer to produce the final mask by fusing the three fea-
ture maps). We compare EEMask with the classical instance
segmentation model Mask RCNN. The final experimental
results show that our mask branch works well. EEMask
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Table 7 Nearest represents nearest neighbor upsampling and bilinear
is bilinear interpolation

Nearest Bilinear AP AP50 AP75

� 39.7 62.3 43.4

� 39.9 62.5 43.5

Table 8 The effect of mask branching and convolution layers on the
results

Numbers AP APS APM APL

Mask R-CNN 37.1 16.9 39.9 53.5

EEMask+Conv 39.4 17.0 42.5 57.2

EEMask+Mask branch 39.9 17.2 43.8 58.8

Table 9 The effect of different loss functions on the results

Loss Function AP AP50 AP75

BCE 38.8 60.8 42.3

Focal Loss 39.1 61.3 42.6

Dice Loss 39.8 62.5 43.5

without mask branching also achieves a high score because
we establish the relevance between the grids. The semantic
information in grid-ROIs and grid-Classes is more obvi-
ous because we establish relevance between grids. The
detail information in the base mask feature maps is more
obvious because we add edge enhancement layers. CAM
combines the feature maps with different information and
finally achieves a high score. The results are shown inTable 8.

Loss functions Different loss functions also have an effect
on the results of the experiment. When considering the func-
tion to optimize the mask loss, we choose the commonly

used BCE(binary cross-entropy loss), FL(Focal Loss), and
DL(Dice Loss) for comparison.

In the calculation of the cross-entropy loss, the loss param-
eter is initially set to 10. In the Focal Loss, it is set to 25.
These three loss functions have different emphasis on sam-
ple processing. The cross-entropy loss checks each pixel and
compares the prediction result of each pixel class with its
One-Hot label. For instance, with different numbers of pix-
els, it does not perform well. Focal Loss divides pixels into
easy-to-learn and hard-to-learn, reduces the loss of easy-to-
learn samples, and focuses on difficult-to-learn samples.Dice
Loss views the problem in a “holistic” way, which measures
the loss refers to the Dice coefficient, automatically establish
the balance between foreground and background pixels. It
can be seen from Table 9 that Dice Loss has obvious advan-
tages compared to the other loss functions. The training effect
of Focal Loss is slightly better than BCE.

4.3 Experimental results

In our work, we use ResNet-50 and ResNet-101 as the back-
bone of the network on the experiments with the COCO
dataset and compare our results with state-of-the-art models
including two-stage and single-stage. The results demon-
strate the superiority of EEMask based on region relevance
and edge-enhanced.

We present the benchmark results for EEMask in Table 10.
The network based on ResNet-101 achieves a mask AP score
of 39.9, which is better thanmost advanced instance segmen-
tation methods, including BlendMask [3]. When ResNet-50
is adopted as the backbone, EEMask also achieves 38.1 AP,
which is comparable to the effect of some networks based on
ResNet-101.

Since EEMask does not rely on bounding boxes to detect
objects, it is able to fully recognize large-scale instances.
Moreover, due to the integration of global context, EEMask

Table 10 Compare the overall
performance of mainstream
methods on the COCO dataset

Method Backbone AP AP50 AP75 APS APM APL

Two-stage:

FCIS [8] Res-101 29.2 49.5 – 7.1 31.3 50.0

CenterMask [14] Hourglass-104 34.5 56.1 36.3 16.3 37.4 48.4

Mask R-CNN [20] Res-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

Single-stage:

YOLACT [5] Res-101-FPN 31.2 50.6 32.8 12.1 33.3 47.1

TensorMask [33] Res-101-FPN 37.2 59.3 39.2 17.4 39.6 51.2

PolarMask [22] Res-101-FPN 32.1 53.7 33.1 14.7 33.8 45.3

FCOS [31]+PointINS [28] Res-101-FPN 38.3 60.3 40.0 18.1 40.3 52.4

BlendMask [23] Res-101-FPN 38.4 60.7 41.3 18.2 41.5 53.3

EEMask(ours) Res-50-FPN 38.1 59.7 41.3 15.8 40.6 54.6

EEMask(ours) Res-101-FPN 39.9 62.5 43.5 17.2 43.8 58.8
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Mask R-CNNBlend MaskOursOurs

Mask R-CNNBlend MaskOursOurs

Fig. 6 The large image on the left shows the segmentation results of
our method. We further zoom in on our results and compare them with
the Blend Mask [3] and Mask R-CNN [14] on the right. The results

prove that our masks are of higher quality at the instance edges. Best
viewed in digital format with zoom

presents a great advantage for the segmentation of large-scale
objects, reaching 58.8 AP. Figure 6 shows part of the visu-
alization results of EEMask on the COCO test-dev. It can be
seen that the classes andmasks have achieved pretty accurate
predictions.

5 Conclusions

In this paper, we propose a new instance segmentation model
EEMask based on grid ROIs and edge-enhanced, which can
quickly and accurately predict the instance classes and seg-
ment the edges of the instances precisely. EEMask is very
efficient without adding additional convolutional layers, and
it is also easy to be ported to other models. And it is so robust
that even if the image is distorted, rotated, cropped and scaled,
EEMask is still effective. With the evaluation of benchmark
metrics, EEMask demonstrates promising results, achieving
a mask AP score of 39.9. Finally, we believe that EEMask
will contribute to advancing the field of instance segmenta-
tion.
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