Edge Image Description Using Angular Radial Partitioning

A. Chalechale, A. Mertins and G. Naghdy IEE Proc.-Vis. Image Signal Processing, 2004

Angular Radial Partitioning

- Partition edge map into angular and radial bin.
- Partition into $M \times N$ bins
 - > M radial parts
 - ➤ N angular parts
- Index a bin by (k,i)

$$\rho = kR/M$$
, $k = 1..M$

$$\theta = 2\pi i/N$$
, $i = 1..N$

Image: $I(\rho,\theta)$

Angular Radial Partitioning

• Sector feature f(k,i) = # edge pixels in (k,i)

$$f(k,i) = \frac{\sum_{\rho = \frac{kR}{M}}^{\frac{(k+1)R}{M}} \sum_{\theta = \frac{i2\pi}{N}}^{\frac{(i+1)2\pi}{N}} I(\rho,\theta)$$

• A feature f(k,i) is shifted when we rotate by

$$\tau = 2\pi l / N$$
 for $l = 0, 1, 2, ...$

Angular Radial Partitioning

Denote image rotation by

$$I_{\tau}(\rho,\theta) = I(\rho,\theta-\tau)$$

Feature rotates as well

$$f_{\tau}(k,i) = f(k,i-l)$$

•
$$F(k, u) = \frac{1}{N} \sum_{i=0}^{N-1} f(k, i) e^{-j2\pi u i/N}$$

•
$$F_{\tau}(k, u) = \frac{1}{N} \sum_{i=0}^{N-1} f_{\tau}(k, i) e^{-j2\pi u i/N}$$

$$F_{\tau}(k, u) = \frac{1}{N} \sum_{i=0}^{N-1} \underline{f_{\tau}(k, i)} e^{-j2\pi u i/N}$$
$$= \frac{1}{N} \sum_{i=0}^{N-1} f(k, i - l) e^{-j2\pi u i/N}$$

$$= \frac{1}{N} \sum_{i=0}^{N-1} f(k, i - l) e^{-j 2\pi u i/N}$$

$$= \frac{1}{N} \sum_{i=-l}^{N-1-l} f(k, i) e^{-j 2\pi u (i+l)/N}$$

$$= \frac{1}{N} \sum_{i=-l}^{N-1-l} f(k,i) e^{-j 2\pi u (i+l)/N}$$

$$= e^{-j2\pi ul/N} F(k, u)$$

Rotational Invariance

Transforms contain rotational invariance

$$F_{\tau}(k,u) = e^{-j2\pi ul/N}F(k,u)$$

• Because their power-spectra are the same

$$||F(k, u)|| = ||F_{\tau}(k, u)||$$

• Choose $\{||F(k,u)||\}$ for k=0..M-1 and u=0..N-1 as image features.

f(k,i)

||F(k,i)||

Other approaches...

Moment Generating Functions

$$M_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q f(x, y) dx dy$$

- ➤ Common image analysis technique
 - Treat the image as a distribution and generate moments.
 - Combine several different moments into a feature vector.

Other approaches...

Zernike Moments

- Less sensitive to noise.
- ➤ More powerful in discriminating objects.
- ➤ Used for shape descriptor in MPEG-7
- ➤ Based on Zernike orthogonal polynomials

$$V_{nl}(x,y) = R_{nl}(r)e^{il\theta}$$

$$R_{nl}(r) = \sum_{s=0}^{(n-|l|)/2} (-1)^s \cdot \frac{(n-s)!}{s!((n+|l|)/2-s)!((n-|l|)2-s)!} r^{n-2s}$$

Other approaches...

• The Zernike Moment Invariant of an image *f*

$$A_{nl} = \frac{n+1}{\pi} \int_0^{2\pi} \int_0^{\infty} \left[V_{nl}(r,\theta) \right]^* f(r\cos\theta, r\sin\theta) r \, dr \, d\theta$$

Can approximate the image by

$$f(x,y) \approx \sum_{n=0}^{N} \sum_{\substack{l \ n-|l| \text{ even}, |l| \le n}} A_{nl} V_{nl}(x,y)$$

• $\{A_{nl}\}$ are used for image matching.

Edge Histogram Methods

- Partition image and build local edge histograms.
- Histogram of Edge Directions
 - ➤ Partition image into large local regions.
 - ➤ Partition each local region into small image patches.
 - > Quantize each patch as horizontal, vertical, diagonal
 - Use filters for this.
 - Collect results into local region histograms.
 - > Perform matching based on histograms.

Edge Histogram Methods

- Application of Histogram Method: Edge Histogram Descriptor (EHD)
 - ➤ Used in MPEG-7 to calculate frame similarity
 - > Algorithm:
 - Divide the image into 16 sub-images
 - Divide each sub-image into blocks
 - Split block into 4 quadrants
 - Use 2x2 filter masks to bin each quadrant into vertical, horizontal, 45°diagonal, 135°diagonal, non-directional.
 - Collect a histogram of edge directions for each sub-image. (Gives you 16 x 5=80 bins)
 - Compare two histograms for similarity

- Also used in MPEG-7 to retrieve/encode object information.
- Can describe complex objects (such as trademarks)
- ART is a transform defined on a unit disc.
- Consists of orthonormal sinusoidal basis functions .

• From each image we extract ART coefficients: ψ_{mn}

$$\psi_{mn} = \int_0^{2\pi} \int_0^1 V_{mn}^*(\rho, \theta) f(\rho, \theta) \rho \, d\rho \, d\theta$$

- $f(\rho, \theta)$ is the image.
- $V_{nm}(\rho,\theta)$ is the basis function

• The basis function: $V_{mn}(\rho,\theta) = A_n(\theta)R_m(\rho)$

Consists of an angular component:

$$A_n(\theta) = \frac{1}{2\pi} e^{jn\theta}$$

• And a radial component: $R_m(\rho) = \begin{cases} 1 & m = 0 \\ 2\cos(\pi m\rho) & m \neq 0 \end{cases}$

- ART Algorithm
 - Normalize image to a set dimension
 - Perform edge detection
 - Calculate ψ_{mn} for m=0..M, n=0..N according to

$$\psi_{mn} = \int_0^{2\pi} \int_0^1 V_{mn}^*(\rho, \theta) f(\rho, \theta) \rho \, d\rho \, d\theta$$

- Scale coefficients by $|\psi_{\theta\theta}|$ to normalize.
- Perform matching on the features ψ_{mn} .

Results

- Use Average Normalized Modified Retrieval Rank (ANMRR)
- Incorporates recall, precision and rank information.
- Defines as:

$$ANMRR = \frac{1}{Q} \sum_{q=1}^{Q} NMRR(q)$$

Average NMRR score for all queries 1,2,...,Q

• NMRR is the normalized MRR score

$$NMRR(q) = \frac{MRR(q)}{K + 0.5 - 0.5 * NG(q)}$$

- NG(q) is the number of ground truth images for query q.
- K=min(4NG(q), 2GTM) where GTM is $max\{NG(q)\}$

• MRR is an adjusted average rank measure

$$MRR(q) = AVR(q) - 0.5 - \frac{NG(q)}{2}$$

• And AVR is the average rank of images in a query

$$AVR(q) = \sum_{k=1}^{NG(q)} \frac{Rank(k)}{NG(q)}$$

• NG(q) is the number of ground truth images for a query q.

• A numerical example:

Suppose a query q has 10 similar images in the database (NG=10). If we find 6 of the top 20 retrievals (K=20) in the ranks 1,5,8,13,14,18 then:

AVR=14.3 MRR=8.8 NMRR=0.5677

$$AVR(q) = \sum_{k=1}^{NG(q)} \frac{Rank(k)}{NG(q)}$$

$$MRR(q) = AVR(q) - 0.5 - \frac{NG(q)}{2}$$

$$\mathit{NMRR}(q) = \frac{\mathit{MRR}(q)}{\mathit{K} + 0.5 - 0.5 * \mathit{NG}(q)}$$

- NMRR and ANMRR are always in [0,1]
- The smaller the ANMRR the better

Test Inputs:

Varying Angular and Radial Partitions

Table 1: ANMRR of ARP method with three radial and varying angular partitions using main database (4320 images)

Normalised size	3 × 4 partitions	3×6 partitions	3×8 partitions	3×9 partitions	3 × 12 partitions	3 × 24 partitions	3 × 36 partitions	3×72 partitions
101 × 101	0.2921	0.2269	0.1538	0.1853	0.1922	0.1660	0.1661	0.1679
129×129	0.2625	0.1847	0.1090	0.1402	0.1441	0.0934	0.1010	0.0865
201×201	0.2072	0.1250	0.0552	0.0806	0.0832	0.0464	0.0451	0.0257
257 × 257	0.2216	0.1334	0.0694	0.0903	0.0931	0.0538	0.0518	0.0293

Table 2: ANMRR of ARP method with 12 angular and varying radial partitions using main database (4320 images)

Normalised size	5×12 partitions	7×12 partitions	10×12 partitions	15×12 partitions	18×12 partitions
101×101	0.1263	0.1107	0.1002	0.0952	0.0910
129×129	0.0974	0.0786	0.0716	0.0646	0.0566
201×201	0.0443	0.0317	0.0244	0.0217	0.0200
257 × 257	0.0512	0.0361	0.0269	0.0253	0.0223

Sensitivity to Rotation

Table 3: ANMRR of the ARP method using selected data sets (2160, 1440, 720 and 480 images)

Partitions	10° rotated	15° rotated	30° rotated	45° rotated
3×12	0.0764	0.0789	0.0617	0.0972
3×8	0.0508	0.0557	0.0579	0.0472

Figure 3: Retrieval results of different methods with ANMRR.

Figure 4: Comparison of feature extraction time.