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Abstract—Treemap is a visualization method for hierarchi-
cal structures in which nodes are drawn as rectangles and
arranged in a nested style. Several variations of Treemap
have been developed to represent different types of data.
In this paper, we propose an Edge Equalized Treemap, a
representation that embeds visual data such as a bar chart
in leaf rectangles. This representation is characterized by leaf
rectangles of equal widths. Because their widths are equal,
the scale intervals of charts in a leaf rectangle can be unified,
meaning that we can compare charts simply by looking at them.
We compare the Edge Equalized Treemap with existing layout
methods, and demonstrate the usefulness of our approach.
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Edges, Charts with Orthogonal Coordinate Axes

I. I NTRODUCTION

Treemap [1] is a visualization method in which nodes
are drawn as rectangles and arranged in a nested style.
Originally, Treemaps represented trees where each leaf node
had only one weight. However, there are trees in which leaf
nodes have multiple data and time-series data. In order to
draw such trees, many representations derived from Treemap
have been proposed.

We focus on a representation that embeds charts repre-
senting time-series data, such as bar charts or area charts,
in leaf rectangles [2]. When using existing methods, it is
difficult to unify the scale intervals of charts in the entire
Treemap. As a result, it is confusing and thus difficult to
compare different charts.

Therefore, we take into consideration the ease of com-
parison between charts, and develop a representation in
which the widths of leaf rectangles are the same. In this
representation, because the charts have the same width, the
scale intervals of the charts’ horizontal axes can be unified.
Furthermore, to adapt the heights to the weights, it is easy
to unify the scale intervals of the vertical axes.

II. RELATED WORK

Many visualization methods for hierarchical structures
exist; among these, Treemap is one of the most widely
used methods. Treemap represents hierarchies as divisions
of space. Each node is represented as a rectangle, and child

nodes are placed in their parent node. Treemaps can repre-
sent large-scale hierarchies in a given area of visualization.

Various representations have been derived from Treemap.
Squarified [3] and Circular [4] Treemaps are characterized
by the shape of their nodes. A Squarified Treemap is a
representation where the nodes’ shape is as close as possible
to a square, and a Circular Treemap is a representation where
nodes are drawn as circles instead of rectangles.

Ordered [5] and Spatially Ordered [6] Treemaps are
characterized by the positions of their nodes. An Ordered
Treemap targets ordered hierarchies, and its representation
maintains this order. A Spatially Ordered Treemap is a
representation targeting hierarchies with geographical lo-
cation information, maintaining the location relationships
among nodes. Other representations exist, such as a Cluster
Treemap [7], which is a representation where the distance
between data is reflected by relative positions in Treemap.

In the above-mentioned representations, the widths,
heights, or radii of leaf nodes are not unified. Therefore,
when we embed charts in leaf rectangles, it is difficult to
unify the scale intervals of charts across the entire Treemap.

The original Treemap divides the drawing area recur-
sively. Therefore, there are no blanks, but the widths and
heights of rectangles vary. For some data, it would be
helpful to unify the shapes of rectangles, and some such
representations have been proposed. Quantum Treemaps [8]
represent nodes as rectangles that are proportional to the
object size; the aspect ratio is suitable for the representa-
tion of important photographs. HeiankyoView [9] represents
hierarchical structures through containment relationships.

Schreck et al. [10] developed a method of representing
branch nodes as a grid, based on Quantum Treemaps.
Because the widths and heights of leaf rectangles are all
the same in this representation, it is easy to unify the scale
intervals of the horizontal axes when we embed charts.

The three above-mentioned representations have rectan-
gles whose shapes are the same, and the area of these
rectangles cannot be adjusted according to the data drawn
on the chart. When a chart handles data with a very large
value, the scale interval of the numerical value axis becomes
smaller. If we unify the scale intervals in existing variations



Figure 1. Squarified Treemap for rainfall data Figure 2. Edge Equalized Treemap for rainfall data

of Treemap, a chart with a smaller amount of data cannot
use its assigned area efficiently.

III. E ASE OF COMPARISON BETWEEN CHARTS

We consider embedding charts with orthogonal coordinate
axes into a Treemap. Here, we suppose that charts are drawn
on a two-dimensional plane, and have two axes perpendic-
ular to each other; two examples are bar charts and area
charts. If we wish to represent time-series data, many charts
will use the horizontal axis for time. When two or more
charts have the same time axis, the scale intervals of their
axes should be unified for ease of comparison. Therefore,
we aim to unify the scale intervals of the horizontal axes
when we embed the charts into Treemap.

A. Embedding charts into Treemap

Figure 1 shows a Squarified Treemap with embedded
bar charts. This Treemap represents the annual rainfall of
Honshu1 (the main island), Japan. Each rectangular area
represents the rainfall in one prefecture, and the thick
borders represent individual regions. We can understand the
annual rainfall of a prefecture by observing the area of its
corresponding rectangle. In addition, by studying the bar
chart embedded in each rectangle, we can appreciate the
monthly rainfall in a prefecture. The horizontal axis of the
bar chart expresses time, and the vertical axis describes
the amount of rainfall. Figure 2 represents the same data
set using our proposed Edge Equalized Treemap. We will
discuss the detailed construction of this Treemap in later
sections.

1) Problems with width variation:As we can see in
Figure 1, the leaf rectangles have various widths. Moreover,
different charts have different bar widths. Therefore, if the
scale interval of the vertical axis is unified in Treemap,
we cannot elicit quantitative values from the areas of the

1There are 47 prefectures in Japan. These prefectures compose eight
regions, five of which are in Honshu.

bars. On the other hand, if we want to describe the same
value by the same area, it is not easy to unify the scale
intervals of the vertical axes. Making a value in the chart
correspond to both height and area is not possible, and may
cause misunderstandings.

2) Margin at the top of the rectangle:To compare
multiple charts, the scale intervals of their axes should be
unified.

The leaf rectangles in Figure 1 have various heights. In
particular, the maximum value of a vertical axis is extremely
large, necessitating a bar chart drawn in a very tall rectangle.
Therefore, unused spaces remain at the top of the leaf
rectangles, and thus the drawing area is not used efficiently.

B. Requirements for embedding charts

We consider two requirements for embedding charts into
Treemap. The first is the unification of the scale intervals of
charts, and the second is a change in the size of the drawing
area for each chart.

1) Unification of axes and their scale intervals:In gen-
eral, when we compare charts that describe the same kind of
data, we should assign the same variable to the same axis.
For example, when we compare monthly precipitation charts
of region A and region B, we should assign the months to
the horizontal axis and the amount of rainfall to the vertical
axis in both charts. In addition, the scale intervals of the
corresponding axes should be the same. If the scale interval
is different for each chart, it is not easy to compare the
values correctly.

2) Area efficiency for embedding charts:We consider that
cutting the upper part of a chart whose maximum value is
small does not affect the ease of comparison. Therefore,
when we embed charts into Treemaps where the filling rate
is important, we should change the drawing area according
to the maximum value in the chart. For example, it is
appropriate to embed a chart whose maximum value is large
into an area whose height is large, and vice versa for a chart
whose maximum value is small.



IV. EDGE EQUALIZED TREEMAP

A. Unification of widths

We have decided to unify the widths of leaf rectangles
and use their height to correspond to the weight of the leaf
node (Figure 3). There are two reasons for our choice. First,
we can unify the scale intervals of horizontal axes across
charts with embedded leaf rectangles. For example, if the
leaf nodes have the same number of data, we can unify the
bar widths in two or more charts. Second, we can prevent
extremely large margins if we unify the scale intervals of the
vertical axes. For example, we can set a suitable bar height
by adapting it to the weight of a leaf node.

While we aim to unify the widths of the leaf rectangles,
we can also unify their heights by swapping the width and
height.

Figure 3. The concept of an Edge Equalized Treemap

B. Allowing blanks

We decided not to limit the existence of blank space
in Treemaps. We take into account the aspect ratio as
considered in the Squarified Treemap, along with the filling
rate.

If we want to unify the widths of leaf rectangles by
partitioning the space, we can achieve this using horizontal
lines as partitions. By adopting this policy, we maintain the
filling rate at 1 and unify the widths of the leaf rectangles.
In this case, however, the aspect ratio of each leaf rectangle
tends to be low. When we consider that charts are embedded
into leaf rectangles, rectangles with extremely low aspect
ratios are not desirable.

Therefore, we allow blank space, and we introduce the
criterion of the filling rate. We believe it is necessary to
achieve a balance between the filling rate and the aspect
ratio.

C. Setting of constraints

Treemaps have the following constraints:

• A node is described as a rectangle.
• A parent–child relationship is placed in a nested rect-

angle.
• Rectangles are placed so that they do not overlap each

other.

We developed a new Treemap that also includes the
following constraints:

• The widths of leaf rectangles are unified.
• The height of a leaf rectangle is proportional to the

weight of a leaf node.
• The filling rate and aspect ratio are as close to 1 as

possible.

Here, the filling rate is the sum of the areas of all leaf
rectangles divided by the area of the whole Treemap. The
aspect ratio is the length of the short side of the rectangle
divided by the length of the long side of the rectangle. These
are formulated as follows.

Let T be a rooted tree in which each root is expressed
by r and a set of leaf nodes isL. The area of nodev is
expressed bya(v). The width of a rectangle isw(v), and
the height of a rectangle ish(v).

The filling ratef is given by equation (1). The output is
a positive number less than or equal to 1.

f =
1

a(r)

∑
l∈L

a(l) (1)

The aspect ratiog(l) of node l is expressed by equa-
tion (2), and the average aspect ratio of all leaf rectangles is
g. g(l) and g are both positive numbers less than or equal
to 1.

g(l) = min(
h(v)

w(v)
,
w(v)

h(v)
) (2)

g =
1

|L|
∑
l∈L

g(l) (3)

In order to balance the average filling rate and the aspect
ratio, we aim to increases, which is defined in equation (4).
Here,w1 andw2 represent the weights applied tof andg,
respectively. It is possible to adjust the balance of the filling
rate and aspect ratio by changingw1 andw2.

s = w1 · f + w2 · g (4)

V. DETERMINATION OF THE LAYOUT

If we unify the widths of the rectangles in each level of the
hierarchy, the top-down division of space can be used for as
well as many other variations of the Treemap. However, one
of our constraints states that we must unify the widths of all
leaf nodes, regardless of the depth. In addition, we only wish
to unify the widths of leaf nodes; we do not want to unify
the widths of branch nodes. Therefore, we consider the top-
down partitioning of space to be unsuited to the achievement
of our goal.



A. Rough flow of the process

We examine bottom-up methods of positioning the rect-
angles, as described in the following.

First, we prepare rectangles corresponding to leaf nodes
with equal widths. The height of the rectangle is proportional
to the weight of the leaf node. When the rectangles of all
child nodes have been determined, we place them into as
narrow a rectangular area as possible. We repeat this process
bottom-up, from the leaf nodes to the root node.

Using this method, we cannot know in advance the width
and height of the rectangles. Therefore, after the rectangle
corresponding to the root node is decided, we adjust the
horizontal and vertical scale to fit the drawing area.

B. Flow of the process including trial and error and evalu-
ation

In the process described in Section V-A, there are two
degrees of freedom.

(1) How do we determine the height of the rectangle
corresponding to the leaf node of a certain width?

(2) How do we fit child nodes into the rectangular area
of each branch node?

In fact, (1) does not influence the resulting layout by
adjusting the scale to fit the drawing area. We want to find
a good layout based on the aesthetic criteria that we set
previously (aspect ratio and filling rate). However, based di-
rectly on the aesthetic criteria, it is difficult to determine the
rectangle into which we should place the child rectangles.
There are two reasons behind this statement. If the rectangle
of the root node is not determined, we cannot calculate the
filling rate. In addition, if the scale of the Treemap is not
adjusted to the drawing area, we cannot evaluate the aspect
ratio. Because of this, we decide to parameterize the filling
of the rectangle and use a trial and error method. We will
arrange the rectangles and evaluate the results of each layout
while changing the parameters. Using this process, we will
be able to obtain a better layout.

C. Concrete flow of the process

We show the flow of the process in Figure 4. First, we
take as input a weighted hierarchical structure for each leaf
node. The width and height of the leaf rectangles can then be
determined according to their weights. Second, we repeat the
process of filling the rectangles, from the leaf nodes to the
root node. After the layout of all the rectangles is decided,
we adjust the size of the Treemap to the drawing area and
evaluate the result of the layout with an evaluation function.
We then change a parameter and go back to the process of
filling the rectangles. By repeating the above process, we
are able to find the layout that scores best in the evaluation.

Figure 4. Flow of the process

1) Determination of rectangles for leaf nodes:We decide
the width and height of a leaf rectangle according to the
weight of a leaf node. The width of a leaf rectangle is 1
and the height is proportional to the weight. When these
rectangles are filled, their heights are variable. Therefore,
the proportional constant for determining the height has no
meaning; it is important that the proportional constants are
the same across all leaf nodes.

These widths and heights are provisional until the layout
of all nodes is decided. They are changed when the Treemap
is adjusted to the size of the drawing area.

2) Placing rectangles:We treat the problem of fitting
child nodes into the rectangular area of branch nodes as a
Strip Packing Problem. The Strip Packing Problem describes
the fitting of rectangles into a fixed-width rectangular space
in order to minimize the vertical length. We swap the
horizontal and vertical in this problem, and decide to place
the child node rectangles from left to right in the fixed-height
rectangle.

In our problem, the height of the rectangle into which the
child nodes will be placed is unknown. Therefore, we fit
the rectangles of the child nodes while slowly adjusting the
height parameter.

We use two algorithms as solutions to the Strip Packing
Problem.

One of them is the Next-Fit Algorithm [11], which is a
solution to the Bin Packing Problem (Figure 5). If the order
of placement of the rectangles has been decided, the Next-
Fit Algorithm offers a high-speed layout solution. In this
algorithm, rectangles are filled from the upper left to the
lower right of the Treemap. The algorithm places rectangles
from top to bottom; if it cannot place a rectangle to the
bottom, it draws a line on the right and continues placing
rectangles on the line from the top. By repeatedly changing
the placing order, we can adopt the best result.

We also use the Stack Algorithm (Figure 6). This assumes
that the rectangle widths are equal. This algorithm sorts
rectangles in descending order; the rectangles are then placed
in order, from the smallest rectangle at the top to the largest
rectangle. Because this algorithm does not depend on the



placing order of the rectangles, it can be faster than the
Next-Fit Algorithm.

Figure 5. Placement using the
Next-Fit Algorithm

Figure 6. Placement using the
Stack Algorithm

3) Determination of rectangles for branch nodes:The
dimensions of each branch node are determined by the result
of the placement of child nodes. That is, the minimized
rectangle that surrounds the child node rectangles gives the
branch node rectangle.

This algorithm uses a bottom-up approach to place rect-
angles. Therefore, when the rectangles of brother nodes are
constructed and placed, they determine the rectangle of their
parent node. We place rectangles by repeating this process.

4) Adjusting the drawing area:After all nodes are placed,
the size of the Treemap is adjusted. We treat our problem
as a nested Strip Packing Problem. Because our approach is
based on working from the inner nested part, it is difficult
to determine the size of the outermost rectangle. For this
reason, we adjust the size of the Treemap to the drawing
area after the layout has been decided.

5) Evaluation of the layout:Using the evaluation func-
tion s defined in equation (4), we evaluate the resulting
layout, with a higher value ofs denoting a better layout.
We compare the result to the previous highest value, and
save the better layout as the best result.

6) Changing the height parameter:In order to get a better
result, we reconstruct the layout after changing the height
parameter. When we place rectangles, we need to set the
maximum height value that can be stacked by each branch
node. This parameter influences the result of the layout.
Therefore, after evaluating each result, we change the height
parameter and position the rectangles again. The minimum
value of this parameter is chosen to be the height of the
tallest rectangle of the child nodes in each branch node, and
the maximum value is chosen to be the sum of the heights of
the child node rectangles in each branch nodes. The variation
in the height parameter for each iteration is the height of the
shortest child node rectangle in each branch node.

VI. U SE OF THEEDGE EQUALIZED TREEMAP

We now demonstrate the use of our method by drawing
a hierarchical structure. Using an Edge Equalized Treemap,
we embed bar charts into each leaf rectangle, and unify the
scale intervals of the value axis (vertical axis) in Treemap.

Our Edge Equalized Treemap shows rainfall data for
different prefectures. This data is organized in a hierarchy,

with Honshu, Japan as the root node; the child nodes show
regions, and their child nodes show prefectures (these are
leaf nodes). Leaf nodes show the values of monthly rainfall,
and use annual rainfall as their weights.

Figure 2 shows the execution result. The area of each
rectangle represents the annual rainfall of each prefecture.
A bar chart represents monthly rainfall, with the horizontal
axis denoting the month and the vertical axis showing the
amount of rainfall.

VII. D ISCUSSION

We compared an existing representation to our Edge
Equalized Treemap and performed an evaluation. We rep-
resented the annual rainfall data in Honshu, Japan, using
a Squarified Treemap, as can be seen in Section III-A.
We represented the same data using an Edge Equalized
Treemap in Section VI. We compared and evaluated the two
representations.

A. Various widths

When using a Squarified Treemap, the leaf rectangles have
various widths, such that the widths of the bar charts cannot
be unified. Because of this, the values in the bar chart cannot
correspond to both the height and the area of the bar. In
other words, we cannot accurately compare the charts just
by looking at them.

In the Edge Equalized Treemap, the widths of all leaf
rectangles are unified and the widths of all bar charts are also
unified. Therefore, the values in a bar chart can correspond
to both the height and the area of the bar, and thus we can
compare charts by simply looking at them.

B. Margins at the top of rectangles

In Squarified Treemaps, the height of leaf rectangles does
not correspond to the weight of leaf nodes. Therefore, there
are some large margins at the top of the charts. In other
words, the drawing area is not efficiently used.

An Edge Equalized Treemap represents the weight of a
leaf node as the height of a leaf rectangle. The weight is the
sum of the data drawn in the chart. Thus, the drawing area
of the chart has a height corresponding to the value of the
data. Because of this, there are no large margins at the top
of the leaf rectangles.

C. Considerations

We compared our Edge Equalized Treemap to a Squarified
Treemap, and found Edge Equalized Treemaps to be better
in terms of the following aspects.

• The interval scale of the horizontal axes can be unified.
• The height of the leaf rectangle is appropriate.



These aspects relate to the ease of comparison of embed-
ded charts in a Treemap. Because of this, the Edge Equalized
Treemap is an effective representation.

We executed our programs on an Intel Core i7 CPU
920 @ 2.67 GHz with 6 GB of RAM and Windows 7
OS. It took 7861 s to represent the rainfall data in an
Edge Equalized Treemap. On the other hand, the Squarified
Treemap required only 0.008 s. Comparing these values, it
is clear that the Edge Equalized Treemap took a long time
to process. In future work, we will examine ways to speed
up the construction of Edge Equalized Treemaps.

VIII. C ONCLUSION

We focused on the representation of embedded charts in
a Treemap, and developed the Edge Equalized Treemap.
This representation can unify the horizontal axis widths of
each chart. Therefore, we can easily compare charts just by
looking at them. The height of each leaf rectangle in an Edge
Equalized Treemap corresponds to its data, and no large
margins are produced in the charts. Using our representation,
we expect to be able to support the representation of various
data in a Treemap.
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