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Abstract—This paper presents a novel technique for automatic
edge enhancement and detection in synthetic aperture radar
(SAR) images. The characteristics of SAR images justify the im-
portance of an edge enhancement step prior to edge detection.
Therefore, this paper presents a robust and unsupervised edge
enhancement algorithm based on a combination of wavelet co-
efficients at different scales. The performance of the method is
first tested on simulated images. Then, in order to complete the
automatic detection chain, among the different options for the
decision stage, the use of geodesic active contour is proposed.
The second part of this paper suggests the extraction of the
coastline in SAR images as a particular case of edge detection.
Hence, after highlighting its practical interest, the technique that
is theoretically presented in the first part of this paper is applied
to real scenarios. Finally, the chances of its operational capability
are assessed.

Index Terms—Edge detection, geodesic active contour, synthetic
aperture radar (SAR), wavelet transform.

I. INTRODUCTION

SATELLITE-BORNE synthetic aperture radars (SARs) al-

low the observation of broad expanses during the day as

well as during the night and as independent from weather

effects. These characteristics, added to a high-resolution capa-

bility, make them particularly helpful for the global observation

of the Earth for environmental and security issues. Neverthe-

less, at first sight, a SAR image which represents the complex

reflectivity map of a scene is not meaningful for an inexperi-

enced observer since, unlike optical images, the interpretation

of the radar images is not consistent with a common visual

perception. Furthermore, the direct application of conventional

image processing tools, conceived from an optical point of

view, usually gives suboptimum results on SAR data. Hence,

specific data analysis algorithms are still to be provided in order
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to assure unsupervised and robust means for the intensive and

operational exploitation of SAR data.

Robust edge detection techniques are essentially based on the

following two steps: edge enhancement and decision. Unlike

optical images, in SAR data, which is highly heterogeneous, a

robust edge enhancement phase is critical in providing accept-

able detection rates. This phase is usually performed through

techniques that are related to derivation, namely, simple differ-

ences, Sobel filter [1], Prewitt filter [2], morphological gradi-

ents, etc., possibly combined with smoothing. These methods

provide a limited efficiency in SAR applications due to the

presence of a speckle which is a multiplicative noiselike pattern

[3]. This paper aims at presenting a novel method for edge

enhancement in SAR images based on the exploitation of the

information provided by the wavelet coefficients.

In the past, several multiscale approaches, relying on the

analysis of the information contained in the wavelet domain,

have been proposed [4]–[7]. The method proposed in this

paper is based on a different way of managing multiscale data.

Moreover, it does not assume any statistical distribution of

the input data nor any particular type of edge, and it works

exclusively in the transformed domain. Further differences of

operation between these methods and the proposed technique

will be highlighted throughout the paper. In the scope of SAR

images, the study in [8] proposes an interesting review of

existing edge detection algorithms. A group of techniques is

based on the evaluation of the ratio of averages over a sliding

window [9]–[12]. These methods present a low computational

load, but they are highly dependent on the dimensions of the

window and are not robust in noisy scenes. Several algorithms

are based on the wavelet theory. For instance, the study in

[13] or [14] proposes an edge detector based on a threshold

operation of wavelet coefficients. Despite a low computational

cost and a good contrast, detected edges are too thick. The

approach proposed in this paper will tackle at the same time

the robustness and the precision issues of edge enhancement

and detection.

In Section II, we will discuss the overview of the charac-

teristics of SAR images and especially those that make their

processing through conventional methods inefficient. Then, the

use of a multiscale framework will be justified in Section III.

The multiscale algorithm proposed for edge enhancement in

SAR images will be presented in Section IV. The chain for an

unsupervised edge detection will be completed with a geodesic
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Fig. 1. Same coastal urban scene (Barcelona, Spain) as observed (a) by an
optical spaceborne sensor (source: GoogleEarth) and (b) by SAR (source:
ERS). (c) and (d) show the zoomed image of a small area.

active contour technique [30] in Section V. Finally, Section VI

will draw the conclusion of this paper.

II. SAR IMAGES

Complex radar data are proportional to the scattering prop-

erties of the observed scene at the corresponding microwave

frequency. Thus, a radar image consists of a mapping of elec-

tromagnetic measurements, characterized by a large dynamic

range that may even reach 40 dBs. Hence, it does not corre-

spond to a representation that is fully comprehensible through

a common visual perception. The image in Fig. 1(a) has been

acquired by the QuickBird optical spaceborne sensor. A human

observer, assisted by his experience of aerial pictures, may

easily identify a coastal urban scenario, clearly distinguishing

streets and buildings. Moreover, this interpretation is valid

when confronted of the overall scene, and it persists when

zooming into smaller fragments of it [see Fig. 1(c)]. In contrast,

the SAR intensity image [Fig. 1(b)] represents the same coastal

scenario, as imaged by a spaceborne SAR sensor that is onboard

the ERS-1 satellite. This type of data is hardly attractive for an

inexperienced user even if a specialist would be able to discrim-

inate not only the presence of buildings, streets, and squares

but also additional information such as, for example, quarters

occupied by higher buildings or a rough qualitative estimation

of a wind field in the sea surface. In addition, the SAR images

are even less explicit when considering a small portion of them

[see the detailed image in Fig. 1(d)] as, at small scales, the SAR

images reveal the presence of the speckle noise [15].

Specifically, a complex SAR image may be represented as

the convolution of the local complex reflectivity of the observed

area γ(τ, η) with the impulse response of the SAR system

u0(τ, η) [15]

u(τ, η) = γ(τ, η) ∗ u0(τ, η) (1)

where ∗ stands for the convolution and τ and η are the azimuth

and the range coordinates, respectively, employed to define the

coordinate system of a SAR image. The SAR system impulse

response u0(τ, η) may be interpreted as a bidimensional low-

pass filter [16], in such a way that the finite local support of

this filter determines the spatial resolution of the SAR system.

The spatial area embraced by this impulse response is known

as the resolution cell. Hence, the SAR data pixels are the low-

pass-filtered version of the complex local scattering properties

of the observed scene. These values may be quantitatively

interpreted, considering the use of electromagnetic scattering

models, making possible the retrieval of geo- and biophysical

information [17], [18].

The SAR imaging process indicated by (1) admits a simple

mathematical model that considers linearity and Born approxi-

mation, i.e., the imaged scene is modeled as a set of N individ-

ual scatterers whose scattered fields superpose linearly [19]

u(τ, η) =

N
∑

k=1

γk(τ, η) ∗ u0(τ, η) (2)

where γk(τ, η) is the complex reflectivity of the kth individual

scatterer within the resolution cell. The total imaged signal

may also be rewritten for an easier interpretation

u(τ, η) =
N

∑

k=1

akejφk (3)

where ak and φk are the amplitude and the phase of the

contribution of the kth scatterer. The interpretation of (3) must

be done according to N . When the resolution cell presents

a single individual scatterer or when the total returned wave

is dominated by one individual scatterer, the pixel is said to

represent a point or deterministic target. In this situation, the

complex value of the pixel must be interpreted in terms of the

physical properties and geometry of the imaged scatterer [20].

When the number of scatterers N increases, the complex value

of the pixel results from the coherent addition of N complex

quantities that may be interpreted as a bidimensional random

walk process. When N is low, the characterization of u(τ, η)
is complex [21]. Nevertheless, if N is large enough, assuming

that the individual scatterers are independent, that |ak| and

φk are also unrelated, and that the phases φk are uniformly

distributed in [−π, π), according to the central limit theorem,

it may be proved that the real and imaginary parts u(τ, η)
may be modeled as independent, zero-mean, and equally

distributed Gaussian random variables [3]. At this stage, the

classical random walk problem in the complex plane becomes

complete. Consequently, the intensity of a SAR image (i.e.,

I = |u(τ, η)|2) follows a negative exponential distribution

pI(I) =

{

1
σ e−

I

σ , I ≥ 0
0 otherwise

(4)

with the mean value and standard deviation both equal to σ. The

phase of u(τ, η) is uniformly distributed in [−π, π), and hence,

it contains no information concerning the imaged scene. Under

these hypotheses, the imaged target is said to be distributed,

where the value of a given pixel u(τ, η) represents a true
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Fig. 2. Example of the application of the Lee filter with a window size of 11 ×

11 pixels in a SAR image of the area of Barcelona. (a) Detail of a SAR image.
(b) Result of the Lee filter.

electromagnetic measurement. Nevertheless, the complexity

of (3) makes it only possible to interpret the value of the

pixel in statistical terms, characterizing it by its mean value σ.

Consequently, the intensity I(τ, η) may be written as

I = σn. (5)

In the following, the dependence on τ and η shall be assumed.

The useful information is determined by the parameter σ,

as it represents the radar cross section of the scene that is

normalized to the resolution cell area [15], whereas n is a

multiplicative noise component characterized by a negative

exponential distribution with a mean value that is equal to

one (i.e., pn(n) = e−n). The term n is referred to as speckle.

Despite being a true electromagnetic measurement, the speckle

must be considered as a noise component due to the complexity

associated with the scattering process.

The speckle represents one of the major drawbacks in SAR

image interpretation. Consequently, this component is usually

filtered in order to grant access to the useful information. In

terms of SAR image postprocessing, the speckle leads to over

segmentations, and filters are often employed to reduce its

effects. However, even if they are able to effectively smooth

the speckle, they inevitably affect the information, and its

application results in a degradation of the spatial resolution.

Among the speckle filters proposed in the literature, the most

relevant ones are the Lee filter [22], the Kuan filter [23], the

gamma filter [24], and the Frost filter [25]. In the scope of this

paper, the Lee filter will be employed later on for comparison

purposes. Fig. 2 shows the effect of Lee filtering through an

example of the application over a SAR image of a coastal area.

III. MULTISCALE FRAMEWORK FOR THE

EXPLOITATION OF SAR DATA

A. SAR Data Product Model

A multiscale framework is proposed for the exploitation of

SAR data since SAR images present themselves a multiscale

nature. For instance, as shown in the previous section, the

speckle is produced by the combination of scatterers within

a resolution cell, and thus, it can be considered as a pixel-

to-pixel, equivalently a small scale, spatial variability charac-

teristic. Moreover, a multiplicative model for the speckle has

been presented in (5). Nevertheless, the validity of this model is

restricted to homogeneous areas and results that are insufficient

in describing more complex scenarios that are present in true

SAR data as, for instance, textured areas. In these cases, it is

necessary to increase the complexity of the statistical model

describing the imaged area: variations that correspond to an

intrinsic texture in a nonhomogeneous area tend to be appre-

ciable at larger scales. The product model [26] formalizes this

multiresolution notion stating intensity I

I = μITF (6)

where μI is the mean intensity, T is the texture random variable

and the representation of the natural within-field spatial vari-

ability, and F corresponds to the speckle which is also a random

process. T and F are considered statistically independent. This

decomposition enables the identification of different ranges of

scales. As a consequence, in order to analyze properly the SAR

data, the consideration of a multiscale approach is the most

suitable.

This multiscale notion can be translated intuitively by con-

sidering the example that is shown in Fig. 1. The observa-

tion of a small area of pixels of a SAR image [Fig. 1(d)]

exhibits a noiselike pattern that is meaningless in appearance.

Nevertheless, even if the speckle affects all scales due to its

multiplicative nature, when confronted by a larger scene [see,

for example, Fig. 1(b)], an observer is able to manage it and

is able to distinguish the most relevant features, focusing its

multiscale observation capability to higher scales, i.e., lower

frequencies or larger areas. In Fig. 1(b), a coastal scene with

different characteristic elements (the sea, the land, the harbor,

and an urban area) can easily be discriminated.

B. Multiscale Analysis by Means of the Wavelet Transform

Among the different tools of multiscale signal processing,

this paper is focused on time-frequency analysis with wavelets

[27]. For the purpose of edge enhancement, it is useful to inter-

pret the wavelet transform as a multiscale differential operator.

More specifically, if a wavelet ψ has a compact support and n
vanishing moments, i.e.,

+∞
∫

−∞

tkψ(t) dt = 0, for 0 ≤ k < n (7)

there exists a function θ with a fast decay such that

ψ(t) = (−1)n dnθ(t)

dtn
. (8)

Then, the wavelet transform of a signal f can be expressed as

Wf(u, s) = sn dn

dun
(f ∗ θs)(u) (9)

where θs(t) = s−1/2θ(−t/s), u is the time or space coordinate,

and s is the scale. As a consequence, under these conditions,

the wavelet transform Wf(u, s) is an nth-order derivative of

an averaging of f , with θs over a domain proportional to s.
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When using wavelet tools for signal processing purposes, it

is critical to choose conveniently the type of transform as well

as the mother wavelet according to the nature of the signal

to be analyzed and according to the type of characteristic to

be highlighted. On the one hand, in the framework of this

paper, a discrete stationary wavelet transform (SWT) will be

employed. It is an inherently redundant scheme that is similar

to the discrete wavelet transform without subsampling [27].

As a consequence, if using a 1-D wavelet transform, two

frequency bands are obtained at each iteration. In the case

of a 2-D transform, it is four subbands. The first three bands

(i.e., {H,V,D}) refer to the horizontal, vertical, and diagonal

details of the image, respectively. The fourth band contains the

low-pass-filtered component of the image. In both cases, each

component has the same size as that of the input signal. For

instance, the algorithm for edge enhancement that is proposed

in this paper is based on the combination of wavelet coefficients

at different scales, and it is thus necessary for the coefficients to

be combined to generate an image of the same size as the input

image. This justifies the choice of the SWT.

On the other hand, in order to select the appropriate mother

wavelet, the size of its support both in time and in frequency, as

well as its number of vanishing moments, has to be taken into

account. In the application concerning this paper, it is important

to preserve as precisely as possible the location of the edge, and

hence, a short spatial support is preferred. Furthermore, it has

been seen previously that SAR images tend to be irregular, pre-

senting a lot of discontinuities due to the multiplicative nature

of the speckle. As a consequence, a large number of vanishing

moments are not necessary for their analysis. Moreover, the

proposed algorithm relies on enhancing edges, taking benefit of

the spatial coincidence of the local maxima at different scales

due to the presence of discontinuities: the maxima produced by

the presence of a frontier tend to persist over scales, resulting

in a higher interscale spatial correlation in the presence of an

edge than in the background [27]. In order to effectively have

this spatial co-occurrence, the mother wavelet used must exhibit

a linear phase and a small number of coefficients. For all of

these reasons, the Haar wavelet with two coefficients, a single

vanishing moment, and a linear phase has been selected for the

addressed application.

IV. EDGE ENHANCEMENT ALGORITHM

A. Theoretical Principles

The algorithm for edge enhancement in SAR images, which

is proposed in this paper, relies on the difference of behavior

along the wavelet scales of the speckle in front of the edges. On

the one hand, the discontinuities are highlighted by the wavelet

transform, and they tend to persist over scales (see Fig. 3).

On the other hand, the speckle is progressively smoothen,

and moreover, it is almost spatially uncorrelated between scales

(see Fig. 4).

The wavelet transform can be expressed as

Wf(u, s) =

∞
∫

−∞

f(x)
1√
s
ψ∗

(

x − u

s

)

dx. (10)

Fig. 3. (a) Simulated step signal and (b) its scale/space representation, ob-
tained through the SWT with a Haar mother wavelet.

The Haar wavelet can be expressed as

ψ(t) =

⎧

⎨

⎩

1, 0 ≤ t < 1
2

−1, 1
2
≤ t < 1

0, otherwise.

(11)

With this

Wf(u, s) =
1√
s

s/2+u
∫

u

f(x) dx − 1√
s

s+u
∫

s/2+u

f(x) dx. (12)

In the framework of SAR processing, it is useful to take

the logarithm of the original signal in order to manage the

multiplicative speckle [28]. Then, we can suppose

f(τ) = log (σ(τ)n(τ)) = log (σ(τ)) + log (n(τ)) (13)

where n stands for the speckle and σ stands for the useful in-

formation content of the radar signal. The speckle that is trans-

formed in this way is not only additive and signal independent,

but its probability density distribution is also approximately
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Fig. 4. (a) Simulated 1-D speckle signal and (b) its scale/space representation,
obtained through the SWT with a Haar mother wavelet.

Gaussian [28]. Moreover, the logarithm operation is helpful in

reducing the large dynamic range of SAR data. With this, (12)

turns into

Wf(u, s)=
1√
s

s/2+u
∫

u

[log (σ(x)) + log (n(x))] dx

− 1√
s

s+u
∫

s/2+u

[log (σ(x)) + log (n(x))] dx (14)

Wf(u, s)=
1√
s

⎡

⎢

⎣

s/2+u
∫

u

log (σ(x)) dx −
s+u
∫

s/2+u

log (σ(x)) dx

⎤

⎥

⎦

+
1√
s

⎡

⎢

⎣

s/2+u
∫

u

log (n(x)) dx

−
s+u
∫

s/2+u

log (n(x)) dx

⎤

⎥

⎦
. (15)

As a consequence, the wavelet transform may be seen as

the difference between the averaging of the curves over two

adjacent intervals of the same duration. If the function is

homogeneous along both intervals, the absolute value of the

difference will be low. On the contrary, if there is a discontinuity

in the trend of the curve, it will increase. Moreover, the maxi-

mum of this difference occurs when the discontinuity happens

just in the frontier between the intervals. Hence, in the wavelet

transform of the logarithm of the SAR signal, the influence of

the speckle is low since its contribution in each of the semi-

intervals counteracts with the other. More specifically, if we

assume the homogeneity of the speckle

s/2+u
∫

u

log (n(x)) dx ≈
s+u
∫

s/2+u

log (n(x)) dx. (16)

Hence

s/2+u
∫

u

log (n(x)) dx −
s+u
∫

s/2+u

log (n(x)) dx ≈ 0. (17)

It is worth noting that this value is especially low when the

interval is large since it permits having a sample that sufficiently

represents the stochastic speckle process. On the other hand,

the absolute value of the transform accounts for the difference

of homogeneity of the useful part of the speckle-free signal

between both subintervals.

When considering a single scale of the wavelet transform,

it may be observed in (15) that the size of the interval, directly

determined by the scale, influences the capability of the wavelet

transform both to localize the precise position of the edge and

to be unaffected by the speckle. For a large interval size, the

effect of the averaging is more important, and the presence of

the speckle is, thus, better cancelled through the counteraction

of both integrals. Nevertheless, in that case, the higher sensi-

tivity in the detection of the discontinuity is obtained at the

expense of a lower precision in the estimation of its location.

Since this tradeoff is inherent to a time-frequency decompo-

sition, it is unavoidable if a single scale is taken into account

(see Fig. 5).

We propose, instead, a combination of several scales in order

to take benefit of the good performance in the resolution of the

lower ones and in order to take benefit of the sensitivity to the

presence of discontinuities of the higher ones. The combination

is performed through an interscale pointwise product which

permits taking advantage simultaneously of the benefits of the

span of the considered scales. Low values of the speckle that

are achieved with intervals of large lengths are reduced through

the multiplication of the higher values present in higher scales.

Moreover, due to their spatial co-occurrence, the local maxima

that are due to a discontinuity contribute constructively when

multiplying the scales. Since the energy that is due to the

irregularity of the signal is mainly located at low scales, the

resolution of the fine scales is preserved. Furthermore, while

discontinuities that are due to the speckle do not persist, the

ones produced by the presence of a meaningful edge propagate
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Fig. 5. (a) Logarithm transform of a simulated 1-D step signal and (b) its
scale/space representation, obtained through the SWT with a Haar mother
wavelet.

over the scales. As a consequence, the interscale pointwise

product neglects the small isolated discontinuities. In [4], the

statistical characteristics of the multiscale product are analyzed.

It is shown that the additive Gaussian noise is uncorrelated be-

tween scales and that the resulting distribution of probabilities

is generally non-Gaussian heavy tailed.

Based on these observations, we propose the algorithm that

is shown in Fig. 6. At each iteration of the SWT in two

dimensions, three bandpass components are obtained, where

each one enhances the discontinuities in a different direction.

After normalizing each of these subbands to their maximum

and taking their absolute value, the pointwise maximum across

all of the three subbands is evaluated. A correct implementation

of the algorithm proposed here must also deal with situations

where a subband does not contain a vessel, as the proposed

normalization may lead to noise amplification. In order to deal

with this effect, an improved normalization step performs first

an evaluation of the relative level of the noise floor with respect

to the maximum in each wavelet subband. If a feature (i.e.,

Fig. 6. Flowchart of the proposed algorithm for edge enhancement.

a vessel) is present in a particular subband, the histogram

shall be heavy tailed, and the normalization is performed as

usual using the maximum of the corresponding subband. If

not, the normalization factor is a number of times (usually

three) the standard deviation in order to ensure low values

on this subband. Since, the components in the same scale

are uncorrelated, taking the maximum value pixel per pixel

permits avoiding as much as possible the speckle, which is

contrary to an intrascale combination with the sum such as

in [6]. The same operation is carried out with different scales.

Then, the different intermediate maxima previously calculated

are combined through pointwise multiplication: For each pixel,

the output value corresponds to the product of the values for

that pixel of the intermediate maxima matrices obtained in the

previous step.

If necessary and if some kind of a priori information is

available, the number of iterations can be adjusted accordingly.

Otherwise, in common situations, five iterations suffice to

provide satisfactory results regarding the usual range of the

resolutions of SAR images.
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Fig. 7. Logarithm transform of a simulated image constituted by a square
embedded in (left) a speckle matrix and (right) a horizontal cut.

Fig. 8. Pointwise maxima of the wavelet coefficients at two scales.
(a) Interscale pointwise maxima at the third scale of the SWT. (b) Interscale
pointwise maxima at the fifth scale of the SWT. (c) Horizontal cut of (a).
(d) Horizontal cut of (b).

B. Detailed Example of an Operation in a Simulated Image

A detailed example of the application of the algorithm pro-

posed for edge enhancement in a simple simulated image is

shown hereafter. The image is a speckle matrix n(τ, η) in which

a square with an increased intensity has been embedded (see

Fig. 7). The intensity in the square has been augmented through

multiplication with a constant value m

I(τ, η) = m · n(τ, η), with m ∈ R. (18)

In the example treated in this section, m = 5. The speckle

amplitude matrix has been generated as the modulus of a matrix

whose both real and imaginary parts are random elements,

normally distributed with zero mean and variance equal to 0.5.

A horizontal cut of the image has been included, which is par-

tially superimposed. From its observation, the inefficiency of

performing edge enhancement by means of gradient evaluation

can be deduced. Furthermore, the multiplicative nature of the

speckle is appreciable: The intensity of the noiselike pattern

increases with the intensity of the information.

At each iteration, the pointwise maxima of the absolute value

of the normalized subbands are evaluated. Two of these inter-

mediate components are shown in Fig. 8. We can observe the ef-

fect of the previously discussed tradeoff between resolution and

Fig. 9. Edge enhancement of the simulated image as obtained (a) with the
Sobel filter and (b) with the proposed approach. (c) Horizontal cut of (a).
(d) Horizontal cut of (b).

signal-to-noise ratio. In both images, the presence of the square

contours has been effectively enhanced. Nevertheless, at the

fifth scale, the contrast between the edge and the background

is noticeably higher than that obtained at the lower scale. On

the other way, frontiers appear blurred and thick in the higher

scale.

The multiscale pointwise product conciliates these two ben-

efits, aiming to overcome the time-frequency tradeoff that is

inherent to wavelet decomposition. Fig. 9 shows the result

of the application of the proposed approach on the simulated

image in Fig. 7, compared to the result obtained by means of

the Sobel filter. The contour of the square appears neatly in

the output of the proposed algorithm. The horizontal cut that

is superimposed to the output image reflects the enhancement

of the contrast achieved between the edge and the surrounding

background.

The square shape presented in the previous examples is

useful for illustrative purposes, but it may be thought as too

simple. Hence, a more complicated shape has been simulated

by drawing a coast by means of random +1/ − 1 displacements

along the vertical direction. The results are shown in Fig. 10.

C. Main Properties of the Algorithm

This section is devoted to the review of the main properties

of the algorithm proposed for automatic edge enhancement in

SAR images.

The first consideration concerns simplicity. The proposed

technique is simple, and its computational cost is low. It is an

iterative process just requiring the following two operations per

iteration: the application of a single iteration of the SWT and the

evaluation of the pointwise maxima. No previous radiometric

calibration is required [29] since this application is not con-

cerned with a precise retrieval of radar cross section values but

just with contrast in intensity. Moreover, no prefiltering step is

added, and the method is not dependent on the statistics of the

input image.
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One of the main interests of the algorithm is that it provides

a result directly in the wavelet domain. As a consequence,

contrary to conventional filters, it does not require any inversion

step, such as in [7], which is usually an awkward process, often

introducing artifacts when wavelet coefficients are processed.

On the other hand, working on the transformed domain im-

plies considering differential values rather than absolute ones.

Hence, the dependence on the overall power of the input image

is not so tight and problematic.

Nevertheless, at first sight, the most noticeable effect of the

proposed technique is the contrast achieved between edges and

background, which is, in fact, the main objective of any edge

enhancement algorithm. In order to evaluate the performance

of the proposed method, a contrast parameter CP will be

considered. It accounts for the contrast obtained in the result

between the intensity of the edge and that of the surrounding

area as a function of the contrast between the two regions

delimiting the edge in the input image. More specifically,

the contrast in the result is defined as the difference between the

mean value of the intensity of the pixels that correspond to the

edge Ie and that of the pixels that correspond to the background

Ib, divided by the mean of the background. Similarly, the

contrast between the regions in the input image is defined as the

difference between the mean intensity of the brightest region at

one side of the edge Ir1 and that of the other one Ir2, divided

by the mean of the latter

CP =

∣

∣

∣

∣

∣

Ie−Ib

Ib

Ir1−Ir2

Ir2

∣

∣

∣

∣

∣

. (19)

The graph in Fig. 11 shows the evolution of the CP parame-

ter for the simulated images as a function of the constant multi-

plicative value m [see (18)]. It can be deduced that the gain in

contrast can be considered as having a linear behavior. The CP
parameter cannot be estimated reliably in nonsimulated images.

Nevertheless, just as an example, for quantitative comparison

purposes, in the simulated situation shown in Fig. 9, the CP
that is obtained with the Sobel algorithm after the application

of the Lee filter is 1.5, while the one reached by the proposed

technique is 250.

D. Application to Coastline Enhancement in SAR Images

In the framework of this paper, the proposed method has been

essentially employed for automatic coastline detection in SAR

images. A set of SAR images has been taken into consideration

for validation purposes. RADARSAT, ENVISAT, and ERS 1

data with different characteristics (acquisition mode and reso-

lution) have been tested. They correspond to maritime scenarios

in which the main objective is to enhance the shoreline.

The interest of performing an automatic extraction of the

coastline from remote-sensing data is meaningful. It is some-

times challenging to obtain a precise map of the coastline in

particular regions and circumstances with other conventional

tools. Moreover, the coastline is subject to a temporal evolution:

slow and natural due to erosion, abrupt and natural due to

an environmental disaster such as a tsunami, and abrupt and

artificial due to a man-made alteration of the coastline. The

Fig. 10. Edge enhancement of the simulated image in (a). (b) Result of the
application of the Sobel filter. (c) Result of the application of the proposed
approach.

monitoring of the coast provides useful information about the

behavior of the ocean currents or a wide variety of patterns

related to climate change. From an economical point of view,

for coastal management and planning, it is crucial to monitor
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Fig. 11. Contrast enhancement as a function of the input contrast.

the zones that are subject to long-term erosion or to evaluate

the affected zones in case of a natural disaster, through the

evaluation of the deformations in the coastline. Furthermore,

the automatic extraction of the coastline in remote-sensing

images is extremely useful as a segmentation tool in other

applications. For example, when performing automatic ship

detection, a previous land mask step has to be included in

any algorithm. It consists of eliminating the land areas, which

have to be neglected when looking for vessels. Due to the

speckle, automatic land masking in SAR images is an awkward

process. Up to now, it is usually performed by using auxil-

iary external data such as maps available from other sources.

Nevertheless, on the one hand, geopositioning of the satellite

image has a limited accuracy, and this can lead to image

shifts in the azimuth direction, together with a consequent

displacement with respect to the land mask. On the other hand,

available land masks are of limited accuracy, and there are

problems with small islands and coastal man-made construc-

tions. Hence, to overcome this issue, it would be extremely

beneficial to perform land mask directly on the remote-sensing

image through an efficient technique of segmentation. General

difficulties associated with image processing in SAR data have

already been overviewed. In the particular framework of the

automatic extraction of the coastline, several obstacles have

to be considered. The most remarkable one is the diversity of

the images. In some images, the energy that is backscattered

by the land is higher than that returned by the sea surface,

and thus, land areas tend to appear brighter than the ocean

ones. Nevertheless, this situation is reverted in other cases,

even between two acquisitions that belong to the same area of

observation. Moreover, nonstationarity, both in time and space,

of the multiple involved processes often results in images that

exhibit, at different areas, opposite situations: a sea surface

that is brighter than the inland zone and vice versa. Even in

some situations, there is absolutely no contrast between regions

that are to be segmented. As a consequence, a detection that is

exclusively based on the intensity value is not viable.

The test set is composed of neat situations (homogeneous,

with a considerable contrast between the land and the sea,

together with the awkward ones, and heterogeneous, with the

land and sea areas almost undistinguishable). For comparison

purposes, the same examples have been processed with the

application of a Sobel filter after smoothing with a Lee filter

with a window size of 11 × 11 pixels and after applying the

homomorphic transform in order to transform the multiplicative

nature of the speckle noise in the additive one. This window size

has been chosen since it is empirically proven to be well suited

for the characteristics of the data considered. Some illustrative

results are shown in Fig. 12.

The first observation concerns computational efficiency. Ap-

plying a Lee filter prior to a Sobel method is drastically more

time consuming than performing edge enhancement with the

proposed technique. For example, for a 1024 × 1024 input ma-

trix, the first option lasts four times more than the second one.

On the other hand, even after filtering with the Lee method,

the Sobel operator, which is very sensitive to heterogeneities,

is affected by the speckle. Hence, edges appear even in homo-

geneous sea areas. In contrast, if the regions to be segmented

are sufficiently homogeneous, the proposed multiscale tech-

nique enhances efficiently the frontier between them, with a

large contrast between the coastline and the background: The

background is considered to be composed of both water and

inland areas. Moreover, the shoreline appears sufficiently thin

because the proposed algorithm degrades the resolution just

slightly when compared to other methods of smoothing. In

fact, as shown in Section IV, the combination of the scales

preserves the good localization capabilities of the finest scales,

and since the mother wavelet selected for this application is the

Haar function with two coefficients, the technique is affected

by the loss of the resolution due to the averaging of only

two pixels. Additionally, in similar homogeneous scenarios, the

operation of the algorithm is benefited if the contrast between

the regions is high, since the edge is more pronounced and

easily detectable.

In nonhomogeneous scenes, the proposed technique is sensi-

tive to edges produced by structures other than the coastline

such as, for example, patterns that are due to topography,

rivers, or urban areas. Nevertheless, it is worth noting that these

enhanced edges are to be understood as effective ones and not

as artifacts that are introduced by the algorithm.

V. EDGE DETECTION WITH THE

GEODESIC ACTIVE CONTOUR

A. Theoretical Principles

Once the transition estimation has been completed, a fi-

nal decision step is required to build an unsupervised edge

detection algorithm. It consists of the segmentation of the

input image in the following two classes: edges and no edges.

The following two options are to be considered: binariza-

tion through thresholding and use of an active contour. The

straightforward strategy for segmentation is gradient binariza-

tion through thresholding. This option is usually not robust

for several reasons. Mainly, the threshold is difficult to define

automatically. Furthermore, noise and artifacts may appear, and

contours may not be closed. As an alternative to thresholding,

the use of active contours, even if more computationally costly,
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Fig. 12. Examples of the operation of the multiscale algorithm proposed for edge enhancement in SAR images, compared to Lee + Sobel edge enhancement.
(Left column) Input SAR images. (a) ENVISAT ASAR (IM mode) acquired on July 24, 2003. (d) ERS1 (PRI image) acquired on July 19, 1993. (g) RADARSAT
1 acquired on September 26, 2003. (Middle column) Result of the application of the Sobel edge enhancement algorithm after Lee filtering with a window size of
11 × 11 pixels. (Right column) Result of the proposed algorithm for edge enhancement.

is preferred. Essentially, a geodesic active contour or snake

consists of forcing the evolution of a close curve toward the

points of high gradients. More specifically, let the geodesic

length (GL) be defined as GL =
∮

g(∇x) ds, where g is a

function of ∇x, which is the gradient estimated through the

edge enhancement algorithm

g(∇x) =
1

1 + ‖∇x‖p
, with p ∈ R. (20)

In the scope of the examples studied in this paper, p is set to one.

Hence, the objective of the snake is to find the curve C(s) such

that GL is minimum. This objective function can be minimized

by the steepest descent. If we consider C to be a function of

time t, the Euler–Lagrange equations yield the curve evolution

equation [30]

∂C

∂t
= gκ �N − 〈∇g, �N〉 �N (21)

where κ is the Euclidean curvature, �N is the unit inward

normal, 〈., .〉 stands for the scalar product, and ∇ stands for

the gradient operator. Nevertheless, from the point of view of

practical implementation, it is worth using level-set methods.

In that case, instead of evolving the 1-D curve C, we evolve a

2-D surface u. C is then the zero level set of u, and u is said to

be an implicit representation of C. It is shown in [31] that the

evolution of u can be expressed as

∂u

∂t
= g(κ + c)‖∇u‖ +

〈

∇g,
∇u

‖∇u‖

〉

‖∇u‖ (22)

where c is a constant erosion parameter and κ is defined as

κ = div

( ∇u

‖∇u‖

)

(23)

where div is the divergence operation. Hence, the minimization

is done by initially setting a default surface u0 (i.e., u at t = 0)

and then by actualizing it iteration after iteration (each iteration

represents a differential of time dt), according to

ut(x, y) = ut−1(x, y) + dt · β (24)

where

β = g(x, y) · (κ + c)‖∇u‖ +

〈

∇g,
∇u

‖∇u‖

〉

‖∇u‖. (25)
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Fig. 13. Flowchart of the geodesic active contour.

Fig. 13 summarizes the different steps for the implementation

of the geodesic active contour.

In this paper, the default surface u0 is calculated as the

distance of every point of the surface to the frame of the image.

Hence, the curve that is constituted by u0 evaluated at level 0

is the external contour of the input image. It must be noted

that this default initial contour often requires a large number of

iterations before convergence to the targeted edge. Therefore, in

order to save the computational cost, the initial contour should

be as close as possible to the final result. An easy way to handle

this issue is to consider the highest scales that provide a very

rough estimation of the contour. Taking this rough contour as

the initial contour of the geodesic active contour considerably

enhances the computational performance of the algorithm.

B. Results

1) Definition of the Quality Parameters: The estimation of

the goodness of the segmentation is difficult and application

dependent. Probably due to this fact, it is worth noting here the

lack in the literature of a consensus of the quality parameters

concerning edge detection. As a consequence, the compari-

son between different techniques usually relies exclusively on

mere appreciation factors. Nonetheless, in order to provide a

quantitative estimation of the goodness of the approach, three

parameters are proposed and defined in this section.

The first parameter concerns the capability of the localization

of the algorithm, which is the closeness of the detected edge to

the location of the real edge in the input image. Mathematically,

there are different parameters measuring the distance between

curves. The most extended one is the Hausdorff distance. The

Hausdorff distance H(A,B) between two sets of points on two

curves A and B is the maximum over each element a of A
of the minimum over each element b of B of the distance d,

according to the underlying metric in the plane, from a to b.

More concisely

H(A,B) = max
a∈A

(

min
b∈B

(d(a, b))

)

. (26)

By taking into account the characteristics of the application,

the objective here is to provide a measure of the error, which

is the distance between the real and retrieved edges. Hence, an

appropriate measure of the error in a discrete context can be

defined as

error =
1

card(A)

∑

a∈A

min
b∈B

(d(a, b)) . (27)

From a practical point of view, the evaluation of this parameter

has been implemented as follows. For every single point of

the longest curve, its distance to the closest point in the other

curve is computed. Then, the mean value of this set of distances

constitutes the error. This error makes sense only if the edge

is effectively detected but misplaced. Two additional rates are

estimated in order to account for misdetections.

Additionally, the following two values are estimated: the

probability of false positives pFP and the probability of false

negatives pFN. The probability of false negatives measures the

quantity of elements that belong to class edge and that are

misclassified as no edge, and similarly, the probability of false

positives reflects the quantity of individuals that are classified

as edge and that are contrarily being part of no edge. Let us

define the following four classes: Einput confirmed edges in the

input image, Eoutput detected edges (i.e., “edges in the output

image”), NEinput confirmed no edges in the input image,

and NEoutput detected no edges (i.e., no edges in the output

image). With this

pFP =
card{Eoutput ∩ NEinput}

card{Eoutput}

pFN =
card{Einput ∩ NEoutput}

card{Einput}
. (28)

It is worth noting that these values make sense only if an ex-

isting edge is not detected or if the algorithm finds nonexisting

edges. However, the rates pFP and pFN are to be understood as
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Fig. 14. Examples of the detection of the overall chain of coastline extraction on simulated images. (a) m = 2.5, error = 0.1125, pFP = 0, and pFN = 0.
(b) m = 1.5, error = 0.25, pFP = 0, and pFN = 0. (c) m = 1.2, error = 1.1625, pFP = 0.06, and pFN = 0.1.

Fig. 15. Examples of the detection of the overall chain of coastline extraction on SAR images.

complementary to the error parameter defined previously: If an

existing edge is detected but misplaced, pFP is considered null.

These quality parameters can be estimated precisely in simple

simulated images, but their evaluation is usually unfeasible in

real images with no available ground truth.

2) Analysis of the Results: This section presents the exam-

ples of the results of the whole chain of edge detection consti-

tuted by the edge enhancement algorithm before the application

of a geodesic active contour. An example of the operation

on simulated images will be first considered. The images are

synthesized, as previously specified, as speckle matrices with

squares embedded. Several examples are shown in Fig. 14. The

corresponding parameters as well as the evaluated errors are

included in the figure. Fig. 15 shows three examples of coast

detection by means of the method proposed in this paper in the

SAR images introduced in Fig. 12. Since the quality parameters

discussed in the previous section are not possible to evaluate

in real scenarios, a good way to have a visual evaluation of

the goodness of the method is to superimpose the shoreline

extracted to the input SAR image.

The observation of the results obtained in SAR images con-

firms a good match of the detected coastline to the shoreline that

is visually inferred. It is worth noting that the red line has been

highlighted for representation purposes, but the result is one

pixel wide. Moreover, the correct performance of the method is

also observed despite the diversity of scenarios.

VI. CONCLUSION

In this paper, a multiscale algorithm for the unsupervised ex-

traction of the most significant edges has been presented. It has

been designed specifically to deal with speckled SAR images.

The method proposes a robust edge enhancement directly in

the wavelet transformed domain, followed by a decision step

based on the application of a geodesic active contour algorithm.

The edge enhancement phase has been proven to be critical in

heterogeneous SAR images, and the original method proposed

in this paper constitutes a good solution that is used to deal with

this type of data. It does not require any type of prefiltering

of data, and it is independent of the statistics of the input

image. The adaptation capability of the method to very diverse

scenarios with no need of a priori knowledge or settings is

a useful feature in view of its integration in an unsupervised

chain.

After testing the performance of the technique proposed in

the simulated images, it has been applied to real data in the

framework of coastline extraction from SAR images. It has

been proven to be robust and effective for this application. The

extracted coastline, which is an entirely connected line of one

pixel wide, matches accurately the targeted frontier. Moreover,

this method could be effectively used for segmentation pur-

poses in SAR data.
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