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Abstract. Edge insertion iteratively improves a triangulation of a finite point set in 

~2 by adding a new edge, deleting old edges crossing the new edge, and retriangu- 

lating the polygonal regions on either side of the new edge. This paper presents an 

abstract view of the edge insertion paradigm, and then shows that it gives polynomial- 

time algorithms for several types of optimal triangulations, including minimizing the 

maximum slope of a piecewise-linear interpolating surface. 

1. Introduction 

A triangulation of a finite set of points S in ~2 is a maximally connected, 

straight-line planar graph with vertex set S. Each bounded face is a triangle, and 

the triangulations includes the boundary of the convex hull. Triangulations find 

use in areas such as finite element analysis [2], [27], computational geometry [21], 
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[8], and surface approximation [7]. Applications typically require triangulations 

with "well-shaped" triangles, meaning--for example--that triangles with very 

small or large angles should be avoided. Taking a worst-case approach, the quality 

of a triangulation can be defined to be the quality of its worst triangle. Interesting 

algorithmic questions then arise when we ask for a triangulation of a given point 

set that optimizes some quality criterion. These questions take the form of 

minmax or maxmin problems, where the first quantifier is over all triangulations 

of the point set, and the second is over all triangles in the triangulation. 

The problem of automatically generating optimal triangulations has been a 

subject for research since the 1960s (see, e.g., the discussion in [13]). In spite of 

this attention, very little is known about constructing optimal triangulations in 

polynomial time. Exhaustive search can be ruled out since a set of n points has, 

in general, exponentially many triangulations. Greedy approaches (such as elimi- 

nating triangles from worst to best) are ruled out by the NP-completeness of the 

following decision problem [20]: given a collection of points and edges, decide 

whether a subset of the edges defines a triangulation of the points. 

Most positive results are related to the Delaunay triangulation [6]. It has been 

shown that among all triangulations of a given finite point set, the Delaunay 

triangulation optimizes various criteria. The Delaunay triangulation maximizes 

the minimum angle [26], minimizes the maximum circumscribing circle [5], and 

minimizes the maximum smallest enclosing circle [5], [22]. Efficient algorithms 

for constructing Delaunay triangulations are abundant in the literature and are 

based on such diverse algorithmic paradigms as edge-flipping [17], [18], divide- 

and-conquer [25], [15], geometric transformation [3], plane-sweep [12], and 

randomized incrementation [14]. 

Recently, Edelsbrunner, Tan, and Waupotitsch devised a polynomial-time algo- 

rithm that minimizes the maximum angle [10]. This algorithm constructs a 

minmax-angle triangulation by iteratively inserting a new edge, removing old edges 

crossed by the new edge, and then retriangulating the polygonal "holes" on either 

side of the new edge. 

This paper presents an abstraction of the minmax-angle algorithm, which we 

call the edge-insertion paradigm, and applies it to obtain polynomial-time algo- 

rithms for some other optimal triangulation problems. The specific new results 

are an O(n z log n)-time algorithm that constructs a triangulation with maxmin 

triangle height, an O(n3)-time algorithm for minmax triangle eccentricity (distance 

from circumcenter), and--most significantly--an O(n3)-time algorithm for finding 

a triangulated surface, interpolating given points in 9~ a, with minmax gradient. 

All three criteria are mentioned as open problems in a survey article on "system- 

atic" triangulations [28]. 

Section 2 formulates the edge-insertion paradigm, which locally improves a 

triangulation according to a generic criterion. When instantiated to a specific 

criterion, the basic paradigm gives a local optimum in time O(nS). Section 3 states 

two abstract conditions for quality criteria, the first strictly weaker than the 

second. Section 4 proves that even the weaker condition suffices to show that the 

edge-insertion paradigm computes a global optimum; the argument is rather 

delicate. Section 5 discusses refinements of the basic paradigm with improved 
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running times; here we show that the weaker condition implies an O(n3)-time 

algorithm and the stronger condition implies an O(n 2 log n)-time algorithm. (We 

do not yet know of any quality criteria globally optimized by the O(n 8) basic 

algorithm, but not by the O(n 3) algorithm.) Sections 6, 7, and 8 prove that the 

three specific optimization criteria mentioned above satisfy one or the other of 

the two conditions. Section 9 offers some concluding remarks. 

2. The Edge-lnsertion Paradigm 

We start with some definitions. A triangulation of a finite point set S in 2 2 is 

defined above as a maximally connected, straight-line planar graph with vertex 

set S. A constrained trianoulation is a maximally connected, straight-line planar 

graph restricted to lie within a given connected polygonal region; the vertex set 

of the triangulation includes the vertices of the polygonal region along with any 

interior point "holes." Thus, a triangulation of a point set S is the special case in 

which the polygonal region is the convex hull of S. Another special case is a 

polygon triangulation in which there are no holes. 

We denote by xy the relatively open line segment that connects the points 

x, y e w  2. For x, y, z~912, xyz is the open triangle with corners x, y, z. For a given 

finite point set S in 9t 2 and x, y, z e S, we call xyz an empty triangle if all other 

points of S lie outside the closure of xyz. 
Let It be a function that maps each triangle xyz to a real value It(xyz), called 

the measure of  xyz. We restrict our attention to minmax criteria, that is, for each 

It we consider the construction of a triangulation that minimizes the maximum 

It(xyz) over all triangles xyz. Maxmin criteria can be simulated by considering 

- i t .  The measures of particular interest in this paper are largest angle, height 

(actually, negative height, since we desire maxmin height), eccentricity, and the 

gradient on a triangulated (nonplanar) surface. 

The measure of a triangulation d is defined as It(d) = max{it(xyz) lxyz a triangle 

of d} .  If ~r and M are two triangulations of the same point set, then M is called 

an improvement of ~r denoted M <~ d ,  if It(9~) < p (d)  or It(M) = It(~r and the set 

of triangles xyz in M with #(xyz) = It(M) is a proper subset of the set of such 

triangles in d .  A triangulation ~r is optimal for # if there is no improvement of d .  

The edge-insertion paradigm uses a natural local improvement operation, not 

surprisingly called an "edge-insertion." Given a triangulation d of a point set S, 

the edge-insertion of qs, for q, s ~ S, goes as follows: 

Function EDGE-INSERTION (~r qs): triangulation. 

1. M : = d .  

2. Add qs to M and remove from M all edges that intersect qs. 

3. Retriangulate the polygonal regions P and R constructed in step 2. 

4. return M. 

For now we assume that regions P and R (see Fig. 2.1) are retriangulated in an 

optimal fashion (minimizing the maximum It), e.g., by dynamic programming [16]. 
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Fig. 2.1. 

q 

Inserting qs leaves two polygonal regions P and R. 

The basic, most general, version of the edge-insertion paradigm is given below; it 

tries all possible edge-insertions and halts when no edge-insertion improves the 

current triangulation. 

Input. A set S of n points in 5t 2. 

Output. An optimal triangulation 3- of S. 

Algorithm 

Construct an arbitrary triangulation d of S. 

repeat .~ := sO; 

for all pairs q, s ~ S do 

: =  EDGE-INSERTION ( ~ ,  qs); 

if �9 < ~r then ~r := ~ ;  exit the for-loop endif 

endfor 

until ~-  = d .  

The edge-insertion paradigm can be viewed as a generalization of the edge- 

flipping paradigm that computes a Delaunay triangulation [17], [18]. An edge-flip 

inserts the diagonal of a convex quadrilateral formed by two neighboring triangles; 

the process halts when no edge-flip improves the current triangulation. The simpler 

edge-flipping paradigm, however, fails to compute global optima for maximum 

angle, height, eccentricity, and slope, as we show in later sections of this paper. 

We now argue that the basic algorithm above terminates after time O(nS). A 

single edge-insertion operation takes time O(n 3) when retriangulation is done by 

dynamic programming [16], assuming the measures of any two triangles can be 

compared in constant time. The for loop thus takes time O(n 5) per iteration of the 

repeat loop. Finally, the repeat loop is iterated at most O(n 3) times, because there 

are only (~)triangles spanned by S, and each iteration permanently discards at 

least one of them when it finds an improvement of the current triangulation. 

Remark, The edge-insertion paradigm can be extended to constrained triangula- 

tions by limiting the edge-insertion operation to edges ab that lie in the interior 

of the restricting polygonal region. As a consequence, a triangulation that 

lexicographically minimizes the decreasing vector of triangle measures can be 

constructed in the nondegenerate case, that is, when #(abc)# #(xyz) unless 

abc= xyz. Details can be found in [10]. 
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3. Two Sufficient Conditions 

We now formulate two conditions on measures #, sufficient to show that the 

edge-insertion paradigm computes a global optimum (i.e., minmax ~). They are 

also sufficient to imply algorithms much faster than O(n8); these are given in 

Section 5. 

Let S be a set of n points in 9~ 2, let :~ be a triangulation of S, and let xyz  be 

an empty triangle in S. We say that ~ breaks xyz  at y if it contains an edge yt 

with yt c~ xz  ~ ~ .  Note that i f ~  breaks xyz  at y, then it cannot break xyz at x or z. 

We call vertex y an anchor of an empty triangle xyz in point set S, if every 

triangulation ~r of S, with #(~) < #(xyz), either contains xyz  or breaks xyz at y. 

For example, if #(xyz) is the measure of the largest angle in xyz, and the largest 

angle has vertex y, then y is an anchor. Intuitively speaking, if a triangle has an 

anchor, it will be the triangle's "worst vertex." We can now give the two conditions 

on quality measures #. 

(I) (Weak Anchor Condition) For each triangulation d ,  and each triangle xyz 

of ~r with l~(xyz) =/~(d) ,  there is an anchor vertex of xyz. 

In other words, ~ can be an improvement of d only if it breaks a worst triangle 

of d at its anchor. Since ~ cannot break a triangle at two vertices, a triangle's 

anchor is unique in triangulations d with # (d )  larger than the minimum. Thus, 

if xyz  is an empty isosceles triangle with two largest angles, then no triangulation 

can have minmax angle less than this largest angle. 

(II) (Strong Anchor Condition) For each triangulation d and each triangle xyz  

of ~r there is an anchor vertex of xyz. 

Notice that /~ equal to the measure of the largest angle satisfies (II), since the 

largest angle in any triangle x y z - - n o t  just a worst triangle--must either appear 

in a triangulation d with p ( d ) <  #(xyz), or be subdivided by it. An important 

difference between the weak and strong conditions is that in (I) the triangulation 

d that contains xyz  plays an important role, while in (II) d is insignificant. 

4. Proof of  Correctness 

The Cake Cutting Lemma (below) asserts that if d is not yet optimal for measure 

# satisfying condition (I), then there is an edge whose insertion leads to an 

improvement, specifically an edge breaking a worst triangle at its anchor. In [10] 

this lemma is proved for the maximum angle measure using an argument that 

rotates edges of an optimal triangulation of S. While this argument works for 

angles, we need a different argument for the general class of measures that satisfy 

(I). 

Before continuing, we remark that the regions P and R (created in step 2 of an 

edge-insertion) are not necessarily simple polygons in the usual meaning of the 

term. Although their interiors are always simply connected, there can be edges 

contained in the interiors of their closures, as shown in Fig. 2.1. Nevertheless, each 
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such edge can be treated as if it consisted of two edges, one for each side, which 

then allows us to treat P and R as if they were simple polygons. 

As usual, a diagonal of a simple polygon is a line segment that connects two 

vertices and---except at its endpoints--lies interior to the polygon. An ear is a 

triangle bounded by two polygon edges and one diagonal. 

Lemma 4.1 (Cake Cutting). Assume t~ satisfies condition (I). Let J -< ~ be two 

triangulations o f  point set S. Let pqr be a triangle in ~r but not in 9- with 

I~(pqr) = #(~r let q be an anchor o f  pqr; and let qs be an edge in 3- that intersects 

pr. Let P and R be the polygons generated by adding qs to ~r and removing all 

edges that intersect qs. Then there are triangulations ~ and ~! o f  P and R with 

I~(~) < #(pqr) and t~(~) < I~(pqr). 

Proof We prove the assertion for P, and by symmetry it follows for R. The plan 

is to use the edges of 9- to locate ears of P with a small p value, thereby obtaining 

~ .  Each connected component of an edge of 3-  intersected with P (that is, a 

segment seen through the "window" P) is called a clipped edge. As P is not 

necessarily convex, several clipped edges can belong to the same edge of J- .  A 

clipped edge partitions P into two polygons, the near side supported by qs and 

the far  side not supported by qs. 

If no clipped edge exists in the window, then P has only three vertices and 

therefore must be a triangle of J- .  This triangle is not in ~r which implies that 

its measure is less than/~(~r because any triangle of Y with measure #(~r is also 

a triangle of ~r So assume the existence of at least one clipped edge. Denote by 

q = Po, P~ . . . . .  Pk, Pk+l = S the sequence of vertices of P. 

Claim 1. For 1 < j < k, i f /--Pi-lPjPj+~ < rr, then Pj-lPj+I is a diagonal of  P. 

Proof  o f  Claim 1. By construction of P, it is possible to find nonintersecting line 

segments pj_ ix  and pj+ly, both inside P, so that x and y lie on qs. (If j  = 1, then 

x = Pj-1 = q; if j = k, then y = p~+~ = s.) The (possibly degenerate) pentagon 

xpj_ ~PiPJ+ ~Y is part  of P, and, because the interior angles at pj, x, and y measure 

less than n, edge pj_~pj+~ is a diagonal of the pentagon and therefore also 

of P. []  

Claim 2. There is at least one clipped edge whose far  side is a triangle. 

Proof  o f  Claim 2. Let xy be a clipped edge so that its far side, F, contains no 

further clipped edge. Consider the triangle in ~-- that lies on the same side of xy  

as F. Polygon F must be a subset of this triangle, and since all vertices of F- -except  

possibly x and y - - a r e  points in S, F must be a triangle xp~y. [] 

The clipped edges xy that satisfy Claim 2 fall into four classes as illustrated in 

Fig. 4.1. An ear Pi- lPiPi+ 1 so that xy  is a dipped edge with far side xp~y can now be 

removed from P, leaving a polygon P'  with one less vertex. Claims 1 and 2 remain 
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Fig. 4.1. A "maximally far" clipped edge locates a good ear of P. 

true for P '  because the removed ear is not  supported by qs. Hence we can iterate 

and compute  a triangulation ~ of P. Symmetrically, we get a triangulation ~ of 

R. Let ~ be the triangulation of S thus obtained. 

Claim 3. #(abc) < #(pqr) for all trianoles abc in ~ and ~.  

Proof of  Claim 3. Let abc be a triangle in ~ or ~ with maximum/~.  Assume 

without loss of generality that abc is a triangle of ~ and that a -- Pi, b = p~, c = Pz 

with i < j < I. At the time immediately before abc was removed by adding the 

edge ac there was a clipped edge xy with far side xby, as shown in Fig. 4.2. Hence, 

Y does not break abc at b, and, by construction, ~r breaks abc at b and therefore 

neither at a nor  at c. 

If xy = ac (as in the leftmost picture in Fig. 4.1), then abc is a triangle in 3 -  

that is not  in d ,  and therefore p(abc) < #(pqr). So assume xy ~ ac, and assume 

for the sake of contradiction that I~(abc) ~ l~(pqr) =/~(~r > # ( J ) .  Since we chose 

abc to have maximum ~ in ~ or  ~ ,  this means that #(abc) = p(~). Then condition 

(I) requires abc to have an anchor. However, b cannot be the anchor  of abc, because 

J neither contains abc nor  breaks abc at b. Similarly, neither a nor c can be an 

anchor  of abc because d neither contains abc nor breaks abc at a or c. This 

contradiction completes the proofs of Claim 3 and Lemma 4.1. [ ]  

The Cake Cutt ing Lemma now shows that the basic edge-insertion paradigm 

cannot  get stuck in a local opt imum for # satisfying condition (I). 

Lemma 4.2. Assume lz satisfies condition (I). Let ~r be a nonoptimal triangulation 

of  point set S. Then there is an edge-insertion operation that improves d .  

Fig. 4.2. 

~ 
q 

b 

Triangle abc cannot have an anchor. 
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Proof. Let ~ be an improvement of ~r and consider a triangle pqr in ~r with 

p(pqr) = p ( d )  that is not in ~.  Condition (I) requires pqr to have an anchor, say 

q, so ~ must contain an edge qs with qs c~ pr ~ ~ .  Let P and R be the polygonal 

regions generated by adding qs and deleting the edges that intersect qs. The Cake 

Cutting Lemma implies that there are polygon triangulations ~ and ~ of P and 

R with ~(~) and p(~) both smaller than #(pqr). [] 

Remark. Lemmas 4.1 and 4.2 remain true for constrained triangulations provided 

the optimization criterion satisfies (I) or (II) in this more general setting. This is 

indeed the case for all criteria considered in this paper. 

5. Refinements of the Paradigm 

The refined versions of edge-insertion differ from the basic paradigm in two major 

ways. First, edge-insertions are restricted to candidate edges qs that break a worst 

triangle pqr at its anchor q. Second, the two polygonal regions created by adding 

edge qs are retriangulated by repeatedly removing ears (as in the proof of the Cake 

Cutting Lemma), rather than by dynamic programming. 

Outline o f  Refinements 

Let ~r be a triangulation with worst triangle pqr, that is, #(pqr) = #(d) ,  and let 

q be the anchor of pqr. We denote by qs 1 , qs 2 . . . .  the sequence of candidate edges. 

This order may be arbitrary for the O(n 3) refinement, but, for criteria satisfying 

condition (II), a carefully chosen order speeds up the running time to O(n 2 log n). 

Both refinements are specializations of the algorithm given below. We use the 

notation si+ 1 = NEXT(Si). 

Algorithm 

Construct an arbitrary triangulation ~r of S. 

repeat 5 := ~r 

find a worst triangle pqr in ~r let q be its anchor, and set s:= st; 

while s is defined do 

�9 "= ~r add qs to ~,  and remove all edges that intersect qs; 

(partially) triangulate the two polygonal regions P and R 

by cutting off ears xyz  with lz(xyz) </~(pqr); 

if P and R are completely triangulated then ~r := ~ ;  exit the while-loop 

else s := NEXT(S) 

endif 

endwhile 

until 3- = ~r and all worst triangles pqr in ~r have been tried. 

In an implementation of the algorithm we would not really copy entire 

triangulations. Instead of the assignment J := ~r we would use a flag to check 

whether an iteration of the repeat-loop produced an improved triangulation. The 
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assignment ~ := d can be avoided by making changes directly in ~ and undoing 

them to the extent necessary. The remainder of this section explains some of the 

steps in greater detail and analyzes the complexity of the two refinements. 

Triangulating by Ear Cutting 

Suppose an edge qs has been added to :~ and the edges that intersect qs 

have been removed, thus creating two polygonal regions P and R. Let q = Po, 

Pl . . . . .  Pk, Pk+l = S  be the sequence of vertices of P and let q =  ro, rl . . . . .  rm, 

rm + 1 = s be the corresponding sequence for R. As in the proof of the Cake Cutting 

Lemma, the two regions are (partially) triangulated by repeatedly removing ears 

with measures less than #(pqr). As implied by the proof, the sequence in which 

the ears are removed is immaterial as long as only the last is supported by qs. 

This method may be implemented using a stack for the vertices of P (R), so that 

it runs in time linear in the size of P (R). In the case of P, the stack is initialized 

by pushing Po and Pl. After that, for i := 2 to k + 1 we push vertex Pl, and whenever 

the three topmost  vertices, z = Pl, Y, x, define a triangle with t~(xyz) < ~(pqr) we 

pop y, the second vertex from the top. The triangulation is complete if, at the end 

of the process, Pk+ 1 = S and Po = q are the only two vertices on the stack. 

Theorem 5.1. Let  S be a set o f  n points in 9t 2, and let # be a measure that satisfies 

(I) so that given a worst triangle its anchor can be computed in constant time. 

(1) A constrained or unconstrained triangulation o f  S that minimizes the max imum 

triangle measure can be constructed in time O(n 3) and storage O(n2). 

(2) In the nondegenerate case (i.e., when p(xyz) # p(abc) unless xyz  = abc) the 

(unique) triangulation that lexicographically minimizes the decreasing vector 

o f  triangle measures can be constructed in the same amount o f  time and 

storage. 

Proof. To achieve the claimed bounds, we use the algorithm above, along with 

two data structures requiring a total of O(n 2) storage. First, the quad-edge data 

structure of Guibas and Stolfi [15] stores the triangulation in O(n) memory and 

admits common operations, such as removing an edge, adding an edge, and 

walking from one edge to the next in constant time each. 

Second, to record the status of candidate edges, we use an n-by-n bit array 

whose elements correspond to the edges defined by S. If the insertion of a candidate 

edge qs is unsuccessful, that is, the triangulation of P or R cannot be completed, 

then we know by the Cake Cutting Lemma that qs cannot be in any improvement 

of the current triangulation. We then set the bit for qs, so that we do not at tempt 

the insertion of qs again. If  the insertion of qs is successful, we set the bit for the 

edge pr; because every improvement breaks pr (by condition (I)), it cannot be in 

any later improvement. The bit array can also be used to compute the sequence 

of candidate edges qsl ,  qs2 . . . .  : scan the row corresponding to q and take all edges 

qs that intersect pr and whose flag has not yet been set. 
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Each edge-insertion, whether successful or not, causes a new flag set for one of 

the ( ~ )  edges defined by S. Therefore, at most ( ~ )  edge-insertions are carried out 

taking a total of O(n a) time. Part (1) of the claim follows because an initial 

triangulation can be constructed in time O(n log n), most straightforwardly by 

plane-sweep (see Section 8.3.1 of [8]). 

To obtain a triangulation that lexicographically minimizes the entire vector of 

triangle measures we solve a sequence of constrained triangulation problems as 

in [10]. The first constraining region is defined by the points and edges on the 

boundary of the convex hull of S with the other points forming holes. After 

computing an optimal triangulation as in (1), we remove the worst triangle (which 

is unique by nondegeneracy assumption) from the constraining region and iterate 

until the region is empty. The time is still O(n 3) because each edge needs to be 

inserted at most once during the entire process. [] 

A Special Order of Insertions for Condition (II) 

For  measures # that satisfy (II) we define a special sequence qsl, qs 2 . . . . .  qs~ of 

edge-insertions, as in [10]. The first edge, qs 1, has the property that it intersects 

pr, but otherwise it intersects as few edges as possible. As we explain below, each 

subsequent sl + 1 = NEXT(Si) lies on a particular side of qs i, and, on this side, the set 

of edges in the current triangulation ~ that intersect qs~+ 1 is the smallest proper 

superset of the edges that intersect qsi. The index I is the smallest integer for which 

qsz leads to an improvement or s~§ ~ is undefined. 

On the insertion of qs~, the retriangulation process either completes its task or 

it gets stuck because all ears of the remaining regions have measure at least #(pqr). 

Let us now consider the case where the triangulation of P cannot be completed, 

as this is the case for which we need to define NEXT(S~). In this case the stack 

contains k + 2 > 3 vertices q = Po,Pl , . . . ,Pk ,  Pk+~ = St defining the remaining 

region P' ___ P; each ear P~-~PjPj§ of P' has measure at least #(pqr). 

Lemma 5.2. Let 3- be an improvement of  ~ for # satisfying condition (II), and let 

P' be the uncompleted part of  P as above. Then all edges of  3- that intersect P' also 

intersect qsi. In particular, all edges o f  3- incident to q avoid P'. 

Proof. As in the proof of the Cake Cutting Lemma we consider P' as a 

"window" through which we see clipped edges of f .  Now suppose the claim is 

not true, that is, there is a clipped edge that does not have one of its endpoints 

on qs~. Then, as in the proof of the Cake Cutting Lemma, we can find a clipped 

edge xy whose far side is a triangle xpjy. However, now condition (II) implies 

i~(~r) > i~(p~_lpjpj+l) if pj is an anchor of the ear Pj-lPjP~+I, and / t (~ )>  

I~(P~-lPjPj§ 1) if pj_ 1 or Pj§ is an anchor. This contradicts the assumption that 

P' has no such ear. []  
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It is interesting to observe that the proof  of Lemma 5.2 breaks down if we 

assume that y satisfies only (I), since pj_ lPjP~§ 1 need not be a worst triangle. 

As we search for an insertion, we maintain an open wedge Wcontaining all the 

remaining candidate edges. Initially, Wis the wedge between the ray q--ib (starting 

at q and passing through p) and the ray ~ .  If the edge-insertion of qsl turns out 

to be unsuccessful because the triangulation of P cannot be completed, then 

Lemma 5.2 allows us to redefine Was  the part of the old W on R's side of q~i. 

Similarly, if the triangulation of R cannot be completed, then Wcan  be narrowed 

down to P's side of ~ i .  (As a consequence, if neither P nor R can be completely 

triangulated, then it is impossible to improve the current triangulation by breaking 

pqr at q.) 

As soon as one of  P or  R has been found to be noncompletable, wedge Wis  

updated and an edge-insertion is attempted with s~+l = NEXT(S~). If it is P that 

could not be completed (the R case is symmetrical), then we choose si+ ~ by looking 

first at the triangle on the far side of rmr,~+~ (the last edge of R) from q. If  the 

third vertex s of  this triangle lies in wedge W,, then we choose s~ + ~ to be s. If this 

is not  the case, then we move on to the next triangle sharing an edge with rmrm+ ~S, 

and test whether its far vertex z lies in the wedge. We eventually either run out 

of triangles (then no edge-insertion at q is possible) or we find a vertex sl § ~ such 

that the set of edges in ~ that intersect qs~+ ~ is the smallest proper  superset of 

the edges that intersect qs~. See Fig. 5.1. 

When we move from qsi to qs~§ 1, most of  the work done to triangulate P and 

R can be saved. Assume that qs~ has failed because P could not be completely 

triangulated. Because qs~. 1 intersects rmr~+ 1 all ears cut off P remain the same 

and do not  have to be reconsidered. On  the other hand, rm§ is no longer a vertex 

of R, so all ears cut of fR that are incident to r~+ 1 must be returned to R's territory. 

When we move to qs~+x some additional edges are removed from ~ which, in 

effect, expands P and R. The new vertices can be pushed on their respective stacks, 

one by one, so that the triangulation process can continue where it left off. 

The only place where we waste time in this process (i.e., where time spent is not  

proport ional  to good ears found) is when ears cut off R are returned to R. Since 

ears are returned for only one polygon, we can limit the waste by strictly 

alternating between cutting an ear of P and one of R. This way, for each returned 

q 

Fig. 5.1. The two rays define the current W, and the dotted line segments indicate those ears removed 

from P and R. If P is found to be noncompletable, then the next candidate edge qsi+ 1 lies in the 

updated W defined by q~ find the ray passing through R. 
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ear (except maybe the last) there is a permanently removed ear. Therefore, the 

total number of operations performed while inserting qsl, qs2 . . . . .  qsz is linear in 

the number of edges in ~ that intersect qs 1. 

As in the proof of Theorem 5.1, a successful edge-insertion, complete with 

retriangulation, takes time linear in the number of old edges intersected by the 

new edge. We now prove that the old edges removed will never be reinserted in 

any later successful edge-insertion. 

Lemma 5.3. Assume # satisfies condition (II), let ~l be a triangulation o f  S with 

worst triangle pqr, and let ~ be obtained from ~ by the successful insertion o f  edge 

qsl. Then no edge xy  in ~ that intersects qsz can be an edge o f  any improvement o f  ~ .  

Proof. Lemma 5.2 implies that every improvement of ~ has an edge qw that lies 

inside the wedge W computed when qsz is inserted into ~1. Every edge xy  in ~r 

that intersects qs t also intersects every other edge qt with t e W. In particular, 

xy  n qw ~ 0 which implies that xy is neither in ~ nor in any improvement 

of ~.  [] 

Theorem 5.4. Let S be a set o f  n points in ~R 2 and let # be a measure that satisfies 

(II) so that given a triangle its anchor can be computed in constant time. 

(1) A constrained or unconstrained triangulation o f  S that minimizes the maximum 

triangle measure can be constructed in time O(n 2 log n) and storage O(n). 

(2) In the nondegenerate case (i.e., when/z(xyz) # #(abc) unless xyz =abc) the 

(unique) triangulation that lexicographically minimizes the decreasing vector 

o f  triangle measures can be constructed in the same amount of  time and 

storage. 

Proof. As before, the algorithm uses the quad-edge data structure of [15] 

to store the triangulation. The bit array, however, is replaced by a priority 

queue that holds the triangles of ~ ordered by measure. It admits inserting 

and deleting triangles and finding a triangle with maximum measure in logarithmic 

time [4]. Lemma 5.3 implies that only O(n 2) edges and triangles are manipulated 

in the main loop of the algorithm, which thus takes time O(n 2 log n). Lemma 5.3 

also implies a quadratic upper bound on the number of iterations of the repeat- 

loop, which implies that the total time needed to find worst triangles pqr is also 

O(n 2 log n). This proves part (1), and part (2) follows from the same argument as 

in Theorem 5.1. [] 

6. Maximizing the Minimum Height 

The height ~/(xyz) of triangle xyz is the minimum distance from a vertex to 

the opposite edge. A maxmin height triangulation of S maximizes the smallest 

height of its triangles, over all triangulations of S. Although the maxmin height, 
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Fig. 6.1. Flipping either be or ce locally decreases the minimum height. Thus, the edge-flip method 
cannot change this triangulation into the optimal one. 

the maxmin angle, and the minmax angle criteria all tend to avoid thin and 

elongated triangles, they do not necessarily define the same optima. Indeed, 

four-point examples can be constructed to show that the three criteria are pairwise 

different. 

The edge-flipping strategy [17], [18] applied to the maxmin height criterion 

does not always succeed in computing an optimal triangulation. Consider a regular 

pentagon abcde and the circle through the five points. Perturb a slightly to a point 

outside the circle and c and d slightly to points inside the circle so that 

h(c, db) < h(d, ec) < h(b, ca) = h(e, ad) < h(a, be), where we write h(x, yz) for the 

minimum distance between a point x and a line through points y and z. See Fig. 

6.1. The maxmin-height triangulation uses diagonals ac and ad. If the current 

triangulation uses be and ce, however, no edge-flip can result in a better triangula- 

tion. 

We now show that - r /  satisfies condition (II), when we define the vertices 

of xyz  with maximum angle to be anchors. It follows that maxmin height 

triangulations can be constructed by the O(n 2 log n)-time implementation of 

the edge-insertion paradigm. 

Lemma 6.1. Let xyz be a triangle o f  a triangulation ~r o f  S and let q (xyz )= 

h(y, zx). Then rl(~-) < tl(xyz) for  any trianoulation g" o f  S that neither contains xyz  

nor breaks xyz  at y. 

Proof. The height rl(xyz ) = h(y, zx) is the distance between y and a point 

s~zx .  Assume that xyz  is not in J and that ~- does not break xyz  at y. 

Therefore, there exists a triangle uyv in ~- so that either u = x and uv c~ yz ~ 

(rename vertices if necessary), or uv intersects both yx and yz. In both cases, 

rl(uyv) < h(y, uv) < rl(xyz ) because u v n  ys # ~ .  [] 

It should be clear that Lemma 6.1 also holds for constrained triangulations 

of S. Theorem 5.4 then implies that a maxmin height triangulation, and in the 

nondegenerate case a triangulation lexicographically maximizing the increasing 

vector of heights, can be computed in time O(n 2 log n) and storage O(n). 
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7. Minimizing the Maximum Eccentricity 

Consider a triangle xyz  and let ( c a , p 0  be its circumcircle, with center c t 

and radius Pt- The eccentricity of xyz,  e(xyz), is the infimum over all distances 

between cl and points of xyz.  Clearly, e(xyz) = 0 iff c a lies in the closure of 

xyz.  Note  that  eccentricity is related to the size of  the maximum angle, ct(xyz), 

only with large triangles count ing more. Specifically, unless e(xyz) = e(abc) = O, 

e(xyz) e(abc) 
:t(xyz) < ~(abc) iff - -  < , 

Pa P2 

where P2 is the radius of the circumcircle of abc. The triangulation of the pentagon 

in Fig. 6.1 can be used to show that edge-flipping does not always succeed in 

minimizing the maximum eccentricity. 

Eccentricity is our  first example of a measure satisfying condition (I), but 

not  (II). Consider  Fig. 7.1. In this figure, vertices u and v lie very close to 

yx  and yz, respectively, so that the circumcircle of  uyv is significantly smaller 

than the one of  xyz,  and e(uyv)< e(xyz). In fact, e(xyz) exceeds the eccentricity 

of  every triangle of  the minmax-eccentricity tr iangulation Y ,  even though ~-- does 

not  break x y z  at any of its vertices. We now show that s satisfies the weaker 

condit ion (I). It turns out that  y is an anchor  of xyz  only if a largest angle in xyz  

is at y. 

Lemma 7.1. Let  xy z  be a tr&nole o f  a triangulation d o f  S, such that e(xyz) > O, 

and let y be a vertex with max imum angle in xyz.  Then max{e(d) ,  e('J-)} > e(xyz) 

f o r  every triangulation J -  o f  S that neither contains xyz  nor breaks xyz  at y. 

Proo f  Assume that ~-- neither contains xyz  nor  breaks it at y. Therefore, 

J -  must  contain a triangle uyv so that u = x and uv c~ yz vL ~ (renaming vertices 

if necessary), or  uv intersects y x  and yz, as in Fig. 7.2. Let (ca, Pa) be the circumcircle 

of xyz.  If  neither u nor  v are enclosed by this circle, then e(xyz) < e(uyv) < e(J ) .  

Otherwise, assume that v is enclosed by (ca, Px) and consider the line segment clv. 

Y 

tO  

Fig. 7.1. 5 is the triangulation with diagonals uv, vw, and wu, and .~ the one with diagonals xy, yz, 
and zx. Then e(.~) < e(xyz) < e(~), but 9- does not break xyz at any of its vertices, in contradiction 

to condition OIL 



Edge Insertion for Optimal Triangulations 61 

Y 

Fig. 7.2. The triangle xyz in Jag is neither contained in 5 nor is it broken at y by J .  Therefore, f 

contains a triangle uyv that intersects xyz  as shown. There must be a triangle in .~g with eccentricity 

greater than e(xyz) intersecting ely. 

It intersects a sequence of edges of ~r ordered from cx to v. For an edge ab in 

this sequence let abe be the supporting triangle so that c and c I lie on different 

sides of ab. Assume that ab is the first edge in the sequence so that (c I , p~) encloses 

c but not a and not b. Then e(~r > e(abc) > e(xyz). [] 

Theorem 5.1 thus implies that a minmax-eccentricity triangulation of n points 

can be constructed in time O(n a) and storage O(n2). In the nondegenerate case the 

same time and storage suffice to construct a triangulation lexicographically 

minimizing the decreasing vector of eccentricities. 

8. Minimizing the Maximum Slope 

Consider a function f :  912_~ 91 defining a surface x3 = f ( x t ,  x2) in 913. The 

gradient of f is the vector Vf = (df/Oxl, t~f/t~X2), each component of which is 

itself a function from 912 to 91. Define V2f = (df/Oxl) 2 + (af/dx2) 2, and call x / ~  

at a point (xl, x2) the slope at this point. 

Let S be a point set in 912 and let S be the corresponding set in 913 where each 

point of S has a third coordinate called elevation. For a point x of S, we write 

for the "lifted" point, that is, the corresponding point in S. Analogous to the 

definitions in 9t 2, ~233 denotes the relatively open line segment with endpoints 

and 33, and ~332 denotes the relatively open triangle with corners ~, 33, ~. We can 

think of ~33~ as a partial function f on 912, defined within xyz. At each point in xyz, 

the gradient is well defined and the same as for any other point in xyz. We can 

therefore set tr(xyz) equal to the slope at any point of xyz, and call it the slope of 

xyz. For a triangulation ~r of S define a(~r = max{a(xyz)lxyz a triangle of ~} ,  

as usual. A minmax-slope triangulation of  S minimizes the maximum tr of any 

triangle. 

Triangulations are commonly used to compute surfaces interpolating point set 

data with elevations. Rippa [23] recently proved that, regardless of elevations, the 

Delaunay triangulation minimizes the integral (over the convex hull of S) of V 2 f  

among all triangulations of S. See [7] for other interesting optimization criteria. 

The five-point example of Fig. 6.1 again shows that the edge-flipping strategy 

does not in general compute a minmax-slope triangulation. Just imagine that 

points a, b, c, d, e are not perturbed and thus form a regular pentagon. Let the 



62 M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and T. S. Tan 

~, 10 

~ , 0 ~ ~ , 0  

Fig. 8.1. Triangulation 5 with diagonals uv, vw, and wu is an improvement of ~r with diagonals xy, 
yz,  and zx .  3 -  has no triangle with slope as large as r but does not break x y z  at any of its vertices. 

elevations of a, b, c, d, e be 5, 11, 0, 10, 0, in this sequence. The optimal triangula- 

tion is defined by the diagonals ac and ad, and the current triangulation (with 

diagonals be and ce as shown) cannot be improved by a single edge-flip. 

As in the case of eccentricity, we can show that a does not satisfy the strong 

condition (II). Figure 8.1 gives a six-point example in which an improvement 

of ~r does not break a triangle xyz with a(J-) < a(xyz). 

Observe that the direction of steepest descent at any point on a triangle xyz is 

given by A = - V f  at that point. We call the vertex y a peak of xyz unless the 

line y + 2A, 2 e 9~, intersects the closure of xyz only at y. In other words, a peak 

is a vertex first hit when sweeping with a line perpendicular to the direction of 

steepest descent. In the nondegenerate case xyz has only one peak, but if A is 

parallel to an edge, then there are two peaks. Call the intersection of the closure 

of ~33~ with the plane parallel to the x3-axis through y + 2A the descent line E(xyz) 

of xyz, assuming y is an anchor of xyz. 

The remainder of this section shows that a does satisfy the weak condition (I). 

In fact, each peak of a worst triangle is an anchor. For technical reasons it is 

necessary to assume that no four points of S are coplanar. Indeed, the strict 

inequality in Lemma 8.1 is incorrect without this assumption. (This general 

position assumption, however, does not diminish the generality of our algorithm, 

because a simulated perturbation of the points can be used to enforce general 

position 1"9]). 

Lemma 8.1. Let xyz be a triangle of  a triangulation ~t of  S, and let the intersection 

o f  line y + 2A with the closure of  xyz be strictly larger than point y, and let y be a 

peak of  xyz. Then max{a(~t), ~(~J)} > a(xyz) for every triangulation ~-- o f  S that 

neither contains xyz nor breaks xyz at y. 

Proof. The slope of xyz, a(xyz), is also the slope of the descent line E1 = f(xyz). 

Assume without loss of generality that ~1 descends from j3 down to where it meets 

the closure of ~s (If it ascends, we use the same argument only with the x3-axis 

reversed.) Assume also that 3- neither contains xyz nor breaks it at y. It follows 

that ~- contains an edge uv so that either u = x and uv c~ yz ~ f~ (rename vertices 

ff necessary) or uv intersects both yx and yz. If a(uyv) > o'(xyz), then cr(~ r) > ~r(xyz) 

and there is nothing to prove. 
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it1 v 

I 

Fig. 8.2. The  t r iangle  xyz with peak y in ,~r is nei ther  contained in ~ nor  is it b roken  at y by 3-. 

Therefore, ~-- conta ins  a t r iangle uyv tha t  intersects x y z  as shown. It is possible tha t  u = x or v = z, 

but not  bo th  at  the same time. 

Otherwise, the edge t~ must pass above dl in 9~ 3. By this we mean that there 

is a line parallel to the xa-axis that meets t]~ and dl and the elevation of its 

intersection with t~3 exceeds the elevation of its intersection with (1, as in Fig. 8.2. 

Then at least one of t~ and ~ must lie above the plane h I through points :~, )3, 2; 

say ~ lies above hr. Consider the triangle yvz, and note that it is not necessarily 

a triangle of ~r or oj-, nor even an empty triangle of S. We have tr(yvz) > tr(xyz) 

because the x3-parallel projection of (1 onto the plane h2 through 33, z3, 2 is steeper 

than (i but not steeper than (2 = ((yvz). We distinguish three cases depending 

on which vertex is the peak of yvz, that is, through which one a line of steepest 

descent of )3132 passes. 

Case 1." v is a peak o f  yvz. Then (2 connects z3 with a point on the closure of )32. 

Consider the intersection of ~r with a plane parallel to the x3-axis through d 2. 

This intersection includes a polygonal chain that connects ~ with that same point 

on the closure of )32 (since yz is an edge in d ) .  One of the segments in the chain 

must have slope at least the average slope of the chain; hence one of the triangles 

abc in ~1 has o(abc) > a(yvz) > tr(xyz), and therefore tr(d) > tr(xyz). 

Case 2: z is a peak o f  yvz. Then (2 connects 2 with a point on the closure of )3~. 

Then we use the same argument as in Case 1, only applied to Y-. Since yv is an 

edge in J -  at least one of the triangles abe in Y- that intersect the projection of 

d 2 has a(abc) > a(yvz) > a(xyz), and therefore a(~ -) > a(xyz). 

Case 3." y is a peak of  yvz. In this case (2 connects )3 with a point ff on the closure 

of 132. Furthermore, it is impossible that (z descends from )3 to ff because ff lies 

above hi, which contradicts tr(yvz) > a(xyz). Thus, it must be that d2 descends 

from ff down to )3. Then a(uyv) > a(yvz) because t~13 passes above (2. However, 

tr(yvz) > a(xyz), so we have shown a(~--) > a(xyz). [] 

Note that Lemma 8.1 also holds for constrained triangulations of S. We can 

therefore apply Theorem 5.1 and obtain an O(n3)-time and O(nZ)-storage algorithm 

for constructing a minmax slope triangulation, and in the nondegenerate case for 

constructing a triangulation lexicographically minimizing the decreasing vector of 

slopes. 

Remark. It would be interesting to find other optimality criteria for point sets 

with elevations, that are amenable to edge-insertion. However, we know that 
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several natural measures, e.g., #(xyz) equal to the maximum angle on the lifted 

triangle ~2)2, do not satisfy either (I) or (II). A six-point counterexample can be 

formed with the vertices of a regular hexagon. There are two triangulations of the 

hexagon with an equilateral triangle in the middle; no single edge-insertion 

tranforms one into the other. By appropriately setting elevations, these two 

triangulations can be made local optima. 

9. Conclusion 

The main result of this paper is the formulation of the edge-insertion paradigm 

as a general method to compute optimal triangulations, and the identification of 

two classes of criteria for which the paradigm indeed finds the optimum. The 

paradigm is an abstraction of the algorithm introduced in [10] for computing 

minmax angle triangulations. 

The algorithms of this paper have been implemented by Waupotitsch I-11]. (The 

programs are currently available through anonymous ftp from the directory 

"/SGI/MinMaxer" at the site "ftp.ncsa.uiuc.edu.") The experience shows that the 

O(n 2 log n)-time algorithm is fairly practical, also for large point sets. This is 

because its running time for most data sets is significantly less than the pessimistic 

worst-case prediction. This phenomenon, on the other hand, was not observed for 

the O(n3)-time algorithm. 

Though usually simple to verify, conditions (I) and (II) are somewhat restrictive. 

It would be interesting to find conditions weaker than (I) even though the price 

to pay may be implementations of the paradigm that take more than cubic time. 

Listings of optimality criteria can be found in [1], [2], [19"1, and [24]. Further- 

more, implementations for criteria satisfying (I) and (II) that run in time o(n 3) and 

o(n 2 log n) are sought. 
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