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ABSTRACT In this paper, we propose a new comprehensive realistic cyber security dataset of IoT and
IIoT applications, called Edge-IIoTset, which can be used by machine learning-based intrusion detection
systems in two different modes, namely, centralized and federated learning. Specifically, the dataset has
been generated using a purpose-built IoT/IIoT testbed with a large representative set of devices, sensors,
protocols and cloud/edge configurations. The IoT data are generated from various IoT devices (more than
10 types) such as Low-cost digital sensors for sensing temperature and humidity, Ultrasonic sensor, Water
level detection sensor, pH Sensor Meter, Soil Moisture sensor, Heart Rate Sensor, Flame Sensor, etc.).
Furthermore, we identify and analyze fourteen attacks related to IoT and IIoT connectivity protocols, which
are categorized into five threats, including, DoS/DDoS attacks, Information gathering, Man in the middle
attacks, Injection attacks, and Malware attacks. In addition, we extract features obtained from different
sources, including alerts, system resources, logs, network traffic, and propose new 61 features with high
correlations from 1176 found features. After processing and analyzing the proposed realistic cyber security
dataset, we provide a primary exploratory data analysis and evaluate the performance of machine learning
approaches (i.e., traditional machine learning as well as deep learning) in both centralized and federated
learning modes. The Edge-IIoTset dataset can be publicly accessed from http://ieee-dataport.org/8939.

INDEX TERMS Cybersecurity applications, IoT datasets, deep learning, federated learning, edge
computing.

I. INTRODUCTION
The Internet of Things (IoT) is a connected network of equip-
ment that has the ability to communicate with each other and
provide data to users via the Internet. The explosive growth
of IoT in recent years is due in part to its broad applicability,
scalability, and support for smart applications. The majority
of IoT applications perform tasks in an automated fashion,
with little or no interaction with humans.

Industrial IoT (IIoT) is a subclass of IoT, where IoT
devices are used in typically closed industrial environments.
IIoT has been successful in producing significant resource
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savings, while increasing productivity [2]. IIoT represents
a critical enabler of Industry 4.0, often referred to as the
next industrial revolution [3]. Currently, there are more than
8 billion IoT-connected devices, and the number is expected
to reach 41 billion by 2027 [4]. In 2021, the global IoT
market size was estimated to be above $380 billion and is
expected to reach over $1.8 trillion by 2028, growing at a
CAGR of 25.4% from 2021 to 2028 [5], with sectors such as
automotive, smart home, manufacturing, energy, healthcare,
transportation, logistics, and media being at the forefront of
IoT evolution.

The enormous increase in IoT calls for appropriate security
and privacy policies to prevent potential vulnerabilities and
threats introduced by the implementation of this technology.
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Furthermore, other key considerations in IIoT, including
trustworthiness, expandability, and energy usage, must be
addressed, given that legacy security fixes are falling short
in many cases [6]. According to Kaspersky researchers,
the number of cyberattacks against IoT devices jumped
to 1.5 billion up from 639 million in one year period
(2020-2021), which represents more than 100% increase,
as cybercriminals have cleverly turned their attention to this
space, seeking to rob data, mine cryptocurrencies, and cre-
ate botnets [7]. Another favorite weapon of hackers lately
is the ransomware attack, as the average ransom amount
paid by organizations jumped by 311% in 2020 and hit
about $350 million in crypto-currency, according to a report
released by the Ransomware Task Force [8]. For instance,
in the first half of 2021, DarkSide (a Russian-based hacker
group) claimed responsibility for a ransomware attack on
Colonial Pipeline, one of the largest fuel pipelines in the U.S.,
and forced it to have its SCADA systems down and pay nearly
$5 million in a hard-to-trace crypto-currency.

Considerable work has been done by the cybersecu-
rity community in creating sophisticated security tools and
techniques for protecting users and data in traditional IT
systems. Yet, these measures themselves cannot be imme-
diately deployed for IoT/IIoT-based systems. Many existing
techniques are insufficient to address novel threats that can
breach IoT networks, making it necessary to delve deeper
into advanced forensic approaches to detect and investigate
malicious behavior [10]. Purpose-built cybersecurity solu-
tions, that are tailored to IoT and IIoT systems, are needed
to manage the limitations such as constrained functionality,
limited power, and lightweight network protocols [14], [15].
One such solution are Intrusion Detection Systems (IDS),
and their ability to provide detection and surveillance of
attacks throughout their lifecycle, enabling a response to
advanced persistent threats that can evade existing security
measures. [12], [16].

Intrusion detection techniques that are based on machine-
learning require training and ongoing callibration using cen-
tralized or federated learning approaches [17]–[21]. A key
success factor in training IDS is choosing the right dataset.
For IoT/IIoT systems security, it is critical to use datasets
that closely mirror real-world IoT/IIoT applications. The
scarcity of available IoT/IIoT datasets presents a significant
barrier to the evaluation of IDS solutions tailored for IoT/IIoT
systems. This scarcity of data is mainly caused by privacy
concerns. Therefore, a great number of major corporations
that are building such datasets are discouraged from sharing
it publicly [22].

The goal of our work presented in this paper is to provide
a comprehensive dataset that can be used for developing and
accurately validating IoT/IIoT security solutions.We propose
a new IoT and IIoT dataset collected from a sophisticated
seven-layer testbed including more than 10 IoT devices,
IIoT-based Modbus flows, 14 IoT and IIoT protocol-related
attacks. In addition, a detailed description of the dataset
and its features is given in this paper. Furthermore, using

the dataset, we have evaluated the performance of intrusion
detection through several supervised machine learning meth-
ods using two different learning approaches, namely central-
ized and federated learning. The Edge-IIoTset dataset can be
publicly accessed from [1].

Our research contributions are as follows:
• We present a new platform for creating a new compre-
hensive realistic cybersecurity dataset of IoT and IIoT
applications. The testbed is organized into seven layers:
1. Cloud Computing Layer, 2. Network Functions Vir-
tualization Layer, 3. Blockchain Network Layer, 4.
Fog Computing Layer, 5. Software-Defined Networking
Layer, 6. Edge Computing Layer, and 7. IoT and IIoT
Perception Layer. In each layer, we provide new emerg-
ing technologies that satisfy the key requirements of IoT
and IIoT applications, such as, ThingsBoard IoT plat-
form, OPNFV platform, Hyperledger Sawtooth, Digital
twin, ONOS SDN controller, Mosquitto MQTT brokers,
Modbus TCP/IP..

• We produce a highly unique IoT and IIoT cybersecurity
dataset that represents the crucial IoT characteristics
and heterogeneous network traffic. The IoT data are
generated from various IoT devices (more than 10 types)
such as Low-cost digital sensors for sensing temperature
and humidity, Ultrasonic sensor, Water level detection
sensor, pH Sensor Meter, Soil Moisture sensor, Heart
Rate Sensor, Flame Sensor, etc.

• We identify and analyze fourteen attacks related to IoT
and IIoT connectivity protocols, which are categorized
into five threats, including, DoS/DDoS attacks, Infor-
mation gathering, Man in the middle attacks, Injection
attacks, and Malware attacks.

• We extract features obtained from different sources,
including alerts, system resources, logs, network traf-
fic, using two networks protocols analyzers, namely,
the Zeek tool and TShark tool. Then, we propose new
61 features with high correlations from 1176 features
found.

• We propose new processing and analyzing framework
for our realistic cyber security dataset of IoT and IIoT
applications, which is based on ten steps, including,
1) labeling for binary classification models, 2) labeling
for multiclass classification models, 3) merging all CSV
files, 4) applying the process of detecting and correcting,
5) dropping unnecessary flow features, 6) converting
categorical variable, 7) splitting arrays or matrices into
random train and test subsets, 8) encoding categorical
features, 9) standardizing features, and 10) implement-
ing the synthetic minority over-sampling technique.

• Weprovide a primary exploratory data analysis and eval-
uate the performance of machine learning approaches in
both centralized and federated learning modes.

• We provide a complete review and analysis of the avail-
able existing datasets with Edge-IIoTset. The findings
demonstrate the performance of our proposed platform
in creating a new comprehensive realistic cyber security
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TABLE 1. Available IoT and IIoT datasets for cyber security.

dataset of IoT and IIoT applications and the superiority
of the Edge-IIoTset dataset in comparison to existing
ones.

The structure of the paper is organized as follows.
In Section II, we provide a complete review and analysis of
the available existing datasets with Edge-IIoTset. Section III
presents our proposed IoT and IIoT testbed architecture.
Section IV provides the description of Edge-IIoTset dataset.
In Section V, we provide the extrapolated features and
describe their different types. Section VI presents the experi-
mental results of the proposed Edge-IIoTset dataset. Finally,
Section VII concludes this paper.

II. RELATED AVAILABLE IoT AND IIoT DATASETS FOR
CYBER SECURITY
Various datasets have been proposed by the community for
IoT/IIoT cybersecurity in recent years [14]. This section

presents a discussion about some of the most popular datasets
that have been recently used for IoT/IIoT-based IDS devel-
opments. Tab. 1 provides a brief comparison between these
datasets and ours.

A. MQTTset DATASET
Created by Vaccari et al. [11] as a way to train ML-based
IDSs in the IoT context. The specific objective of the
MQTTset is the focus on the MQTT protocol and the threats
associated with IoT devices that use it. The lab environ-
ment established by the authors for generating the dataset
consists of eight sensors and an MQTT broker. The sen-
sor types deployed in two rooms are temperature, humidity,
motion, CO-Gas, door lock, fan, smoke, and light sensors.
The collection period corresponds to a time window of
one week, generating more than 11 million network pack-
ets, with a more than 1 GB data size. The MQTTset is
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TABLE 2. Hardware and Operating systems used in the creation of Edge-IIoTset dataset.

comprised of both legitimate and malicious traffic. The ver-
sion of MQTT is 3.1.1 with the authentication disabled. The
dataset is composed of 33 features, including three related
to TCP and 30 related to MQTT. The malicious traffic was
generated by launching attacks against the MQTT broker.
The attack vector used in the dataset include flooding DoS
using the MQTT-malaria tool, MQTT publish flood using the
IoT-Flock tool, Slow DoS against Internet of Things Environ-
ments (SlowITe), malformed data attack using the MQTTSA
tool, and brute force authentication by using MQTTSA also.
For the validation of the proposed dataset in terms of intrusion
detection, the authors considered the following algorithms:
neural network, Decision Tree (DT), Random Forest (RF),
Naïve Bayes (NB),Multilayer Perceptron (MP), andGradient
Boost (GB). For the multi-classification approach RF shower
the best performance results with 99% accuracy and 99%
F1-score, while MP showed the worst with 94% accuracy
and 96%F1-score. However, the dataset only containsMQTT
traffic, which means that there is no IIoT traffic such as Mod-
bus protocol, which in turn makes this dataset not suitable for
IIoT security applications.

B. N-BaIoT DATASET
Created by Meidan et al. [9] as a way to evaluate a pro-
posed network-based anomaly detection scheme that retrieves

behavioral snapshots out of the network, and leverages
deep autoencoders for detecting abnormal network traffic
originating from exploited IoT devices. The constructed lab
environment is composed of nine IoT devices with the fol-
lowing types: doorbells, thermostats, baby monitors, security
cameras, and a webcam. In addition to an access point, a snif-
fer host, and a C&C server. The total number of instances
reported in the dataset is 7062606 from the nine IoT devices.
The dataset contains a set of 23 features from five-time
windows, consists of statistics of streams: weight, mean, std,
radius, magnitude, cov, and pcc (approximated covariance
between two streams). The normal traffic was captured right
after the new installation, to ensure that no infected streams
were injected. The malicious traffic consists of 10 attack
types carried by 2 botnets namely BASHLITE andMirai. The
authors implemented an optimized deep autoencoder for the
validation of the proposed method and dataset and conducted
a comparison with three models, namely: Local Outlier Fac-
tor (LOF), One-Class SVM, and Isolation Forest (IF). For
most devices, deep autoencoders have shown superiority in
terms of TPR, FPR, and detection time, with a TPR of 100%,
a mean FPR of 0.007 ± 0.01, and a time of 174 ± 212 ms.
However, the dataset includes only malicious attacks from
two botnets, with no IIoT traffic involved, making it impos-
sible to detect other types of IoT attacks, such as MiTM, and
not relevant to IIoT security applications.
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TABLE 3. Open source tools used in the creation of Edge-IIoTset dataset.

C. BOT-IoT DATASET
Created by Koroniotis et al. [10] at the Research Cyber
Range lab of UNSW Canberra using both real and simulated
IoT network traffic, with the goal of detecting and identifying
botnets on IoT-specific networks. The lab environment is con-
stituted by three elements: a) Network services and platforms,
including legitimate and malicious virtual machines (VMs),
b) Simulated IoT-based smart-home, using the Node-red tool,
and including traffic of simulated IoT devices, including
thermostat, garage door, refrigerator, weather monitoring sys-
tem, and lights, and c) Forensics analytics, using the Argus
tool. The dataset consists of over 72 million records, with a
size of 69.3 GB for the captured PCAP files, and 16.7 GB
CSV for the extracted flow traffic. The protocols used in the
dataset include TCP, UDP, ARP, ICMP, IGMP, and RARP.
The reported features are of two types: real protocol parame-
ters and generated flow features. The malicious traffic was
generated using cyber-attacks originating from Kali Linux
VMs, and including probing (port scanning and OS finger-
printing), DoS/DDoS, and information theft (data theft and
keylogging). The dataset was tested under three ML and
DL models, namely Recurrent Neural Network (RNN), Sup-
port Vector Machine (SVM), and Long-Short Term Memory
(LSTM). SVM showed the best accuracy performance with

99%. However, there is only IoT data in the dataset, so there’s
no IIoT traffic, making it unsuitable for IIoT security.

D. FEDERATED TON_IoT DATASET
Created by Moustafa et al. [3] at the IoT lab of UNSW
Canberra, by including federated data sources collected from
three dataset types: a) IoT services telemetry, b) Operat-
ing systems, and c) Network traffic. The testbed is layered
into three levels: a) Edge Layer: houses IoT and network-
ing appliances, b) Fog Layer: houses VMs and gateways,
and c) Cloud Layer: consists of services, like data analytic.
The dataset is composed of both normal and attacks traffic.
The Windows 7 dataset contains 10000/5980 normal/attack
records, while theWindows 10 dataset contains 10000/11104
normal/attack records. The dataset includes nine attack cate-
gories, namely DoS/DDoS, scanning, ransomware, backdoor,
injection, XSS, password, and Man-In-The-Middle (MITM)
attacks. The authors reported the correlation analysis of the
selected features. The correlation matrix was adjusted to pick
the most correlated features with a threshold value greater
than or equal to 0.85. However, the dataset does not contain
IIoT traffic, nor does it provide intrusion assessment using
different machine learning techniques with the proposed
dataset to validate it.
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FIGURE 1. Our testbed architecture.

E. X-IIoTID DATASET
Generated by Al-Hawawreh et al. [12] at the University of
New South Wales (UNSW) in Canberra, as connectiv-
ity and device-agnostic dataset for evaluating and training
ML/DL-based IDSs for IoT and IIoT systems. The lab’s
architecture is based on the Industrial Internet Reference
Architecture (IIRA) model. The architecture used consists
of three levels, namely: the edge level, the platform level,
and the enterprise level, where various industrial and IoT
devices and protocols, cloud services, and attack machines

are deployed. The datasets contain 421,417 normal records,
399,417 malicious records, and 59 features, collected from
network traffic, device resources, and device/alert logs. The
protocol used includes Modbus, MQTT, TCP, CoAP, and
SMTP. The malicious records were generated using three dif-
ferent frameworks, namely CKC,MALC, andATT&CK. The
testbed attack process consists of the following attack stages:
a) Reconnaissance, b) weaponization, c) exploitation, d) lat-
eral Movement, e) Command and Control, f) exfiltration,
g) tampering, h) crypto-Ransomware, and i) Ransom DoS.
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The dataset was evaluated using the following models: DT,
NB, SVM, K-nearest Neighbor (KNN), Logistic Regression
(LR), Deep Neural Network (DNN), and Gated Recurrent
Unit (GRU). DT obtains the highest performance of all
algorithms, with 99.54% accuracy for binary classification,
and 99.49% for multi-classification. However, the dataset
only utilizes centralized learning approaches for providing
intrusion detection evaluations with the proposed dataset to
validate it. Using federated learning is essential in different
situations within IoT/IIoT environments to address privacy,
network, and storage issues [17].

F. WUSTL-IIOT-2021 DATASET
Created by Zolanvari et al. [2], as a cybersecurity-targeted
network-driven dataset of IIoT applications, by modeling
and emulating actual industrial systems in the real world.
the architecture implemented includes various IIoT sensors
and actuators, HMI, PLC, logger, and alarming device, for
simulating real-life industrial applications. The data set con-
sists of 2.7 GB of data, collected in approximately 53 hours,
with a total of 1,194,464 observations, including 1,107,448
for benign samples and 87,016 for malicious samples. The
dataset contains 41 features selected based on the variation
of their values during the attack phases. The attacks used in
the testbed include command injection, DoS, reconnaissance,
and backdoor. The model used to evaluate the generated
dataset are LR, KNN, SVM, NB, RF, DT, and ANN. The
RF model scored the best accuracy with 99.99%, and NB
showed the least accuracy with 97.48% for binary classifi-
cation. However, the dataset only contains data from an IIoT
architected environment, with no traffic, data, or attacks from
IoT-based devices. Therefore, this dataset is not suitable for
evaluating IoT-based IDSs.

G. OTHER DATASETS
EMNIST dataset [23] is considered as a standard benchmark
for AI-based computer vision systems. The dataset consists of
handwritten character digits derived from the special NIST
19 database. Federated EMNIST dataset (FEMNIST) is the
federated version of EMNIST, which partitions the dataset
into individual clients with each client being assigned a
corresponding number/character set of records in EMNIST.
However, these datasets do not contain IoT or IIoT network
traffic, so IoT/IIoT-based based IDS cannot be trained on
them.

III. PROPOSED IoT AND IIoT TESTBED ARCHITECTURE
Given the limited number of IoT/IIoT datasets available
for the cyber security sector, in which researchers typically
rely on proprietary or open-source datasets that are not
field-specific. In our work, we designed a realistic testbed
that closely mirrors a real-world IoT/IIoT environment, and
conducted realistic cyberattacks against it, to acquire real-
world datasets with both legitimate and malicious traffic.
The testbed consists of seven interconnected layers, namely:
cloud computing layer, NFV layer, Blockchain layer, fog

layer, SDN layer, edge layer, and IoT/IIoT perception layer,
as shown in Fig. 1. Tab. 2 provides a list of the equipment and
associated operating systems used for creating our dataset.
We used open-source software to build our testbed as pre-
sented in Tab. 3 so that it can be easily re-used and validated
by the research community. This section provides a detailed
description of each layer.

A. CLOUD COMPUTING LAYER
This layer is not physically deployed in the lab, however,
it acts as a provider of various services and resources such
as IoT platforms, data storage, and computing power over
the Internet. Cloud-based data storage, processing, visual-
ization, and device management are mandatory operations
for almost all IoT/IIoT-based applications. We have used the
ThingsBoard IoT platform [24], since it supports a variety of
IoT protocols, includingMQTT, CoAP, and HTTP, for device
connectivity. The platform also supports the capability of cre-
ating rich custom dashboards for real-time data visualization
and remote device control, which is relevant to most IoT
use cases. Every access to this layer will be via the Internet,
as opposed to the other layers, where access is done locally
through wireless routers.

B. NETWORK FUNCTIONS VIRTUALIZATION LAYER
NFV abstracts network functions to reduce overall costs and
speed service deployment by separating network functions
from their dedicated equipment by deploying them on virtual
servers. This brings significant advantages, including savings
in power usage, lower equipment and maintenance expenses,
smoother upgrades, and better assets lifestyles. OPNFV is an
industry-supported open-source NFV Infrastructure (NFVI)
platform [25], that allows builds to be rolled out and tested
on a range of different hardware settings. OPNFV combines
various components, such as OpenStack, Kubernetes, and
OpenDaylight, to create an end-to-end platform for com-
puting, storage, and networking virtualization. Vulnerable
services and applications are deployed in the layer, including
DamnVulnerableWebApplication (DVWA). Attacks against
these services and applications are discussed in detail in the
following sections.

C. BLOCKCHAIN NETWORK LAYER
The applications of blockchain extend significantly beyond
the realm of crypto-currencies, through its potential to create
more transparency and equity while saving companies time
and money. In an effort to build a sophisticated real-world
testbed, we’ve included an enterprise-level blockchain plat-
form called Hyperledger Sawtooth [26], which enables both
distributed applications and ledger networks. In addition,
Sawtooth also offers a high degree of modularity, allowing
companies to make the most appropriate strategic decisions
and let applications choose the appropriate consensus, access,
and transaction protocols that suit the customer’s particu-
lar needs. The framework supports making design decisions
within the transaction processor, permitting several types of
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TABLE 4. IoT sensors and actuators adopted in the creation of Edge-IIoTset dataset.
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applications (IoT and IIoT applications) to operate within a
single blockchain network instance. Individual applications
can set up custom transaction processors tailored to their
specific business requirements.

D. FOG COMPUTING LAYER
This layer acts as a mediator between the edge and the
cloud layers for various purposes, including determining the
relevance of data from the edge for relieving pressure on
the network and the cloud by selecting the most important
data. ThingsBoard is used as an IoT fog platform since it
supports fog deployment, and it will also be responsible for
synchronizing the data with the cloud instance. We have
also deployed a digital twin for our testbed using Eclipse
Ditto [27], in order to create a virtual model designed to
accurately reflect the implementation of our cyber-physical
testbed in the real world. Since our testbed is equipped with
various sensors and actuators, it produces data related tomany
aspects of real-world physical object performance, such as
temperature, PH, light, etc. Once the data is generated, it is
transmitted to a virtual model of the physical object, which
is then fed into a processing system that updates the digital
copy.

E. SOFTWARE-DEFINED NETWORKING LAYER
This layer employs SDN technology, which is a sophisti-
cated network management concept that enables dynamically
efficient, programmatic configuration across the network to
improve network performance and control. SDN is designed
to overcome conventional networks by localizing the network
logic into a single component and separating the transmis-
sion of packets from the routing operation. We used the
ONOS SDN controller [28] for this layer. ONOS is a flexible,
scalable, distributed SDN controller that makes it easy to
administer, deploy, and set up new network components, such
as network applications. It also supports real-time network
control and configuration with user-friendly programmatic
interfaces.

F. EDGE COMPUTING LAYER
Instead of having everything exported to the cloud for pro-
cessing and analysis, this layer is positioned much closer to
the data sources, by bringing the calculation features to the
edge of the network, and handling IoT/IIoT data far away
from the cloud nodes, near the edge of the network. By doing
so, it allows data to be properly prioritized locally, thereby
minimizing traffic flow on its way back to the cloud, making
the Fog layer less complex with fewer possible points of fail-
ure, reducing bandwidth and cloud resources, and optimizing
network latency. To accomplish this, specifically for IoT
data, we installed various Mosquitto MQTT brokers [29]- an
open-source message broker that implements the MQTT
protocol - on several Raspberry Pi boards. In the case of
IIoT data, we used Node-RED Modbus TCP [30], a Modbus
master/slave creation tool intended to assist Modbus slave
device builders to test and simulate the Modbus protocol.

G. IoT AND IIoT PERCEPTION LAYER
The perception layer or physical layer is equipped with a
range of sensors that detect and gather environmental infor-
mation, including the detection of specific physical param-
eters and/or the recognition of other types of information
in the environment. It also includes actuators that act on
the environment when certain conditions are met. Modbus
slaves also belong to this layer and they receive requests from
the master and send back replies. Tab. 4 provides a detailed
description of each and every IoT sensor and actuator used
in the testbed. The table includes the type of devices used,
a brief description of the operation the device is to perform,
the different application modes in which the device can be
deployed, the product reference number, the features and
specifications of the device such as the voltage, and the pin
configuration used with the Arduino Uno board.

H. EXTERNAL ENTITIES
While the layers discussed above represent a sophisticated
IoT/IIoT-based system, in this part the components represent
the entities that interact with the system either with good
or bad intentions. Specifically, we consider two entities: the
service subscribers and the attacking machines.

1) SERVICES SUBSCRIBERS
These are the devices that subscribe to telemetry (IoT) and
IIoT data from the various services deployed in the system.
We consider smart TV, smartphone, and desktop computer
usage. When such a device has made a subscription to a
specific type of data, say for example the ultrasonic sen-
sor located in room 1, whenever a change occurs, the IoT
platform receives the change and notifies the subscriber in
question with the change in real-time.

2) ATTACKING MACHINES
These entities are the malicious traffic generators for our
dataset, as they use various attack software, tools, and scripts
that are installed on these entities. A complete list of the
attacks and their techniques is presented in the next section.

IV. DESCRIPTION OF EDGE-IIoTset DATASET
In this section, we thoroughly explore the various steps we
took to generate our dataset [1]. We initially provide a dis-
cussion of the proposed generation framework, followed by
a description of malicious traffic management using multiple
attacks, approaches, and tools.

A. METHODOLOGY OF CREATING THE
EDGE-IIoTset DATASET
As presented in Fig. 2, the methodology of creating the
Edge-IIoTset Dataset is organized in the following sevens
steps:

1) SETUP AND CONFIGURATION OF NETWORK EQUIPMENT
We started with the installation of the software and hard-
ware equipment, which are presented in tables 2, 3, and 4.
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TABLE 5. The list of attack scenarios included in Edge-IIoTset dataset.

More specifically, we configured these tools for each cor-
responding layer, including, cloud computing layer, NFV
layer, Blockchain layer, fog layer, SDN layer, edge layer, and
IoT/IIoT perception layer.

2) THREAT AND ATTACK MODELING
This step consists of modeling the attacks and threats against
the IoT and IIoT applications. More accurately, we identified

and analyzed fourteen attacks as presented 5, which are
categorized into five threats, including, DoS/DDoS attacks,
Information gathering, Man in the middle attacks, Injec-
tion attacks, and Malware attacks. The DoS/DDoS attacks
make the victim’s IoT edge server unavailable to legitimate
requests by sending manipulated packets, which include four
attacks, namely, TCP SYN Flood DDoS attack, UDP flood
DDoS attack, HTTP flood DDoS attack, and ICMP flood
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FIGURE 2. The proposed dataset generation framework.

DDoS attack. The Information gathering consists of analyz-
ing IoT data packets to spot the weakness of IoT devices as
well as Edge servers, which include three attacks, namely,
Port Scanning, OS Fingerprinting, andVulnerability scanning
attack. The man in the middle attacks consists of the inter-
ception of communications between IoT devices and edge
servers, which include two attacks, namely, ARP Spoofing
attack and DNS Spoofing attack. The injection attacks consist
of sending a malicious script to an unsuspecting user, which
can access sensitive information, session tokens, cookies, etc.
Finally, the malware attacks consist of installing backdoors to
take control of vulnerable IoT network components, which

include three attacks, namely, Backdoor attack, Password
cracking attack, and Ransomware attack. Tab. 5 provides the
list of attack scenarios included in Edge-IIoTset dataset.

3) NORMAL AND ATTACK IoT DATA GENERATION
In this phase, we generated IoT data from different com-
ponents (i.e., IoT devices, Edge servers, SDN controller,
Mosquitto MQTT brokers, etc.), as well as we launched
the attacks against these components. The time period for
normal data generation was started on November 21, 2021,
running for several hours each day and ending on January 10,
2022 (not continuous). Moreover, the generated attack data

VOLUME 10, 2022 40291



M. A. Ferrag et al.: Edge-IIoTset: New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications

experiments were performed at different hours and days from
November 21, 2021, to January 10, 2022, where each attack
experiment was conducted multiple times to generate more
records.

4) NORMAL AND ATTACK IoT DATA COLLECTION
This phase consists of capturing packet data from the IoT
network using theWireshark tool and storing it in a PCAP file
format. Tab. 6 presents statistics of normal instances included
in Edge-IIoTset dataset with PCAP files size. Traffic capture
is done on a short-term period, a maximum of 3 hours of
continuous collection. We configure the tool to collect all
PCAP files from all the edge server interfaces (i.e., Raspberry
Pi 4 Model B).

5) FEATURE EXTRACTION
This phase is focused on extracting the features from PCAP
using two networks protocols analyzers, namely, the Zeek tool
and TShark tool, and then storing it in a CSV file format
for further processing. We identified and selected 61 features
with a high correlation from 1176 found features.

6) DATASET PROCESSING AND ANALYZING
This phase is focused on processing and analyzing the
Edge-IIoTset dataset. Specifically, we applied the following
steps:

• Step 1: We added a new label, named Attack_label,
in order to label all records, whether normal or attack.
The Attack_label contains 0 or 1, which is used for the
binary classification model (i.e., 0 indicates normal and
1 indicates attacks).

• Step 2:We added a new label, namedAttack_type, which
presents the attack categories, for the multiclass classi-
fication model.

• Step 3: We merged all CSV files into one CSV file.
• Step 4: We applied the process of detecting and correct-
ing (or removing) corrupt or inaccurate records from the
Edge-IIoTset dataset. Specifically, we removed dupli-
cates and missing values such as NAN (Not A Number)
or ’INF’ (Infinite Value).

• Step 5: We removed unnecessary flow features such as
IP addresses, ports, timestamp and payload information.

• Step 6: We applied the pandas.get_dummies package for
converting categorical variable into dummy/indicator
variables.

• Step 7:We used train_test_split from the sklearn.model_
selection package for split arrays or matrices into
random train and test subsets.

• Step 8: We used OneHotEncoder from the sklearn.
preprocessing package for encoding categorical features
as a one-hot numeric array.

• Step 9: We applied StandardScaler from the sklearn.
preprocessing package for standardizing features by
removing the mean and scaling to unit variance.

• Step 10: We applied the SMOTE class from the
imblearn.over_sampling for the implementation of
SMOTE - SyntheticMinority Over-sampling Technique.

7) DATASET PERFORMANCE EVALUATING
This phase is particularly focused on evaluating the perfor-
mance of machine learning approaches in both centralized
and federated learning modes. More particularly, we used the
followingmachine learning approaches: RandomForest, Sup-
port Vector Machine (SVM), Decision Tree (DT), XGBoosT,
as well as the most popular Deep Neural Network (DNN).

B. ATTACKS IN EDGE-IIoTset DATASET
The quality and diversity of legitimate entries in a dataset are
critical for building the normal behavioral profile of a sys-
tem. Additionally, malicious entries are essential for security
solutions to recognize not only the precise attack patterns but
also to identify new ones.

1) DoS/DDoS ATTACKS
In these attack categories, the attackers tend to deny the
services from legitimate users, either solely or in a distributed
fashion. We consider four of the most commonly used tech-
niques, namely: TCP SYN Flood, UDP flood, HTTP flood,
and ICMP flood.

• TCP SYN Flood DDoS attack: This is a version of a
distributed denial of service (DDoS) attack that takes
the exploitation of a normal three-way TCP handshake
to use energy on the affected server and disable it com-
pletely. With SYN flood DDoS, the attacker essentially
forwards requests for TCP connections more quickly in
order to process them than the targeted machine can
handle, which causes saturation of the IoT network.
Once an IoT device and an Edge server have established
a regular TCP ‘‘three-way handshake,’’ the IoT device
initiates the process of requesting the connection by
sending an SYN (synchronization) message to the Edge
server. The Edge server then acknowledges by returning
an SYN-ACK (synchronization-acknowledgment) mes-
sage to the IoT device. The IoT device answers with
an ACK (acknowledgment) message and the connec-
tion is established. The offensive systems with the fol-
lowing IP addresses: 207.192.25.133, 94.196.109.185,
133.149.252.77, and 220.146.94.148 were used to send
manipulated SYN packets using the tool hping3-based
python script.

• UDP flood DDoS attack: This is a type of denial of
service attack in which a high volume of User Datagram
Protocol (UDP) packets are transmitted to a targeted
Edge server in order to overwhelm the processing and
response capabilities of that device. When each UDP
packet is first received by the Edge server, it pro-
ceeds through a series of stages to address the request,
while using the edge server’s resources in the process.
As UDP packets are delivered, each one will contain
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TABLE 6. Statistics of normal instances included in Edge-IIoTset dataset.

the IP address of the source device. During this kind
of DDoS attack, an attacker will typically not use his
real IP address but will impersonate the source IP
address of the UDP packets instead, preventing the
attacker’s real place from being revealed and possi-
bly flooded with the target server’s response packets.
The offensive systems with the following IP addresses:
190.123.219.128, 16.226.184.201, 153.125.214.15, and
91.184.12.91 were used to send manipulated UDP pack-
ets using the tool hping3-based python script.

• HTTP flood DDoS attack: This is a type of distributed
denial of service (DDoS) attack that is intended to flood
a particular target server with HTTP queries. After the
target has been flooded with demands and is incapable

of serving normal traffic, a denial of service attack
will take place for further demands from actual users.
Through the use of multiple malware-infected devices,
attackers will employ or commonly build botnets to
ensure that they reach the maximum effect of their
offense. Two different types of HTTP flooding attacks
are available, including, HTTP POST attack and HTTP
GET attack. The offensive systems with the following IP
addresses: 192.168.0.170 and 216.58.198.74 were used
to apply 200000 connections with GET requests using
the slowhttptest tool.

• ICMP flood DDoS attack: An Internet Control Message
Protocol (ICMP) flood DDoS attack is a popular denial
of service (DoS) attack where an attacker tries to
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flood a targeted device through ICMP echo queries
(pings). Technically, ICMP echo query and echo reply
packets are employed to ping a network device to
help diagnose the state of device health and connec-
tion between the source and the destination device.
Flooding the destination with query packets, the net-
work is constrained to reply with an identical number
of reply packets. This makes the destination unavail-
able to regular network traffic. The offensive sys-
tems with the following IP addresses: 213.117.18.213,
183.223.100.122, 166.153.227.121, 49.81.59.152, and
227.117.33.125 were used to send manipulated ICMP
packets using the tool hping3-based python script.

2) INFORMATION GATHERING
Obtaining intelligence about the targeted victim is always the
first step in any successful attack. In our work, we consider
three important steps that malicious actors generally do as a
part of the information gathering stage, namely port scanning,
OS fingerprinting, and vulnerability scanning.
• Port Scanning: The ports of IoT devices connected to
a network are automatically scanned. The purpose is
to discover which ports are open, closed or which of
them have a security protocol. According to this anal-
ysis, intruders can obtain the composition of a net-
work’s architecture, the operating system, active security
devices like firewalls, etc. This attack provides an easy
access point for cyber-attackers. Once they manage to
penetrate a network via port scanning, they will be able
to extract sensitive information such as personal data,
access to passwords, etc. The offensive systems with
the following IP address: 192.168.0.170, were used to
discover active hosts using the Nmap and Netcat tools.

• OS Fingerprinting: Once an attacker can identify the
operating system (OS) type of a targeted device, he can
then attack the vulnerabilities contained in that operating
platform. Operating system fingerprinting is used by
both attackers and security professionals to effectively
and efficiently map remote networks, and to identify
exploitable vulnerabilities. In addition, this attack oper-
ates only for packages with a TCP connection that has
an ACK, SYN/ACK, and SYN. The offensive systems
with the following IP address: 192.168.0.170 were used
to apply an active operating system fingerprinting tool,
named xprobe2.

• Vulnerability scanning attack: This is an automated pro-
cedure for conducting proactive detection of application
and network vulnerabilities. Vulnerability scanning is
usually conducted by attackers attempting to discover
potential entry points into the network. This type
of attack can be categorized based on three cate-
gories, including, environmental vulnerability scans,
internal vulnerability scans, and external vulnerabil-
ity scans. Specifically, the external vulnerability scans
consist of scanning applications that are accessed by
external users. The internal vulnerability scans consist

of scanning and identifying the vulnerabilities inside
the network, while the environmental vulnerability
scans are based on the specific environment of IoT
devices operations. The offensive systems with the fol-
lowing IP addresses: 192.168.0.170, 142.250.200.205,
172.217.19.35, and 142.250.201.10, were used for per-
forming comprehensive tests against web servers using
a web server scanner tool, named Nikto.

3) MAN IN THE MIDDLE ATTACKS
This attack is intended to compromise and alter the flow of
communication between two sides who assume to be in direct
communication with each other. we focus on using this attack
by targeting a couple of the most commonly used protocols
in almost every system today, DNS and ARP.
• DNS Spoofing attack: The attacker uses the weaknesses
of the DNS (Domain Name System) protocol and/or its
implementation through the domain name servers. There
are two main DNS Spoofing attacks: DNS ID Spoofing
and DNS Cache Poisoning. Specifically, the attacker’s
objective is to associate the IP address of a machine
under his control with a real and valid name of a public
machine. When an IoT device wants to communicate
with the edge server, the IoT device needs the IP address
of the edge server. However, the IoT device may only
have the name of the edge server. In this case, the
IoT device will use the DNS protocol to obtain the IP
address of the edge server from its name. The DNS ID
Spoofing attack consists of capturing the ID number
(i.e., when a DNS request is sent to a DNS server) in
order to send a forged response before the DNS server
and this by sniffing when the attack is performed on
the same physical network. Since the DNS servers have
a cache that keeps the correspondence between an IoT
device name and its IP address for a certain time, the
DNS Cache Poisoning consists of corrupting this cache
with false information. The offensive systems with the
following IP addresses: 192.168.0.101, 192.168.0.152,
172.217.19.35, and 192.168.0.170, were used to sniff
and spoof DNS system using the Ettercap tool.

• ARP Spoofing attack: This is a MitM attack that allows
attackers to intercept communications between network
devices. The attacker requires prior access to the IoT
network. Once on the targeted network, he scans the
network to determine the IP addresses of at least two
IoT devices. The attacker chooses his target and then
sends false ARP responses where he sends ARP pack-
ets through the IoT network that contain the target’s
IP address and the attacker’s MAC address. The false
responses state that the correct MAC address for the two
IP addresses, which are owned by the router and the tar-
get IoT device, is the attacker’s MAC address. As the
other IoT devices store the spoofed ARP packets, the
data sent by these devices to the victimwill be forwarded
to the attacker instead. Based on this attack, the attacker
can steal data or launch a more sophisticated tracking
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attack. The offensive systems with the following IP
address: 192.168.0.101, 192.168.0.152, 172.217.19.35,
and 192.168.0.170, were used to sniff and spoof ARP
systems using the Ettercap tool.

4) INJECTION ATTACKS
These attacks aim at compromising the integrity and con-
fidentiality of the targeted system. We used three different
approaches, namely XSS, SQL injection, and uploading
attacks.
• Cross-site Scripting (XSS) attack: This is a type of secu-
rity vulnerability of websites. Specifically, malicious
scripts are injected into websites in order to attack users’
systems. These scripts are created in scripting languages
(e.g. JavaScript), which are run in the Internet browser.
The potential threat of cross-site scripting is the pos-
sibility of uploading user data to the browser without
any verification. The diversity of XSS-based attacks
is practically unrestrained, but they generally involve
forwarding vulnerable data, such as session information
or cookies, to the attacker, forwarding the target to the
attacker’s controlled web content. The XSS attacks can
usually be divided into two different types: reflected
and stored. The offensive systems with the following IP
addresses: 192.168.0.170, 172.217.19.42, 104.16.87.20,
were used to detect, exploit and report XSS vulnerabili-
ties using the xsser tool in a PHP/MySQL web applica-
tions (DVMA application).

• SQL Injection: This type of attack operates on the secu-
rity vulnerabilities of an application that interacts with
databases. The SQL attack involves the modification
of a running SQL query by the injection of an unex-
pected query fragment, usually through a web form. The
attacker can then access the database, but also change
the information contained within it, thus damaging the
safety of the application. The types of SQL injection
can be classified into four types, including, error-
based, stacked queries, blind-based, and union-based.
The error-based method inserts fragments that return
what the hacker is trying to extract from the database,
field by field. With the stacked queries method, the
attacker not only retrieves data but can also get data
directly from the database, by injecting another SQL
query. The blind-based injection type inserts fragments
that return what the attacker is trying to extract from
the database character by character. The union-based
SQL injection inserts fragments that return a set of data
directly retrieved from the database. The offensive sys-
tems with the following IP address: 192.168.0.170 were
used to detect and exploit SQL injection flaws using the
sqlmap tool.

• Uploading attack: There are many websites where
users can upload documents (e.g., financial documents,
resume, profile picture,etc.). Once the attacker success-
fully uploads a malware program file into the webserver,
he/she can obtain administrative privileges. Based on

this attack, the attacker can upload and run a web shell,
filtrate potentially confidential data, upload a permanent
XSS as well as a phishing page. The offensive systems
with the following IP address: 192.168.0.170 were used
to create a PHP backdoor using Metasploit framework
and uploading through a PHP/MySQL web application
(e.g., Damn Vulnerable Web App (DVWA)).

5) MALWARE ATTACKS
These kinds of attacks are the ones that have gone publicly
viral in the last few years, not just because of the extensive
damage they have caused, but also because of the reported
losses involved. We used three types of such attacks, namely
backdoor, password crackers, and ransomware attacks.
• Backdoor attack: This malicious software is used to
provide attackers with unauthorized remote access to an
infected IoT device by exploiting vulnerabilities in the
system. An attacker can use the backdoor attack to sniff
a user, manage his or her files, attack other hosts, install
additional software or malware, as well as monitor the
whole system. The offensive systems with the following
IP address: 192.168.0.170 were used to create a python
script backdoor using the Metasploit framework and
then transferring it using the curl tool.

• Password cracking attack: This attack consists of trying
to find a password or a key through successive attempts.
This means that the password is broken by trying succes-
sive combinations until the right one is found. This can
range from alphanumeric attempts: a, aa aaa, ab, abb,
abbb, etc., or from a dictionary of the most commonly
used passwords. The offensive systems with the follow-
ing IP address: 192.168.0.170 were used to lunch this
attack. The CeWL tool is used as a Ruby app for creating
a list of words (password crackers) and email addresses
(usernames).

• Ransomware attack: This is a type of malware that takes
hostage files or IoT devices. Specifically, the attacker
demands a ransom in exchange for restoring access or
decrypting files. The cybercriminals behind this attack
will contact the victim with their demands, promising to
unlock the IoT device or decrypt the files once pay a ran-
som, which is usually in Bitcoin. The offensive systems
with the following IP address: 192.168.0.170 were used
to lunch this attack. After applying the Backdoor attack,
the OpenSSL cryptography toolkit is used for creating
RSA public/private keys and encrypting and decrypting
victim files.

C. THE DIRECTORIES OF THE EDGE-IIoTset DATASET
As published in [1], the directories of the Edge-IIoTset
datasets contain 49 files, which are organized into three
sub-directories as follows:

1) NORMAL TRAFFIC OF IoT AND IIoT APPLICATIONS
This subdirectory is namedNormal traffic, which contains the
following 10 files.

VOLUME 10, 2022 40295



M. A. Ferrag et al.: Edge-IIoTset: New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications

TABLE 7. The list of extrapolated features obtained from different sources, including alerts, system resources, logs, IoT and IIoT network traffic.

• File 1.1 (Distance): This file includes two docu-
ments, namely, Distance.csv andDistance.pcap. The IoT

sensor (Ultrasonic sensor) is used to capture the IoT
data.
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• File 1.2 (Flame_Sensor): This file includes two doc-
uments, namely, Flame_Sensor.csv and Flame_Sensor.
pcap. The IoT sensor (Flame Sensor) is used to capture
the IoT data.

• File 1.3 (Heart_Rate): This file includes two documents,
namely, Flame_Sensor.csv and Flame_Sensor.pcap. The
IoT sensor (Flame Sensor) is used to capture the IoT
data.

• File 1.4 (IR_Receiver): This file includes two docu-
ments, namely, IR_Receiver.csv and IR_Receiver.pcap.
The IoT sensor (IR (Infrared) Receiver Sensor) is used
to capture the IoT data.

• File 1.5 (Modbus): This file includes two documents,
namely, Modbus.csv and Modbus.pcap. The IoT sensor
(Modbus Sensor) is used to capture the IoT data.

• File 1.6 (phValue): This file includes two documents,
namely, phValue.csv and phValue.pcap. The IoT sensor
(pH-sensor PH-4502C) is used to capture the IoT data.

• File 1.7 (Soil_Moisture): This file includes two docu-
ments, namely, Soil_Moisture.csv and Soil_Moisture.
pcap. The IoT sensor (Soil Moisture Sensor v1.2) is used
to capture the IoT data.

• File 1.8 (Sound_Sensor): This file includes two doc-
uments, namely, Sound_Sensor.csv and Sound_Sensor.
pcap. The IoT sensor (LM393 Sound Detection Sensor)
is used to capture the IoT data.

• File 1.9 (Temperature_and_Humidity): This file includes
two documents, namely,
Temperature_and_Humidity.csv and
Temperature_and_Humidity.pcap. The IoT sensor
(DHT11 Sensor) is used to capture the IoT data.

• File 1.10 (Water_Level): This file includes two docu-
ments, namely, Water_Level.csv andWater_Level.pcap.
The IoT sensor (Water sensor) is used to capture the IoT
data.

2) ATTACK TRAFFIC OF IoT AND IIoT APPLICATIONS
This subdirectory is named Attack traffic, which contains the
following 28 files, including 14 CSV files and 14 PCAP files.
• Attack traffic (CSV files): This 14 files includes
Backdoor_attack.csv, DDoS_HTTP_Flood_attack.csv,
DDoS_ICMP_Flood_attack.csv,
DDoS_TCP_SYN_Flood_attack.csv,
DDoS_UDP_Flood_attack.csv, MITM_attack.csv,
OS_Fingerprinting_attack.csv, Password_attack.csv,
Port_Scanning_attack.csv, Ransomware_attack.csv,
SQL_injection_attack.csv, Uploading_attack.csv,
Vulnerability_scanner_attack.csv, XSS_attack.csv. Each
file is specific for each attack.

• Attack traffic (PCAP files): This 14 files includes
Backdoor_attack.pcap, DDoS_HTTP_Flood_attack.
pcap, DDoS_ICMP_Flood_attack.pcap,
DDoS_TCP_SYN_Flood_attack.pcap,
DDoS_UDP_Flood_attack.pcap, MITM_attack.pcap,
OS_Fingerprinting_attack.pcap, Password_attack.pcap,
Port_Scanning_attack.pcap, Ransomware_attack.pcap,

SQL_injection_attack.pcap, Uploading_attack.pcap,
Vulnerability_scanner_attack.pcap, XSS_attack.pcap.
Each file is specific for each attack.

3) SELECTED DATASET FOR ML AND DL
This directory contains two CSV files namely,
DNN-EdgeIIoT-dataset.csv and ML-EdgeIIoT-dataset.csv.
The DNN-EdgeIIoT-dataset.csv contains a selected dataset
for the use of evaluating deep learning-based intrusion
detection systems. The ML-EdgeIIoT-dataset.csv contains a
selected dataset for the use of evaluating traditional machine
learning-based intrusion detection systems.

V. EXTRAPOLATED FEATURES
To extract flow features from the network packets (i.e.,
PCAP files), we have analyzed different sources, including
alerts, system resources, logs, and network traffic. Therefore,
we have analyzed the attributes of each protocol recorded in
the network, namely, frame, Internet Protocol Version 4 (IP),
Address Resolution Protocol (ARP), Internet Control Mes-
sage Protocol (ICMP), Hypertext Transfer Protocol (HTTP),
Transmission Control Protocol (TCP), User Datagram Pro-
tocol (UDP), Domain Name System (DNS), MQ Telemetry
Transport Protocol (MQTT), Modbus/TCP (mbtcp). Then,
we have used two networks protocols analyzers, namely, the
Zeek tool and TShark tool, to extract and filter the features.
To identify features with high correlation, we have devel-
oped a python script based on the Yellowbrick package. The
61 extrapolated features are demonstrated in Tab. 7.

We indicate that an authentic labeling operation was
performed to label all records, whether normal or attack.
Specifically, we have added two new attributes, namely,
Attack_label and Attack_type. The Attack_label contains
0 or 1, which is used for the binary classification model (i.e.,
0 indicates normal and 1 indicates attacks). The Attack_type
presents the attack categories, that are used for the multiclass
classification model (i.e., a classification task with more than
two classes).

A. INTERNET PROTOCOL VERSION 4 (IP)
The Internet Protocol delivers the transport feature of the
network layer (layer 3), which is deployed to transmit data
packets from one IP address to other addresses. The end-user
of the network layer will provide a remote IP address with
a packet, which IP is required to forward the packet to that
particular host. Based on the network protocol analyzer tool,
we have found 138 attributes (e.g., Source or Destination
Address, Destination Address, Destination Host, Timestamp,
Transmission Control Code, IPv4 Fragment, Version, etc.).
We have identified and selected two features with high corre-
lation, including, ip.src_host and ip.dst_host.

B. ADDRESS RESOLUTION PROTOCOL (ARP)
The address resolution protocol is employed to determine
the address assignment between a Layer 3 (protocol) address
and a Layer 2 (hardware) address in a dynamic manner.
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Based on the network protocol analyzer tool, we have
found 51 attributes (e.g., Target hardware address, Target
protocol address, Target IP address, Hardware size, Hard-
ware type, Sender MAC address, Sender protocol size,
Sender protocol address, Sender IP address, etc.). We have
identified and selected four features with high correlation,
including, arp.dst.proto_ipv4, arp.opcode, arp.hw.size, and
arp.src.proto_ipv4.

C. INTERNET CONTROL MESSAGE PROTOCOL (ICMP)
This protocol is used by IP to transfer control messages
between IP hosts. Based on the network protocol analyzer
tool, we have found 107 attributes (e.g., Address entry size,
Address Mask, Checksum, Timestamp from ICMP data,
ICMP Extensions, Sequence Number, Address Family Iden-
tifier, Interface Index, Name Length, Length of the original
datagram, UDP tunneling, Gateway Address, Request frame,
Response time, etc.). We have identified and selected four
features with high correlation, including, icmp.checksum,
icmp.seq_le, icmp.transmit_timestamp, and icmp.unused.

D. HYPERTEXT TRANSFER PROTOCOL (HTTP)
This is a text-based request-response client-server proto-
col, where an HTTP request is sent to an HTTP server
(e.g. the Apache HTTP server) by an HTTP client (e.g.
a web browser such as Mozilla). Based on the net-
work protocol analyzer tool, we have found 83 attributes
(e.g., Full request URI, Request URI Query, Status Code,
Sec-WebSocket-Accept, Time since request, Set-Cookie,
Sec-WebSocket-Extensions, Proxy-Authenticate, Proxy-
Authorization, Proxy-Connect-Hostname, Proxy-Connect-
Port, File Data, etc.). Based on the network protocol analyzer
tool, we have found 83 attributes (e.g., Full request URI,
Request URI Query, Status Code, Sec-WebSocket-Accept,
Time since request, Set-Cookie, Sec-WebSocket-Extensions,
Proxy-Authenticate, Proxy-Authorization, Proxy-Connect-
Hostname, Proxy-Connect-Port, File Data, etc.). We have
identified nine features with high correlation, including,
http.file_data, http.content_length, http.request.uri.query,
http.request.method, http.referer, http.request.full_uri, http.
request.version, http.response, and http.tls_port.

E. TRANSMISSION CONTROL PROTOCOL (TCP)
The TCP protocol offers a connection-oriented data trans-
fer based on the flow of data. Based on the network
protocol analyzer tool, we have found 267 attributes
(e.g., Acknowledgment Number, SEQ/ACK analysis, TCP
Analysis Flags, TCP window update, Checksum, Proxy-
Authenticate, Conversation completeness, Connection finish
(FIN), TCP segment data, TCP Flags, MD5 digest, Multi-
path TCP Data ACK, etc.). We have identified fifteen fea-
tures with high correlation, including, tcp.ack, tcp.ack_raw,
tcp.checksum, tcp.connection.fin, tcp.connection.rst, tcp.
connection.syn, tcp.connection.synack, tcp.dstport, tcp.flags,
tcp.flags.ack, tcp.len, tcp.options, tcp.payload, tcp.seq, and
tcp.srcport.

Algorithm 1: Dataset Processing and Analyzing

1 Processing (CSV1, . . . ,CSVn):
2 Joined_files = CSV1, . . . ,CSVn
3 Selected_Features = F1, . . . ,Fn
4 for i = 1,..,n do
5 add_column(CSVi, ‘‘Attack_label ′′)
6 add_column(CSVi, ‘‘Attack_type′′)
7 end
8 if IoT traffic is normal then
9 for i = 1,..,n do
10 add_values(CSVi, ‘‘Attack_label ′′, ‘‘0′′)
11 add_values(CSVi, ‘‘Attack_type′′, ‘‘Normal ′′)

12 end
13 end
14 if IoT traffic is attack then
15 for i = 1,..,n do
16 add_values(CSVi, ‘‘Attack_label ′′, ‘‘1′′)
17 add_values(CSVi, ‘‘Attack_type′′, ‘‘Type′′)
18 end
19 end
20 CSVx = concat(joined_files)
21 CSVx = drop(CSVx , Selected_Features)
22 CSVx = drop_duplicates(CSVx)
23 CSVx =

encode_text_dummy(CSVx , Selected_Features)
24 CSV_train,CSV_test=split_dataset(CSVx)
25 OneHotEncoder(CSV_train,CSV_test)
26 StandardScaler(CSV_train,CSV_test)
27 SMOT (CSV_train,CSV_test)

Algorithm 2: Centralized Learning

1 Edge Server (x):
33 B← Split(P , B)
55 for i = 1,..,E do
6 for b ∈ B do
7 x← x − η∇fe(x, b)
8 end
9 end

F. USER DATAGRAM PROTOCOL (UDP)
The UDP layer offers transport layer (layer 4) function-
ality based on connectionless datagrams. Based on the
network protocol analyzer tool, we have found 30 attributes
(e.g., Checksum, Bad checksum, Destination Port, Length,
Payload, Source or Destination Port, Destination process ID,
Source process ID, Source Port, Stream index, Location, PDU
Size, etc.). We have identified three features with high corre-
lation, including, udp.port, udp.stream, and udp.time_delta.

G. DOMAIN NAME SYSTEM (DNS)
DNS is the system used to solve the storage of domain name
information, including mail servers, IP addresses, and other
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TABLE 8. Notation for the discussion of algorithms.

Algorithm 3: Federated Learning (FedAvg) [31]

1 Edge Server (K, C, R):
2 x1← GenericModel()
3 for t = 1, ..,R do
4 St ← Subset(max(C · K , 1), ‘‘random′′)
5 Parallel.for k ∈ St do
6 xkt+1← IoTDevice(xt , k)
7 end
8 xt+1←

∑K
k=1

nk
n x

k
t+1

9 end
1 IoT device (x, k):
33 B← Split(P , B)
55 for i = 1,..,E do
6 for b ∈ B do
7 x← x − η∇fc(x, b)
8 end
9 end
10 Send x to Edge Server

details. Based on the network protocol analyzer tool, we have
found 357 attributes (e.g., Address, Hostname, Prefix Length,
Issuer Critical, Report URL, Certificate, Key Tag, Digest,
Conflict, DNS Gateway, IPv4 Gateway, Source Netmask,
etc.). We have identified seven features with high correla-
tion, including, dns.qry.name, dns.qry.name.len, dns.qry.qu,
dns.qry.type, dns.retransmission, dns.retransmit_request, and
dns.retransmit_request_in.

Algorithm 4: Feature Selection

1 Feature_selection (CSVx ,TF):
2 Model← GenericModel(RandomForest)
44 while Features(CSVx) > TF do
5 CSV_train,CSV_test=split_dataset(CSVx)
6 Train Model with CSV_train
7 IF ← Found_Features_Importance(Model)
8 LF ← Found_Features_lowest(Model)
9 drop(CSVx ,LF )
10 end

H. MQ TELEMETRY TRANSPORT PROTOCOL (MQTT)
This is the most important protocol for IoT applica-
tions, which is used in a wide variety of industries. The
MQTT protocol is constructed as an ultra-lightweight pub-
lish/subscribe messaging transport, which is suitable for
interconnecting remote devices using a small code foot-
print and low network bandwidth. Based on the network
protocol analyzer tool, we have found 78 attributes (e.g.,
Reason Code, Client ID, Client ID Length, Acknowledge
Flags, QoS Level, User Name Flag, Connect Flags, Keep
Alive, Msg Len, Message, Password, QoS, etc.). We have
identified thirteen features with high correlation, including,
mqtt.conack.flags, mqtt.conflag.cleansess, mqtt.conflags,
mqtt.hdrflags, mqtt.len, mqtt.msg_decoded_as, mqtt.
msg, mqtt.msgtype, mqtt.proto_len, mqtt.protoname, mqtt.
topic, mqtt.topic_len, and mqtt.ver.
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TABLE 9. Settings for deep learning classifier.

I. MODBUS/TCP (MBTCP)
The Modbus/TCP protocol is commonly adopted in IIoT
as a local interface to manage IIoT devices, which is the
Modbus RTU protocol with a TCP interface. This proto-
col uses a client/server architecture (i.e., runs on Ethernet).
Based on the network protocol analyzer tool, we have found
65 attributes (e.g., Length, Data, diagnostic code, Broad-
cast Received, Character Overrun, Communication Error,
Slave Abort Exception Sent, status, Number of Objects,
Read Device ID, Protocol Identifier, Transaction Identifier,
function code, etc.). We have identified three features with
high correlation, including, mbtcp.len, mbtcp.trans_id, and
mbtcp.unit_id.

VI. THE PERFORMANCE EVALUATION
This section discusses the experimental results of the pro-
posed Edge IIoT dataset, using centralized and federated deep
learning-based intrusion detection with common evaluation
metrics. Fig. 3 illustrates the main difference between these
two learning approaches. Tab. 8 presents the notations list
used within the proposed algorithms.

Firstly, we have used four conventional machine learn-
ing algorithms namely, Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), as well as the most popular Deep Neural Network
(DNN) for cyber-attack detection to evaluate models accu-
racy, using both centralized and federated learning against
the proposed large-scale and heterogeneous dataset. Tab. 9
shows the different parameters applied for the imple-
mented deep learning classifiers. Therefore, as familiar
with machine learning workflow, we start with preparing
data and cleaning our data from duplicates and missing
values such as NAN (Not A Number) or ’INF’ (Infinite
Value). Then, we drop unnecessary flow features such as
IP addresses, ports, timestamp, and payload information
(i.e frame.time, ip.src_host, ip.dst_host, arp.src.proto_ipv4,
arp.dst.proto_ipv4, http.file_data, http.request.full_uri, icmp.
transmit_timestamp, http.request.uri.query, tcp.options, tcp.
payload, tcp.srcport, tcp.dstport, udp.port, mqtt.msg). After
that, we perform label-encoding by mapping the remain-
ing categorical features (non-numeric) to numeric values.
We apply feature scaling using a standardization algorithm.
We split the data to produce Train sets for training and

TABLE 10. Statistics of normal and attacks in Edge-IIoTset.

TABLE 11. Statistics of total selected observation for training and testing.

validating and Test sets for the final model evaluation. The
statistics of normal and attacks involved in the dataset are
described in Tab. 10.

Tab. 11 illustrates the randomly selected subsets data for
ML algorithms and the resulting Train and Test sets after
data cleaning and splitting. For the DNN we have selected
a greater portion of data for more accuracy. We also used
SMOTE for oversampling minority classes (MITM, Finger-
printing) to enhance the overall model efficiency.

We conducted three experiments using Binary, 6-class,
and 15-class classification to better study both traffic pre-
dictability and detection efficiency of various cyber-attacks
and threat models. Furthermore, we studied centralized and
federated learning to evaluate detection accuracy when con-
sidering privacy, heterogeneity, and the availability of data
issues.

The availability of cloud solutions to overcome the
shortcomings of resource limitation, centralized learning
characterized by the availability of rich data promotes higher
detection capabilities against complicated and large-scale
attack patterns. Thus, we have studied various centralized
detection approaches using google Colab resources.

For machine learning algorithms, we implement a work-
flow pipeline composed of: features selection using Random
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FIGURE 3. Centralized vs. Federated learning modes.

Forest, model initialization, and hyper-parameter tuning
using Grid Search with stratified cross-validation technique
to finally obtain a generalized and more efficient model.
The algorithms 1, 2, 3, and 4 are used in the performance
evaluation of the Edge-IIoTset dataset, for 1) dataset pro-
cessing and analyzing, 2) centralized learning approach,
3) federated learning (FedAvg) approach [31], 4) feature
selection method, respectively. The resulted models were
then evaluated using the Test data and considering the fol-
lowing detection metrics:
• Accuracy: is used to determine the proportion of correct
classifications to the total number of entries, which is
given by :

Acc =
TPAttack + TNNormal

TPAttack + TNNormal + FPNormal + FNAttack
(1)

• Precision: denotes the proportion of correct attack
classes to the total amount of predicted attack results,
which can be given by :

Pr =
TPAttack

TPAttack + FPNormal
(2)

• Recall: denotes the proportion of proper attack classifi-
cations relative to the overall count of all samples that
ought to have been identified as attacks, it is given by :

Rc =
TPAttack

TPAttack + FNAttack
(3)

• F1-Score: reports the Harmonic Mean between Preci-
sion and Recall, which is given by:

F1 = 2 ·
Precision · Recall
Precision+ Recall

(4)

FIGURE 4. Confusion matrix of DNN using binary and multi-class
classification (2-class, 6 class, and 15 class).

A. CENTRALIZED MACHINE LEARNING
The confusion matrix of the DNN model of the Edge-IIoTset
datasets (i.e., 2-class, 6-class, and 15-class) are depicted in
Fig. 4. Fig. 5 presents the centralized model performance
of the accuracy of machine learning techniques (DT, RF,
SVM, KNN, DNN) in multiclass classification (i.e., 15-Class
and 6-Class) and binary classification (i.e., 2-Class). For
multiclass classification (15-Class), the highest accuracy was
obtained using the DNN classifier which achieved 94.67%,
while the lowest accuracy was obtained using the DT clas-
sifier with 67.11%, RF classifier with 80.83%, SVM clas-
sifier with 77.61%, and KNN classifier with 79.18%. For
multiclass classification (6-Class), the highest accuracy was
obtained using the DNN classifier which achieved 96.01%,
while the lowest accuracy was obtained using the DT classi-
fier with 77.90%, RF classifier with 82.90%, SVM classifier
with 85.62%, and KNN classifier with 83.39%. For binary
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TABLE 12. Classification report for 2-class of deep learning (Centralized model performance).

TABLE 13. Classification report for 6-class of traditional machine learning as well as deep learning (Centralized model performance).

classification (2-Class), the highest accuracy was obtained
using three classifiers namely, RF, SVM, KNN, DNN which
achieved 99.99%, while the DT classifier obtained an accu-
racy of 99.98%. These obtained results prove that the deep
learning approach is efficient for intrusion detection com-
pared to traditional machine learning techniques (DT, RF,
SVM, KNN) in centralized mode, especially with big data
availability.

Tab. 12 provides a summary of DNN model learning for
attack detection (Binary classification). We implemented a
shallow DNN with only 47 trainable parameters. The model
converges quickly achieving higher detection accuracy of
99.99%. As depicted in the classification report (Fig. 4(a)).
The normal class pattern was well discriminated from all the
attack patterns, due to the nature of IIoT physical objects
that are typically task-oriented and maintain relatively stable
data distribution which enhances both the effectiveness and
the efficiency of attack detection with real-time capabilities.
Tab. 13 provides the obtained centralized model results of
machine learning techniques (DT, RF, SVM, KNN, DNN) in
terms of F1-score, Recall, Precision, under multi-class classi-
fication (6 class). It can be seen that the DNN classifier gives
the highest precision rate for Normal traffic and three types
of attacks, namely, MITM attacks 100%, Malware attacks
97%, and Scanning attacks 94%, while for DDoS attacks
and Injection attacks, the highest precision rate are given by
RF classifier with 98% and 67%, respectively. We note that

FIGURE 5. Centralized model performance.

all machine learning algorithms produce no false positives
for the Normal class, which means that the precision rate is
100%. Therefore, we observe that the DNN classifier can give
a higher recall for two types of attacks, namely, DDoS attacks
with 99% and MITM attacks with 100%. For the Injection
attacks and Scanning attacks, the SVM classifier gives a
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TABLE 14. Classification report for 15-classes of traditional machine learning as well as deep learning (Centralized model performance).

TABLE 15. The evaluation results of the federated deep learning approach.

higher recall with 91% and 91%, respectively. We note also
that all machine learning algorithms produce no false posi-
tives for the Normal class, which means that the recall rate is
100%. Fig. 6 illustrates the five more important features for
each class based on the interpretation of Random Forest pre-
diction which is helpful for further forensic analysis. We can
see that different protocols information contributed well to
identifying a variety of attacks.

Tab. 14 provides the obtained centralized model results of
machine learning techniques (DT, RF, SVM, KNN, DNN)
in terms of F1-score, Recall, Precision, under multi-class
classification (15 class). It can be seen that the DNN classifier
gives the highest precision rate for Normal traffic and six
types of attacks, namely, Backdoor attack 99%, ICMP flood
DDoS attack 100%, UDP flood DDoS attack 100%, MITM
attack 100%, Port Scanning attack 100%, and SQL Injection
91%. The SVM classifier gives the highest precision rate
for Normal traffic and three types of attacks, namely, HTTP
flood DDoS attack 86%, OS Fingerprinting attack 80%, and
Password cracking attack 61%. The RF classifier gives the
highest precision rate for Normal traffic and three types of
attacks, namely, TCP SYN Flood DDoS attack 100%, Ran-
somware attack 96%, and Cross-site Scripting (XSS) attack
65%. The DT classifier gives the highest precision rate for
Normal traffic and two types of attacks, namely, Upload

attack 100% and Cross-site Scripting (XSS) attack 65%.
Therefore, we observe that the KNN classifier can give a
higher recall for three types of attacks, namely, Backdoor
attack 94%, OS Fingerprinting 70%, and Ransomware attack
94%. The DNN classifier can give a higher recall for five
types of attacks, namely, HTTP flood DDoS attack 92%, TCP
SYN Flood DDoS attack 100%, UDP flood DDoS attack
100%, MITM attack 100%, and Password cracking attack
91%. The DT classifier can give a higher recall for two types
of attacks, namely, ICMP flood DDoS attack 100% and SQL
Injection 96%. The SVMclassifier can give a higher recall for
three types of attacks, namely, Port Scanning 100%, Vulner-
ability scanning attack 86%, and Cross-site Scripting (XSS)
attack 88%. Finally, The RF classifier can give only a higher
recall for Upload attack 51%.

B. FEDERATED MACHINE LEARNING
The evaluation results of the federated deep learning
approach for three types of classification, namely, 2-class
(binary classification), 6-class (multi-classification), and
15-class (multi-classification), are presented in Tab. 15.
In particular, the results present the three types of accuracy
metric, namely, global model accuracy, worst client accuracy,
and best client accuracy. These all accuracies are obtained
for the first and the 10th round of deep learning network
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FIGURE 6. Features importance for each class by random forest.

under the federated learning mode. In addition, the results
are obtained for two modes, namely, 1) non-independent
and identically distributed (Non-IID) and 2) independent and
identically distributed (IID).

For 2-class (i.e., binary classification), the best results in
the first round of deep learning network under the feder-
ated learning mode are obtained when the number of clients
k = 5 and k = 10 and with the mode of non-independent
and identically distributed (Non-IID), where the best client
accuracy achieves 99.98%, the worst client accuracy achieves
99.97%, the global model accuracy achieves 99.97%. How-
ever, with the 10th round of deep learning network, the
best results are obtained when the number of clients k =
5, k = 10 and, k = 15 and with the mode of
independent and identically distributed (IID), where the best
client accuracy achieves 100%, the worst client accuracy
achieves 99.99%, and the global model accuracy achieves
100%.

For 6-class (i.e., multi-classification), the best results in
the first round of deep learning network under the feder-
ated learning mode are obtained when the number of clients
k = 10 and with the mode of independent and identically
distributed (IID), where the best client accuracy achieves
95.33%, the worst client accuracy achieves 95.26%, and the
global model accuracy achieves 95.34%.With the 10th round,

the best results of deep learning network are obtained when
the number of clients k = 10 and with the mode of indepen-
dent and identically distributed (IID), where the best client
accuracy achieves 96.00%, the worst client accuracy achieves
95.89%, and the global model accuracy achieves 95.99%.

For 15-class (i.e., multi-classification), the best results in
the first round of deep learning network under the feder-
ated learning mode are obtained when the number of clients
k = 15 and with the mode of independent and identically
distributed (IID), where the best client accuracy achieves
93.00%, the worst client accuracy achieves 93.02%, and the
global model accuracy achieves 93.22%.With the 10th round,
the best results of deep learning network are obtained when
the number of clients k = 15 and with the mode of indepen-
dent and identically distributed (IID), where the best client
accuracy achieves 93.38%, the worst client accuracy achieves
92.91%, and the global model accuracy achieves 93.37%.

From these results, we first observe that with federated
deep learning, the performance of all global models are able
to approximate the centralizedmodel’s performance. The sec-
ond finding is that under the IID data distribution strategy, the
Best, Worst, and Global models are strongly matched to each
other in a consistent manner throughout all parameters and
datasets (i.e., 2-class, 6-class, 15-class). The third observation
is that with the Non-IID case, the clients are able to benefit
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from the federated learning strategy. A clear illustration of
a good example is with a 15-class dataset, where K = 15,
the best accuracy of the client was 71.42%, but with 10th

of federated learning rounds, the client achieved an accuracy
of 91.74%.

VII. CONCLUSION
In this paper, we proposed a new comprehensive realistic
cyber security dataset of IoT and IIoT applications, called
Edge-IIoTset, that cyber security researchers can use to eval-
uate their proposed machine learning-based intrusion detec-
tion systems in two different modes, namely, centralized
and federated learning. The proposed testbed is organized
into seven layers, including, Cloud Computing Layer, Net-
work Functions Virtualization Layer, Blockchain Network
Layer, Fog Computing Layer, Software-Defined Network-
ing Layer, Edge Computing Layer, and IoT and IIoT Per-
ception Layer. It addresses the limitations of the current
data sets and is appropriate for the key requirements of IoT
and IIoT applications, where we provided new emerging
technologies In each layer, such as ThingsBoard IoT plat-
form, OPNFV platform, Hyperledger Sawtooth, Digital twin,
ONOS SDN controller, Mosquitto MQTT brokers, Modbus
TCP/IP, etc. The IoT data are generated from various IoT
devices (more than 10 types). This dataset is analyzed using
a primary exploratory data analysis with the performance of
machine learning approaches in both centralized and feder-
ated learning modes.
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