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Abstract — This paper presents improvements in image 

gap restoration through incorporation of edge-based 

directional interpolation within multi-scale pyramid 

transforms. Two types of image edges are reconstructed; 

(a) the local edges or textures, inferred from the gradients 

of the neighbouring pixels and (b) the global edges between 

image objects or segments, inferred using Canny detector.  

Through a process of pyramid transformation and down-

sampling, the image is progressively transformed into a 

series of reduced size layers until at the pyramid apex the 

gap size is one sample. At each layer an edge ‘skeleton’ 
image is extracted for edge-guided interpolation. The 

process is then reversed; from the apex, at each layer, the 

missing samples are estimated (an iterative method is used 

in the last stage of up-sampling), up-sampled and 

combined with the available samples of the next layer. 

Discrete cosine transform and a family of discrete wavelet 

transforms are utilized as alternatives for pyramid 

construction. Evaluations over a range of images, in 

regular and random loss pattern, at loss rates of up to 

40%, demonstrate that the proposed method improves 

PSNR by 1 to 5 dB compared to a range of best published 

works.   

Index Terms—Error concealment, multi-scale DCT/DWT 

pyramid, edge detection, image gap recovery, packet loss 

concealment. 

 

I. INTRODUCTION 

mage gap restoration have a wide range of applications 

that includes in-painting of missing or damaged segments 

in still images or the replacement of image data packet lost 

in transmission. Further examples of applications and 

environments where image gap restoration can be usefully 

applied are enhancement of distorted biomedical signals [1], 

restoration of archived damaged images [2] and packet loss 

concealment over internet protocol (IP) networks [3]. 

A main current application of image gap restoration is packet 

loss concealment. Packet loss errors may occur due to network 

congestions or due to signal loss in mobile devices. IP 

networks are best-effort environments [4,5] where the packet 

delivery is not guaranteed. The rapid growth in demand for  

 

 
 

relatively high bandwidth image/video streaming applications 

over IP networks motivates the need for packet loss recovery 

and concealment in order to provide more reliable network 

services and more acceptable user experience [6].  

There are three broad approaches for mitigating the loss of 

quality in received images due to packet loss: (a) automatic 

request for retransmission (ARQ) of the lost packets, (b) error 

control via forward error correction (FEC) methods and (c) 

error concealment (EC) methods. The first method retransmits 

a copy of the damaged/lost packet and results in an increase in 

bandwidth and delay proportional to error rate [5]. This 

method can be used on request for retransmission in networks 

where there is an interaction between sender and receiver. The 

second category of methods, FEC, employs error correction 

coding to recover lost pixels from the received information. 

This implies that the pixel values in successive blocks of 

images would be coded, combined and/or spread over several 

successive packets. This method also involves an increase in 

bandwidth and delay [4-6]. The third category of methods, 

EC, is receiver-based signal processing methods that aim to 

replace the lost packets with estimates obtained from the 

received packets. To recover lost packets from the 

neighbouring pixel values, EC methods utilise the observation 

that images often contain high spatial structures, correlations 

and recurring textures and patterns   [7-16]. 

Among the three solutions listed above for packet loss 

recovery, an effective EC would be most beneficial as it does 

not require an increase in bandwidth, in contrast 

retransmission and FEC requires additional bandwidth and 

perhaps delay. Furthermore, retransmission and FEC 

techniques are not immune to errors. In addition, EC methods 

can be coded as stand-alone apps and deployed in networks or 

used as embedded applications on the receiver 

handsets/terminals; they do not require an international 

telecommunication union (ITU) approved standard. Therefore, 

spatial EC image gap restoration is the category of solution 

explored in this paper. 

At their core, image EC computation algorithms often involve 

two distinct processes: (a) image transformation and (b) 

extrapolation or interpolation of missing gaps. 

For selection of the domain in which image is interpolated, the 

common choices vary from direct interpolations over raw 

spatial domain pixels [8,18], to methods which operate on 

transformation of images using discrete cosine transform 

(DCT) [7] or discrete wavelet transforms (DWT) [17]. EC 

methods using combination of spatial and frequency domains 
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are investigated in [20, 21, 26]. In this paper image restoration 

is investigated within a pyramid structure that lends itself to 

the use of the DCT or various families of DWT as the kernel 

function. 

The main justification for the choice of pyramid as the 

framework for interpolation is one of pragmatic; a relatively 

large gap at the base is reduced to a single sample at the apex 

which can be conveniently interpolated. The result can then be 

progressed downwards towards the pyramid base through a set 

of repeated and scaled-up operations [7,19]. In [22] a hybrid 

image reconstruction (HIR) algorithm is developed that the 

modeling strength of the parametric and nonparametric 

techniques are combined within a multiscale framework. 

For EC interpolation methods, the choice is between non-

directional methods such as bilinear interpolation [7,10,12,16 

,23,27] and directional interpolation [8,11,13-15]. However, 

each method has some drawback. Bilinear and non-directional 

techniques are able to recover the smooth area but fail to 

restore the visually important edge information. An example 

of non-directional is basic spatial interpolation methods which 

use a weighted average of the neighbouring pixels to recover 

the lost gap. Although in this way satisfactory result is 

achieved in the smooth areas, the performance around the 

edges can be blurred [12]. More recently, Zhai et al. [7] 

proposed a method which is a combination of a Bayesian 

framework and a DCT transform on a multi-scale EC 

platform. A further Bayesian estimation method based on an 

adaptive linear prediction put forward by Liu et al. [23]. 

Missing pixels are reconstructed sequentially, pixel by pixel, 

utilising linear prediction, with the order of the predictor being 

determined by adopting a Bayesian information criterion 

(BIC). 

On the other hand while directional interpolation methods do 

well in recovery of the edges, they suffer from leaving stripe-

shaped artifacts in the smooth part of the image. Such as, 

Edge-oriented directional interpolations, that have been 

investigated in [13-15]. Asheri et al. [8] proposed an algorithm 

called novel adaptive Gaussian process (NAGP). The missing 

areas are divided into different sections based on multiple 

hypothesized edges. Then, each section is restored separately 

with adaptive kernel functions. Although some edge distortion 

are avoided, but the difficult process of division of missing 

block may introduce false borders. Multiple edges are also 

addressed in [38], where several directional interpolations are 

combined according to the visual clearness (VC) of the edges. 

Even though complicate edges can be reconstructed, it is hard 

to accurately determine the location and the VC of the edges. 

In [24] an adaptive method is proposed to develop an EC 

algorithm that benefits from a combination of directional and 

non-directional methods. Two steps are involved in this 

technique; at the first stage the type of the error block (EB) is 

detected and classified into one of the three; uniform, texture 

or edge groups. Then, a suitable EC method is applied to each 

category.  

A further approach to SEC is block-matching based, described 

in [16] searches for the best similar macro-block (MB) in the 

image to replace the missing MB, using a technique called 

best neighbourhood matching, but the computational 

complexity of this technique is quite high. In [25] vector-

valued image regularization based on variations methods and 

partial differential equation are introduced for image 

enhancement and in-painting. Another major group of error 

concealment technique is based on sparse linear predictions 

[26]. In [27] a linear predictor is used to restore the missing 

MB areas sequentially. An adaptive procedure, which is a 

combination of sparsity and a missing data imputation 

approach, utilized to compute the coefficients. From the 

analysis above, it is been observed even though a lot of 

attempts have been made to preserve edges in the corrupted 

blocks along with texture, these proposed algorithms often fail 

when more than one edge is involved or a successive sequence 

of blocks are corrupted. Therefore it is evident to obtain high 

quality image restoration results, it is of paramount importance 

to include the image edge information.  

The preliminary idea of the proposed method suggested in 

[42], a complete version and more results is proposed in this 

paper. The main contribution of this work are: (1) 

improvements in multi-scale image gap restoration obtained 

through incorporation of the local texture interpolation and 

global edge-guided interpolation based on Canny edge 

detector, (2) introduction of edge ‘skeleton’ layers within 
pyramid transform structures, (3) Comparison of DCT and 

families of DWT as the basis for pyramid transformation and 

(4) use of iterative methods for improving various layers of 

pyramid reconstruction.  

The remainder of this paper is organized as follows. In section 

II, the theory and implementation of the proposed multi-scale 

edge-guided image restoration method is introduced. The 

experimental evaluation results and comparison with 

published works are presented in section III. Finally section 

IV presents concluding remarks. 

II. THE PROPOSED IMAGE GAP CONCEALMENT  

A.  Multi-Scale Pyramid Discrete Cosine and Wavelet 

Transforms 

The multi-scale pyramid processing method, illustrated in Fig. 

1 (DCT) and Fig. 2 (DWT) progressively decomposes image 

macro-blocks (MB) into four spectral quadrants; LL, LH, HL, 

HH where L and H denote low and high frequency halves of 

the spectrum respectively. After the first stage of 

decomposition, at each subsequent down-sampling and 

decomposition stage, the LL quadrant is further decomposed 

into four spectral quadrants until the macro-block is reduced to 

a single pixel as shown in Fig. 1. For a MB of size 8 × 8, three 

stages of decomposition and down-sampling reduces the MB 

to one pixel. The pyramid transformation can be expressed as: 

𝑓𝑝,𝑞𝑖 =  ∑ ∑ 𝑓𝑚,𝑛𝑖−1𝑁𝑖−1
𝑛=0 ∅(𝑚, 𝑛, 𝑝, 𝑞)  𝑖 = 1, … , 𝑁      𝑀𝑖−1

𝑚=0 (1) 

where 𝑓𝑝,𝑞𝑖  is the transformation layer 𝑖 and the function ∅ is 

the transformation kernel - at the pyramid base level for layer 

0, 𝑖 = 0, 𝑓𝑚,𝑛0 = 𝑖𝑚𝑎𝑔𝑒(𝑚, 𝑛).  
For example the DCT pyramid layers are obtained as: 
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𝑓𝑝,𝑞𝑖 = 𝐼𝐷𝐶𝑇2 (𝐷𝐶𝑇2 (𝑓𝑚,𝑛𝑖−1))                    (2) 

 where for an 𝑀𝑖 × 𝑁𝑖  matrix, at the 𝑖𝑡ℎ layer is defined as: 

𝑓𝑝,𝑞𝑖 = 𝑎𝑝𝑎𝑞 ∑ ∑ 𝑓𝑚,𝑛𝑖−1𝑁𝑖−1−1
𝑛=0 cos 𝜋(2𝑚 + 1)𝑝2𝑀𝑖−1 cos 𝜋(2𝑛 + 1)𝑞2𝑁𝑖−1

𝑀𝑖−1−1
𝑚=0  

(3) 

for a block size of 8 × 8,  𝑖 = 0 ⋯ 3, 𝑀𝑖 = 𝑁𝑖 = 82𝑖  , 0 ≤ 𝑝 ≤𝑀𝑖 − 1, 0 ≤ 𝑞 ≤ 𝑁𝑖 − 1 and 𝑎0  = 1 √𝑀𝑠⁄ ,    𝑎1…𝑀𝑖 =√2 𝑀𝑖⁄ .  

For a 8 × 8 MB at base level 0, the DCT coefficients of the 

layers 0 to 3 are defined in terms of the base layer DCT 

coefficients as: 

Pyramid base layer 0 MB is raw image 𝑓𝑝,𝑞0  p=0:7, q=0:7. 

Pyramid layer 1 extracted from the base layer 0: 

             𝑓𝑝,𝑞1 =  𝐼𝐷𝐶𝑇2 (𝐷𝐶𝑇2(𝑓𝑝,𝑞0 ))     p=0:3, q=0:3     (4) 

Pyramid layer 2 coefficients extracted from the layer 1: 

      𝑓𝑝,𝑞2 =  𝐼𝐷𝐶𝑇2 (𝐷𝐶𝑇2(𝑓𝑝,𝑞1 ))     p=0:1, q=0:1      

Pyramid layer 3, the apex coefficients extracted from layer 2: 𝑓𝑝,𝑞3 =  𝐼𝐷𝐶𝑇2 (𝐷𝐶𝑇2(𝑓𝑝,𝑞2 ))     p=0, q=0 

Note that, as shown in Fig. 1, the down-sampling by a factor 

of two is performed by simply retaining a quarter of the      

low-frequency index coefficients, the LL quadrant, and 

discarding the remaining three quarters, higher index, 

coefficients.  As above, a set of similar equations can be 

defined for discrete wavelet transforms. 

During the re-construction stages, starting from the apex of the 

multi-scale pyramid, image up-sampling by a factor of two is 

performed by a combination of a process of zero-padding of 

the 2D-DCT/DWT coefficients and the subsequent application 

of inverse 2D-DCT/DWT. 

 

Fig. 1.  Block diagram of a three-stage DCT pyramid image decomposition 
and its application to Foreman image. Down-sampled sub-images are 

extracted from LL quadrant of DCTs. 

 

Fig. 2. (a) block diagram of the three-stage DWT pyramid image 

decomposition and its application to Lena image. Equivalence: cA=LL, 

cH=LH, cV=HL, cD=HH. 

B. Image Gap Concealment Using Pyramid Transform 

The proposed method for MB gap restoration, illustrated in 

Fig. 3, (Fig. 4 shows the subjective result) is as follows: 

1) Decompose image macro-blocks into a DCT/DWT 

pyramid structure, with the apex of the pyramid 

representing the last stage where each MB of size 8 × 8 is reduced to one pixel only. 

2) Starting from the pyramid apex interpolate the 

decimated gap using the local edge information from 

neighbouring pixels. 

3) Using an edge detector, track the global edges in the 

interpolated images and produce edge skeleton layer.  

4) Enhance the interpolated gap estimates using the 

global edge information. 

5) Up-sample the enhanced interpolated image, via 

zero-padded inverse transform, and combine/merge 

with the available received samples of the same layer 

of up-sampling. 

6) Go to step (2) and repeat the process for each 

intermediate stage of up-sampling. 

The details of these sub-processes are described next. 

 

Fig. 3.  Three-stage DCT/DWT pyramid image decomposition,                              

(D-Interp=Directional Interpolation). Top row is pyramid apex, bottom row is 
the raw corrupted/enhanced image (details: three coefficient parts). 
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Fig. 4. Application of the proposed pyramid method to restoration of 

corrupted image of Lena with 25% of 8×8 block loss. Left top corner is the 

pyramid apex. Each row represents a layer which is up-sampled at the point of 

reentry to the next lower layer. 

C. Local Edge-Guided Image  Gap Interpolation 

The proposed multi-scale gap restoration method preserve the 

local edge or texture information at each scale of the 

reconstruction process. Therefore, applying the edge based 

enhancement prevents the blurring distortions of textures and 

provides improved interpolation at a local texture level and in 

particular at the boundaries of the available and the missing 

samples. Note that the local edges may not show up at the later 

stage of detection of the global main edges after thresholding 

out the insignificant edges. 

The main advantage of inclusion of local edge or texture 

within pyramid image restoration is that global edge detection 

would be erroneous without first interpolating the gaps with a 

local texture interpolator as an initial approximation. Hence, 

the benefits of local texture interpolation are: 

1) Interpolation of textures within segmented homogenous 

regions; 

2) Pre-processing for subsequent edge-guided interpolation 

across ‘global’ segments; 
3) Can be used in strategies that combined local and global 

interpolations. 

At each multi-scale level, spatial gap concealment interpolates 

the missing block by using the edge information obtained from 

the surrounding neighbours. Preserving the texture edges is 

important for successful error concealment. In this respect 

several observations are instructive: 

1) Along the direction of an edge, the differences of pixel 

values are relatively small; 

2) Across the direction of an edge the differences of pixel 

values are relatively large; 

3) On either side of a gap, the differences of pixel values 

across an edge are consistent and of similar sign, with the 

possible exception of the gap coinciding with the end-

points of an edge segment.  

The estimate for the missing pixel at the final level of 

decomposition, i.e. at the pyramid apex, is an edge-weighted 

mean of the neighbouring pixels with consistent edges. At the 

successive levels where an 𝑀 × 𝑀 block replaces a gap, 

directional edge-guided interpolation are used to fit the 

missing blocks with the edge patterns of the available 

neighbouring pixels. 

As illustrated in Fig. 5, the directional interpolation preserves 

the following three types of local edges: 

1) Horizontal edges above and below the missing pixels, 

Fig. 5.a. 

2) Vertical edges to the left and right of the missing pixels, 

Fig. 5.b. 

3) Cross edges across four directions, Fig. 5.c. 

 

                 (a)                    (b)                          (c) 
Fig. 5. Local-edge guided directional interpolation for each missing pixel at 

the apex of multi-scale pyramid (in eight possible directions). Black pixels 

represent the missing pixel.  The direction of edge at each surrounding pixel 
(shown by dot circles) is computed by using the information of surrounding 

pixels shown by two arrows with the same colour.  

At the apex of the pyramid, where an MB is reduced to one 

pixel, the edge-enhanced estimation of the missing sample is 

given by the following expression. 

𝑓𝑚,𝑛 = ∑ ∑ 𝑤𝑚+𝑘,𝑛+𝑙(𝑓𝑚+𝑘,𝑛+𝑙+𝐸𝑚+𝑘,𝑛+𝑙)𝑘,𝑙𝐻,𝑉,𝐶∈𝑅𝐼               (5) 

where E=edge and 𝐸(𝑚 + 𝑘, 𝑛 + 𝑙) is a local estimation of the 

edge obtained separately in each of horizontal (H), vertical (V) 

and cross directions (C) depicted in Fig. 5 and RI is the 

Region of Interest which for local interpolation, on un-

segmented image,  includes information from all neighbouring 

pixels.  The edges along the directions (𝑚, 𝑛)  →(𝑚 + 𝑘, 𝑛 + 𝑙) are obtained from the average of all the 

available edges of the same direction in the immediate 

neighbourhood of the missing sample. For example, at the 

apex level, where the gap is reduced to one sample, for the 

horizontal direction (Brown dot and corresponding brown 

arrows which represent the direction and neighbouring pixels, 

respectively), 𝐸(𝑚 − 1, 𝑛), may be obtained as:  𝐸𝑚−1,𝑛 = { 0  𝑖𝑓 𝐸𝑚−1,𝑛−1 × 𝐸𝑚−1,𝑛+1 < 0   0.5(𝐸𝑚−1,𝑛−1 + 𝐸𝑚−1,𝑛+1)   𝑒𝑙𝑠𝑒          (6) 

As can be seen in Equation 6, if both estimates of edges for  𝐸𝑚−1,𝑛−1 and 𝐸𝑚−1,𝑛+1 are not in the same direction, the 

value of 𝐸𝑚−1,𝑛, is set to zero, otherwise  𝐸𝑚−1,𝑛 is set to the 

average value of the estimates. In order to make an estimate 

consistent with the most distinct neighbourhood edges, the 

edge combination weights can be expressed as a function of 

the intensity of the edges, as: 𝑤𝑚+𝑘,𝑛+𝑙 = 𝐸𝑚+𝑘,𝑛+𝑙∑ 𝐸𝑚+𝑘,𝑛+𝑙𝑘=−1:1,𝑙=−1:1 𝑘,𝑙≠0                (7) 

 Note that ∑ 𝑤𝑚+𝑘,𝑛+𝑙𝑘=−1:1,𝑙=−1:1 𝑘,𝑙≠0 = 1. 
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After interpolation of the apex sample, at the subsequent 

stages of interpolation, for blocks of size 2 × 2, 4 × 4 and 8 × 8 a strategy similar to that described above is used. 

Staring from the outer boundaries of the MB, the missing 

pixels are progressively replaced towards the center, using, the             

edge-guided interpolation, for an estimate consistent with the 

neighbouring edges in each of the horizontal, vertical and 

cross directions. 

D. Global Edge-Guided Image  Gap Interpolation 

From the literature it is observed that preserving the local 

edges mitigates blurring distortions of textures and provides 

improved interpolation at a local texture level and in particular 

at the boundaries of the available and the missing samples. For 

further improvement where the missing blocks contain 

significant edges, the global edge information, not necessarily 

evident within the lost macro-blocks, need to be utilised. 

The global edges are used in a manner as to avoid 

blurred/smeared interpolation across the significant edges; the 

main cause of large interpolation errors and visible distortions. 

Hence with the availability of the boundary traces of the 

edges, it is possible to segment the pixels within and in the 

neighborhood of missing blocks and to confine the available 

samples used for interpolation of a missing sample to within a 

relatively homogeneous region on each side of the edge or 

onto the edge itself as required.  

After edge-based segmentation, the interpolation Equation 5 

will have its regions of interests (RI), for estimation of the 

edges, 𝐻, 𝑉, 𝐶 ∈ 𝑅𝐼, confined to edge-segmented regions 

composed of relatively homogenous textures.  

Note from Fig. 3 that the global edge-guided interpolation is 

performed after local edge interpolation in order to mitigate 

the impact of the missing samples on the edge detection. For 

estimation of the main edges in the image, we investigated the 

application of a popular edge detection method namely the 

Canny edge detector. 

D.2 Canny Edge Detector 

Canny detector is a multi-stage algorithm for detection and 

tracing of the edges in images. The variance of the Gaussian 

filter and the maximum and minimum thresholds of the 

significant edges can be varied to change the sensitivity of the 

Canny detector. Fig. 6 shows the application of a Canny 

detector to multi-scale Lena and Pepper with image scale 

progressively down sampled by 2:1, in three stages, from size 512 × 512 to 64 × 64. 

 

 

Fig. 6. Canny edge detector output for multi-scale Lena and Peppers at scales 

from left to right: (a) 5122, (b) 2562, (c) 1282, (d) 642. 

Incorporating Global Edge-guided Interpolation in an 

Iterative Loop 

At the base level of the process, an iterative pruning strategy is 

applied for edge detection. This relies on varying the two 

parameters of a Canny detector, the variance of the Gaussian 

filter and the threshold of the significant edges, at each 

iteration in order to achieve improved results. As shown in 

Fig. 8, the experiment starts the process by using a higher 

level of Canny edge details at the first iteration, and then 

reduces the amount of details. Simulation results, Fig. 7, show 

the overall PSNR obtained by fixing the Gaussian filter 

variance at an empirically obtained optimal value and then 

varying the threshold in the range 0.01-0.05. Note that starting 

from a thresh value of 0.01 the best PSNR is obtained at the 

4
th

 iteration after three discrete -step increase in the threshold 

value (therefore, the number of iteration set to four). 

 

Fig. 7. Performance variation with increasing threshold in the range 0.01-0.05 

for a loss rate of 25%  on Lena for the last stage of image reconstruction. 

 
Fig. 8. Lena edge layers, from the left to right, four stages of iteration for 

increasing values of threshold. 

III. EXPERIMENTAL RESULTS 

For performance evaluation results the proposed algorithm has 

been tested on a number of standard test images namely; Lena, 

Peppers, Man, Boat, Elaine and Baboon. The image sizes are 

512×512 pixels, with each grey-scale or one of the primary 

colours represented by 8 bits per pixel in unsigned integer 

format with a range of 0-255. The size of the missing macro-

blocks is set to 8×8 and 16×16 pixels. Three types of missing 

MBs are evaluated; regular missing MB ≈ 25% loss rate, (Fig. 

9 and Fig. 10), random 8×8 missing MB ≈ 10% loss rate (Fig. 

12), ≈ 25% and ≈ 40% loss rate (Fig. 11), regular and random 

16×16  missing MB (Fig. 13, Fig. 14). The choice of the 

percentage loss is guided by our desire to compare our results 

with available seventeen results reported in the literature 

[7,23,28,30]. The PSNR results of restored images are given in 

Tables I–VI. As can be observed from the tables, the proposed 

EC algorithm achieves the best performance for all types of 

loss. 

The performance measure criteria used for assessment of the 

quality of image recovery is the widely employed             

Peak-Signal-to-Noise-Ratio (PSNR) defined as: 𝑃𝑆𝑁𝑅 = 20 log10 𝑀𝐴𝑋𝐼𝑅𝑀𝑆𝐸       dB                            (8) 

35.5

35.6

35.7
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where 𝑀𝐴𝑋𝐼 = 255 for a pixel value represented in unsigned 

integer format and the root mean squared error (RMSE) 

function is defined as: 

 𝑅𝑀𝑆𝐸 = √1𝑁 ∑ (𝑓(𝑚, 𝑛) − 𝑓𝑟(𝑚, 𝑛))2𝑑𝑜𝑚𝑎𝑖𝑛             (9) 

where 𝑓 and 𝑓𝑟 are the clean test image and restored image 

respectively and the domain over which the RMSE is 

calculated may include only the missing samples or it may 

alternatively include the entire image samples composed of 

the missing and the available samples and 𝑁 is the total 

number of samples used in calculation of the RMSE. 

A. Evaluation Case 1- Image with Regular Missing MBs 

The proposed method is applied to images of Lena, Man 

peppers, Boat and Elaine. The PSNR results are compared to a 

set of published work in total representing a number of 

methods that employ Bayesian and/or edge information for the 

recovery of regular lost macro-blocks. The results are 

displayed in three different tables. Table I and Table II 

represents comparison with published results, where the PSNR 

are averaged over the whole image including the available 

samples and Table III represents comparison with published 

results where the PSNR are averaged over the missing pixels 

only. 

Table I illustrates the performance of the several methods 

(values are taken from [30]). As displayed in Table I, the 

proposed method performs better than the alternatives 

considered and there is an improvement of 0.79 in DCT case 

and 0.85 dB in DWT case to compare with the best average 

performance when the PSNR are computed from whole image. 

In addition, in Table II (values are taken from [23]) fourteen 

well-known published works are compared with the proposed 

method. The proposed method’s outcomes remarkably surpass 

the best result among them by 0.36 dB. Table III (values are 

taken from [7,28]) includes results between six published 

techniques and the proposed method on Lena, and there is an 

increase of 1.27 dB and 1.32 dB for DCT and DWT 

respectively, compared with the best result among all 

methods.  

To better represent the improved performance of the proposed 

method subjective quality comparisons are given in Figs. 9–
10. Fig. 9. illustrates the performance comparison between the 

proposed method and six classical published works on the 

Man image.  
 

 
Fig. 9.  Experiment on block size of 8 8 pixels of the “Man” image. (a) Original 512 512, (b) damaged image with 25% missing blocks. Restoration using the 
methods of :(c) [35] (PSNR = 25:47 dB), (d) [29]  (PS PSNR = 27:25 dB), (e) [37]  (PSNR = 27:65 dB), (f) [36]  (PSNR = 27:44 dB),  (g) [21] (PSNR = 27:94 

dB), (h) [30] (PSNR = 29:87 dB),  (I) Proposed  method (31.61 dB). 

(a) (c)(b)

(d) (e) (f)

(g) (h) (i)
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Fig. 10. From left to right; the original images, the image with 25% regular pattern loss and the restored images for Lena, Pepper and Man. 

 

Fig.11. Top from left to right; the original Peppers  image, the image with 25% random loss and the restored image, bottom the original Peppers, the image with 
40% random loss with PSNR of 33.84 dB and 30.95 dB respectively, and the restored image. 
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Fig. 12. From left to right; the original Lena, Man and Elain images, the image with 10% random loss and the restored image. 

Table I 

Performance comparisons for regular pattern loss rate 25%, MB size= 8×8, 

PSNR calculated over whole image on Lena: proposed 1, with the DCT. 
Proposed 2, the DWT. 

 

Methods 
PSNR (dB) 

Lena Man Pepper Boat Elaine Ave. 

[35] 28.68 25.47 27.92 26.33 29.84 27.65 

[29] 29.99 27.25 29.97 27.36 30.95 29.10 

[36] 31.69 27.44 31.72 29.22 32.10 30.43 

[37] 31.86 27.65 31.83 29.36 32.07 30.55 

[21] 31.57 27.94 32.76 30.11 31.92 30.86 

[30] 34.65 29.87 34.20 30.78 34.63 32.83 

[11] 34.91 30.62 35.18 31.40 35.63 33.55 

Proposed 

DCT 
36.08 31.59 36.23 31.76 36.08 34.34 

Proposed  

DWT 
36.12 31.61 36.35 31.79 36.13 34.40 

 

Severe blocking artifacts are observed (Fig. 9) using [35], 

[29], and [37]. Although the blocking artifacts are smaller in 

[36], [21] and [30], they produce blurred and lumpy 

boundaries, as shown around the shoulder of Man. 

Furthermore, the outcomes show that the proposed method 

improved the PSNR result by 1.74 dB when compared with 

the best performance among all the other methods. Moreover, 

Table II 

Performance comparisons for MB loss rate of 25%, MB size= 8×8, PSNR 

calculated over whole image for Lena. 
 

Methods 
Image Lena 

Methods 
Image Lena 

PSNR (dB) PSNR (dB) 

[29] 29.99 [30] 34.65 

[35] 28.68 [39] 34.45 

[36] 31.69 [11] 34.91 

[37] 31.86 [24] 34.07 

[21] 31.57 [23] 35.70 

[40] 32.05 [27] 33.74 

[28] 35.70 [38] 34.79 

Proposed DCT  36.08 

Proposed DWT  36.12 

 

Fig. 10 demonstrates the original, erroneous and reconstructed 

images after applying the proposed error concealment method 

and it can be seen that the result is not blurry, with the shape 

having been recovered correctly. In addition, Fig. 13 illustrates 

the performance comparison between the proposed method 

and three previously published methods for 16×16 missing 

block size on Lena, and the proposed method performs better. 
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Fig. 13. Experiment on block size of 16×16 pixels of the Lena image. (a) Original image 512×512, (b) damaged image blocks. Restoration using 
the methods of: (c) [41] (PSNR = 33.62 dB), (d) [28] (PSNR = 37.48 dB), (e) [11] (PSNR = 37.37 dB), (f) Proposed DWT (PSNR = 37.65 dB). 

Table III 

Performance comparisons for regular  loss rate 25% MB size= 8×8, PSNR 
calculated just for region of missing block on Lena: proposed 1, with the DCT. 

Proposed 2, the DWT. 

 

Methods 
Image Lena 

PSNR (dB) 

[7] 28.51 

[10] 22.97 

[30] 26.00 

[39] 28.11 

[27] 27.43 

[28] 28.25 

Proposed DCT 29.78 

Proposed DWT 29.83 

B. Evaluation Case 2 – Image with Random Missing MBs 

The random loss pattern involves missing macro-blocks at 

random position that may include a random sequence of 

adjacent horizontal and/or vertical losses. Therefore, in the 

random model of packet  loss  there  is no  specific  pattern  of 

loss and two or more lost MBs could be adjacent. As the 

positions of the missing macro-blocks are random and distinct 

in each evaluation test and therefore, the program is applied 

for a number of iterations to find the mean PSNR distortion. 

Table IV  

Performance comparisons for random loss rate of 10% (MB size = 8×8) on 

Lena rerun five times (DWT). 

Table IV shows the number of iterations and the average of 

those results on Lena (the same process are done for each 

image to find the mean PSNR distortion).Table V shows the 

proposed approach performs better than the rest for random 

MB loss rate of size (8×8), and there is an improvement of 

0.16 dB (in DCT case) compared with the best average 

performance among all results, and also there is an 

improvement of 0.25 dB (in DWT case) compared with the 

best average performance among all results. The `performance 

of the algorithm is tested in case of 16 × 16  block loss, and 

Table VI (values taken from [23]) shows the results on Lena, 

Baboon and Elain. The average gain over the best performance 

along all published works is over 0.29 dB and 0.40 dB in DCT 

and DWT cases, respectively. 

Table V 

Performance comparisons for MB loss rate random 10%, MB   size= 8×8, 
PSNR calculated over whole image for Lena, Man and Elain. 

 

Methods 
PSNR (dB) 

Lena Man Elain AVG. 

[29] 32.32 32.17 34.20 32.89 

[40] 35.06 34.40 36.79 35.41 

[39] 35.09 33.95 36.73 35.25 

[24] 35.11 34.14 36.38 35.21 

[27] 36.82 34.63 38.48 36.64 

[38] 37.54 35.82 39.16 37.50 

[36] 37.84 35.70 39.44 37.66 

[28] 38.58 35.59 39.73 37.96 

[23] 38.63 36.36 40.03 38.34 

Proposed DCT 39.08 36.32 40.11 38.50 

Proposed DWT 39.16 36.42 40.21 38.59 

(d) (e) (f)

(a) (c)(b)

       Image 

Result 

Lena 

1 2 3 4 5 AVG. 

PSNR (dB) 39.11 39.06 39.35 38.73 39.58 39.16 
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Fig. 14. From left to right; the original images, the image with random 

consecutive 16 × 16 MB loss and the restored images for Baboon. 

In order to evaluate the subjective performance result for the 

random block loss the application of the proposed method to 

Lena, Man and Elain images, are shown in Fig. 12. Moreover, 

Fig. 11 shows the results for 25% and 40% random missing 

blocks on the Peppers image. Even though many missing 

blocks are included in each process, the proposed method is 

able to reconstruct the edges and texture within the image 

Furthermore, random block loss of 16 × 16 is tested on 

Baboon image (Fig. 14). It clearly shows that the proposed 

algorithm completely recovers the boundaries along with 

the texture. Fig. 15 demonstrates the performance of the 

proposed method in the case of various random loss rates of 

10%, 25% and 40% for Lena, Man, and Elain images. Fig. 15 

shows that the average amount of the proposed method 

surpassed the average of the best published method. It is been 

observed that by increasing the loss rate the performance 

decreased, but it is still convincing. 

 
Fig. 15. The performance (PSNR) of the proposed method in the case of 

various random loss rate (10%, 25%, 40%) for Lena, Man and Elain images. 

Fig. 16. From left to right original Lena image, corrupted and restored image 

with DCT top and DWT down. 

Table VI 

Performance comparisons for MB loss rate random size= 16×16, PSNR 
calculated over whole image for Lena, Baboon and Elain. 

 

Methods 
PSNR (dB) 

Lena Baboon Elain AVG. 

[29] 31.68 30.26 32.27 31.40 

[40] 34.75 30.95 34.88 33.52 

[39] 35.17 31.06 34.11 33.44 

[24] 34.66 29.88 33.63 32.72 

[27] 37.87 30.31 36.89 35.02 

[38] 38.57 31.72 36.64 35.64 

[36] 37.24 31.73 36.36 35.11 

[28] 38.44 30.74 37.33 35.50 

[23] 39.15 31.91 37.93 36.33 

Proposed DCT 38.54 33.56 37.78 36.62 

Proposed DWT 38.62 33.68 37.91 36.73 

 

Run-Time Comparison 

To compare the run time of different EC algorithms, test 

512×512 images (Lena, Baboon and Elaine) are tested. The 

averaged run time for different loss pattern is presented in 

Table VII. The computation time reported in the table is 

obtained with non-optimized MATLAB implementations with 

Intel CORE i5, 2.3 GHz CPU and 4 GB memory.2 We can see 

that the proposed algorithm is much faster (especially in the 

proposed DCT method) than the recently proposed 

[23,27,28,38] algorithms. Although the proposed algorithm 

requires longer time than some methods, its advantages over 

other methods are obvious in terms of objective and subjective 

evaluations, as shown in previous Sections. 

Table VII 

Average run time in second comparison for 512×512 images, different MB 
loss rate for Lena, Baboon and Elain. 

 

Methods 
Run Time (second) 

Regular 

8×8 
Random 

8×8 
Random 

16×16 

[29] 4.82 1.91 2.59 

[40] 0.10 0.08 0.07 

[39] 1.28 0.57 0.59 

[24] 4.59 2.81 9.09 

[27] 79.75 29.84 124.68 

[38] 426.59 170.88 89.16 

[36] 9.05 3.56 3.24 

[28] 90.28 33.66 29.44 

[23] 155.30 63.22 53.30 

Proposed DCT 53.62 43.32 45.71 

Proposed DWT 65.19 56.98 58.13 

22
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32

37

42

1 2 3
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N
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Fig. 16 shows there is a slight improvement of details in DWT, 

compared with DCT, but the run time is higher for DWT 

(Table VII) as it was expected from previous works [43]. 

IV. CONCLUDING REMARKS 

In this paper we have proposed a method for restoration of lost 

macro-blocks in digital images. The proposed algorithm 

includes combination of multi-resolution transforms, 

directional interpolation and edge-guided enhancement 

capable of restoring missing blocks including the edges. The 

main contribution of this work is the incorporation of local and 

global edge-guided interpolators within a pyramid structure in 

an iterative loop at the last stage. Two types of pyramid 

transformation were evaluated namely DCT and wavelets. The 

methods were evaluated on a number of different test images 

in a range of loss rates for regular and random pattern of 

losses. The results for DCT and wavelets are similar (with a 

slight improvement of details in DWT) and achieve better 

performance than other state-of-the-art methods in terms of 

objective and subjective evaluation. The incorporation of local, 

global edges and iterative process improves interpolation. The 

results obtained from DCT pyramid are comparable with those 

obtained from wavelets with the DCT offering a slight 

advantage in computation time. The experimental results 

demonstrate that significant improvement in the quality and 

PSNR of the restored images are obtained by the proposed 

edge guided image restoration method. An interesting aspect 

of this work is the use of iterative methods for improving 

various layers of pyramid reconstruction including the image 

and the edge, or skeleton, layers. This is an area of research 

where further work may be fruitful. Moreover, to extend the 

proposed methodology it will apply into the colour and 

moving images. 
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